View allAll Photos Tagged Capable
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
French Air Force personnel unfold photo voltaic solar panels connected to a “green to grid” portable trailer that can be deployed rapidly at the NATO Smart Energy Training and Assessment Camp (SETAC), at the Drawsko Pomorskie training area in Poland. The SETAC concept is deployed as part of the multinational Exercise Capable Logistician 2019, a regular exercise for NATO and Partner nations to test interoperability and assess NATO standards.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Fiat G.91 was an Italian jet fighter aircraft designed and built by Fiat Aviazione, which later merged into Aeritalia. The G.91 had its origins in the NATO-organized NBMR-1 competition in 1953, which sought a light fighter-bomber "Light Weight Strike Fighter" to be adopted as standard equipment across the air forces of the various NATO nations. The competition was intended to produce an aircraft that was light, small, expendable, equipped with basic weapons and avionics and capable of operating with minimal ground support. These specifications were developed for two reasons: the first was the nuclear threat to large air bases, many cheaper aircraft could be better dispersed, and the other was to counter the trend towards larger and more expensive aircraft. After reviewing multiple submissions, the G.91 was picked as the winning design of the NBMR-1 competition.
The G.91 entered into operational service with the Italian Air Force in 1961, and with the West German Luftwaffe in the following year. Various other nations adopted it, such as the Portuguese Air Force, who made extensive use of the type during the Portuguese Colonial War in Africa. The G.91 remained in production for 19 years, during which a total of 756 aircraft were completed, including the prototypes and pre-production models. The assembly lines were finally closed in 1977, and the original G.91 enjoyed a long service life that extended over 35 years.
The G.91 was also used as a basis for a two-seat trainer variant with a stretched fuselage and further developments, based on this bigger airframe: the twin-engine development G.91Y, which was originally ordered by the Italian Air Force and Switzerland (as G.91YS) and later also operated by Poland, as well as the simpler, single-engine G-91X, a dedicated export alternative.
Like the G.91Y, the G.91X was an increased-performance version of the nimble baseline Fiat G.91, but unlike the G.91Y it was not funded by the Italian government but rather a private venture of Fiat. Like the G.91Y, it was based on the G.91T two-seat trainer variant. Structural modifications to reduce airframe weight increased performance and an additional fuel tank occupying the space of the G.91T's rear seat provided extra range. Combat manoeuvrability was improved with the addition of automatic leading-edge slats. While the G.91Y and X had a very similar appearance, their internal structure behind the cockpit section differed considerably and their tail section was visibly different, while the aerodynamic surfaces as well as the nose section (including the radar-less nose housing three cameras) were identical.
Instead of being powered by the G.91Y’s pair of small afterburning General Electric J85 turbojets, the G.91X only carried a single Pratt & Whitney J52 axial-flow dual-spool turbojet engine without reheat, a proven engine that was used in a number of successful aircraft, most of all the late Douglas A-4 Skyhawk versions. The bigger engine increased thrust by 60% over the original, earlier Orpheus-powered single-engine variants, and made the light G.91 a very agile aircraft. However, the J52 was considerably heavier than the small J85s, and despite less complex auxiliary installations, the G.91X weighed roughly 1.000 lb more than the G.91Y.
Performance-wise, the G.91X was, despite its conservative and heavier J52 powerplant, on par with the G.91Y, even though range, acceleration and rate of climb were not as good, the G.91Y’s afterburners gave the “Yankee Gina” a significant extra punch. On the other side, the G.91X was more robust, technically simpler and therefore easier to maintain and even better suited to operations from unprepared frontline airfields with minimal infrastructure.
Basically, the G.91X was designed to carry the same sophisticated avionics equipment as the G.91Y, which had been considerably upgraded with many of the American, British and Canadian systems being license-manufactured in Italy, but for the intended export customers in small countries with a limited budget, only a rather basic avionics package was offered, making the G.91X a simple daylight attack aircraft without any smart weapon or guided AAM capability (which the G.91Y lacked, too, only the YS for Switzerland could deploy weapons like the AIM-9 or the AGM-65).
Flight testing of two prototypes aircraft ran in July 1968 in parallel to the G.91Y program and was successful, with one aircraft reaching a maximum speed of Mach 0.95 in level flight, slightly less than its two-engine sibling. Airframe buffeting was noted and was rectified in production aircraft by raising the position of the tailplane slightly, and canted fins - similar to the G.91Y, but smaller - were added under the lower rear fuselage to improve directional stability. Unlike the G.91Y, which had been designed to NATO specifications, the G.91X did not feature an arrester hook, just a tail bumper.
The initial order of 55 G.91Y aircraft for the Italian Air Force was completed by Fiat in March 1971, by which time the company had changed its name to Aeritalia (from 1969, when Fiat Aviazione joined the Aerfer). The order was increased to 75 aircraft with 67 eventually being delivered.
In contrast to this success, the G.91X did not find immediate takers, though, because the potential market of Western-oriented countries was in the Seventies largely dominated by US American military support programs, which aggressively marketed the supersonic Northrop F-5 as a counterpart to MiG-17 and MiG-21 fighters, which had been provided to many countries by the USSR.
One large potential customer had been Israel, but the G.91X was declined in favor of the bigger and more sophisticated A-4N Skyhawk. Turkey and Greece also showed interest, but both eventually procured F-5 variants, heavily promoted by the USA. In the end, only a small number of the G.91X were built and sold to rather small and obscure air forces.
One of these few G.91X operators became Honduras. After the so-called Football War with El Salvador in 1969, the Honduran Air Force (HAF) entered the jet era in 1971 and started a re-organization and modernization program. This included the procurement of 10 old, ex-Yugoslav Canadair CL-13 Mk.4 Sabre. Later, in 1974 and as a result of an institutional growth of the Honduran Air Force, the "Coronel Hernán Acosta Mejía" Air Base, the "Coronel Armando Escalón Espinal" Base as well as the General Command of the Air Force and General Air Force General Staff were created.
Between 1976 and 1978 sixteen other Israeli aircraft were acquired, of the IAI \ Dassault Super-Mystere B.2 \ J-52 S'aar type, six new Cessna A-37 Dragonfly COIN aircraft and fifty UH-1 Iroquois helicopters. By then, the Sabres were in such a poor condition and deteriorated quickly under the harsh local climate, that a replacement was soon needed. The choice fell on the G.91X, not only because of the aircraft’s simplicity and ruggedness, but also because of its (though limited) reconnaissance capability as well as the engine and ammunition commonality with the ex-Israeli Sa’ars. A total of twelve G.91X were procured in 1977 and delivered until late 1979, and they were immediately put into action during the 1980s confrontation with the Sandinista government of Nicaragua, with heavy involvements in bombing raids and COIN missions. The Honduran G.91Xs flew frequent attack and reconnaissance missions, and even though they were no fighters the Ginas downed several Sandinista helicopters, including a Mil Mi-24 Hind (rather accidently shot down, though, through a salvo of unguided 5” FFARs which crossed the helicopter's flight path).
After the hostilities with Nicaragua had ended in 1990, the Honduran G.91Xs became actively involved in fighting drug trafficking and flew frequent reconnaissance and attack missions over home soil. By that time, the Honduran aircraft fleet was augmented or replaced (three G.91Xs had been lost through accidents or enemy fire by 1991) with 11 ex-USAF OA/A-37B Dragonflies, 12 ex-USAF Northrop F-5E/F Tiger II interceptors, 12 new Embraer T-27 Tucano armed trainers and four new CASA 101BB-02 attack airplanes.
By 1996, all eight remaining Honduran G.91Xs were, together with the Super Mystères, retired. The surviving aircraft were put up for sale as surplus, and one, already grounded G.91X airframe has been preserved at the Honduras Air Museum.
General characteristics:
Crew: one
Length: 11.67 m (38 ft 3.5 in)
Wingspan: 9.01 m (29 ft 6.5 in)
Height: 4.43 m (14 ft 6.3 in)
Wing area: 18.13 m² (195.149 ft²)
Empty weight: 4,400 kg (9,692 lb)
Loaded weight: 8,100 kg (17,842 lb)
Max. takeoff weight: 9,000 kg (19,823 lb)
Powerplant:
1× Pratt & Whitney J52-P6A turbojet with 8,500 lbf (38,000 N) of thrust
Performance:
Maximum speed: 1,110 km/h (600 kn, 690 mph, Mach 0.95) at 10,000 m (33,000 ft)
Range: 1,100 km (594 nmi, 683 mi)
Max. ferry range with drop tanks: 3,200 km (1,988 mls)
Service ceiling: 12,500 m (41,000 ft)
Rate of climb: 58 m/s (11.400 ft/min)
Wing loading: max. 480 kg/m² (98.3 lb/ft²)
Thrust/weight: 0.47 at maximum loading
Armament:
2× 30 mm (1.18 in) DEFA cannons with 120 RPG
4× under-wing pylon stations with a capacity of 1,814 kg (4,000 lb)
The kit and its assembly:
This build is my submission the 2020 "One week” group build at whatifmodellers.com. I had originally earmarked my Thai Navy A-4 for this event, but already built it for the “In the navy” GB that ran a couple of weeks earlier, since it was a perfect thematic match.
While searching for an alternative I found a Matchbox G.91Y in the stash and wondered about a single engine alternative, a simpler aircraft in the spirit of the original G.91R variants. Since I had some surplus fuselages from G.91R Revell kits in the donor bank, the G.91X was born.
The basis is the Matchbox G.91Y kit, a basic affair with mediocre fit and only few details. It was mostly built OOB, except for lowered flaps (easy to realize on this kit) and a completely new lower rear fuselage from a smaller G.91R section with only a single exhaust. This feat was a little more challenging than it seems, since the G.91R is considerably smaller and shorter than the G.91Y – a lot of improvisation and PSR went into this cosmetic stunt. For instance, the seams between the parts had to be reinforced from the inside, bridging the different fuselage shapes, and a 2-3mm gap between the fuselage halves had to be filled. In order to emphasize the new engine arrangement, the G.91Y’s dorsal air scoops were sanded away and a new jet exhaust had to be found for the new, rather oval tail orifice. I eventually settled upon a protective cap from y syringe needle.
Furthermore, the cast-on guns were replaced with hollow steel needles, and some blade antennae (styrene sheet) as well as gun nozzle protectors (thin wire) were added. The cockpit was also slightly pimped with styrene profiles and some wire (on the ejection seat and for some side consoles), the pilot figure – even though the Matchbox figures are among the best I know – was replaced by a pilot from an Airfix A-4 Skyhawk (left over from the recent Thai Navy A-4LT build). However, the canopy remained closed, since opening it would require more fuselage cutting.
The ordnance was kept simple, reflecting the attack/COIN role of this aircraft: a pair of LAU-19 unguided missile pods and two Mk. 82 bombs; these came from an Italeri NATO weapon set and an Airfix A-4 kit, respectively.
Painting and markings:
Another inspiration for this build were pictures from a PC-7 trainer of the Guatemala Air Force, which carried a livery in three murky shades of green. I found this paint scheme pretty interesting, esp. as an alternative to the ubiquitous SEA scheme (that Honduran A-37s carried). For the G.91X I adapted the scheme with slightly more contrasty tones of two shades of green and a more brownish hue: Faded Olive Drab (Modelmaster #2051), Olive Drab (Humbrol 155) and Dark Green (Humbrol 30). The undersides were painted in a light grey (Humbrol 166). I initially considered a wrap-around scheme, but eventually found it to look too boring – also with a look at the potential markings, because aircraft of the Honduran Air Force typically only carried and carry minimal markings. Instead of the Guatemalan PC-7’s apparently symmetrical scheme I rather went for a more disruptive pattern, though.
The model was seriously weathered with a black ink washing and post panel shading, simulating constant use and the influence of tropical climate conditions. The decals were puzzled together from various sources and improvised. Most stencils come from the OOB sheet, the roundels on the fuselage and the flags on the fin were printed at home on clear sheet, with a white decal base added underneath. Quite complicated, but the alternative white decal paper as printing base would not yield sufficiently opaque markings. In order to add some eye-catchers I gave the Gina roundels on the fuselage and on the wings, too – these are rather modern markings, but just with the flags on the fin I found the model to look quite murky and boring. Artistic freedom… The “FAH” abbreviations were created with single USAF 45° letters.
Finally, after some soot stains around the guns and the exhaust with grinded graphite, the aircraft was sealed with matt Italeri acrylic varnish.
A relatively simple project – chosen with the perspective of just a week (well, eight days, to be honest) to tackle and finish it, despite the major fuselage surgery and the photo shooting and editing on top.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Fiat G.91 was an Italian jet fighter aircraft designed and built by Fiat Aviazione, which later merged into Aeritalia. The G.91 had its origins in the NATO-organized NBMR-1 competition in 1953, which sought a light fighter-bomber "Light Weight Strike Fighter" to be adopted as standard equipment across the air forces of the various NATO nations. The competition was intended to produce an aircraft that was light, small, expendable, equipped with basic weapons and avionics and capable of operating with minimal ground support. These specifications were developed for two reasons: the first was the nuclear threat to large air bases, many cheaper aircraft could be better dispersed, and the other was to counter the trend towards larger and more expensive aircraft. After reviewing multiple submissions, the G.91 was picked as the winning design of the NBMR-1 competition.
The G.91 entered into operational service with the Italian Air Force in 1961, and with the West German Luftwaffe in the following year. Various other nations adopted it, such as the Portuguese Air Force, who made extensive use of the type during the Portuguese Colonial War in Africa. The G.91 remained in production for 19 years, during which a total of 756 aircraft were completed, including the prototypes and pre-production models. The assembly lines were finally closed in 1977, and the original G.91 enjoyed a long service life that extended over 35 years.
The G.91 was also used as a basis for a two-seat trainer variant with a stretched fuselage and further developments, based on this bigger airframe: the twin-engine development G.91Y, which was originally ordered by the Italian Air Force and Switzerland (as G.91YS) and later also operated by Poland, as well as the simpler, single-engine G-91X, a dedicated export alternative.
Like the G.91Y, the G.91X was an increased-performance version of the nimble baseline Fiat G.91, but unlike the G.91Y it was not funded by the Italian government but rather a private venture of Fiat. Like the G.91Y, it was based on the G.91T two-seat trainer variant. Structural modifications to reduce airframe weight increased performance and an additional fuel tank occupying the space of the G.91T's rear seat provided extra range. Combat manoeuvrability was improved with the addition of automatic leading-edge slats. While the G.91Y and X had a very similar appearance, their internal structure behind the cockpit section differed considerably and their tail section was visibly different, while the aerodynamic surfaces as well as the nose section (including the radar-less nose housing three cameras) were identical.
Instead of being powered by the G.91Y’s pair of small afterburning General Electric J85 turbojets, the G.91X only carried a single Pratt & Whitney J52 axial-flow dual-spool turbojet engine without reheat, a proven engine that was used in a number of successful aircraft, most of all the late Douglas A-4 Skyhawk versions. The bigger engine increased thrust by 60% over the original, earlier Orpheus-powered single-engine variants, and made the light G.91 a very agile aircraft. However, the J52 was considerably heavier than the small J85s, and despite less complex auxiliary installations, the G.91X weighed roughly 1.000 lb more than the G.91Y.
Performance-wise, the G.91X was, despite its conservative and heavier J52 powerplant, on par with the G.91Y, even though range, acceleration and rate of climb were not as good, the G.91Y’s afterburners gave the “Yankee Gina” a significant extra punch. On the other side, the G.91X was more robust, technically simpler and therefore easier to maintain and even better suited to operations from unprepared frontline airfields with minimal infrastructure.
Basically, the G.91X was designed to carry the same sophisticated avionics equipment as the G.91Y, which had been considerably upgraded with many of the American, British and Canadian systems being license-manufactured in Italy, but for the intended export customers in small countries with a limited budget, only a rather basic avionics package was offered, making the G.91X a simple daylight attack aircraft without any smart weapon or guided AAM capability (which the G.91Y lacked, too, only the YS for Switzerland could deploy weapons like the AIM-9 or the AGM-65).
Flight testing of two prototypes aircraft ran in July 1968 in parallel to the G.91Y program and was successful, with one aircraft reaching a maximum speed of Mach 0.95 in level flight, slightly less than its two-engine sibling. Airframe buffeting was noted and was rectified in production aircraft by raising the position of the tailplane slightly, and canted fins - similar to the G.91Y, but smaller - were added under the lower rear fuselage to improve directional stability. Unlike the G.91Y, which had been designed to NATO specifications, the G.91X did not feature an arrester hook, just a tail bumper.
The initial order of 55 G.91Y aircraft for the Italian Air Force was completed by Fiat in March 1971, by which time the company had changed its name to Aeritalia (from 1969, when Fiat Aviazione joined the Aerfer). The order was increased to 75 aircraft with 67 eventually being delivered.
In contrast to this success, the G.91X did not find immediate takers, though, because the potential market of Western-oriented countries was in the Seventies largely dominated by US American military support programs, which aggressively marketed the supersonic Northrop F-5 as a counterpart to MiG-17 and MiG-21 fighters, which had been provided to many countries by the USSR.
One large potential customer had been Israel, but the G.91X was declined in favor of the bigger and more sophisticated A-4N Skyhawk. Turkey and Greece also showed interest, but both eventually procured F-5 variants, heavily promoted by the USA. In the end, only a small number of the G.91X were built and sold to rather small and obscure air forces.
One of these few G.91X operators became Honduras. After the so-called Football War with El Salvador in 1969, the Honduran Air Force (HAF) entered the jet era in 1971 and started a re-organization and modernization program. This included the procurement of 10 old, ex-Yugoslav Canadair CL-13 Mk.4 Sabre. Later, in 1974 and as a result of an institutional growth of the Honduran Air Force, the "Coronel Hernán Acosta Mejía" Air Base, the "Coronel Armando Escalón Espinal" Base as well as the General Command of the Air Force and General Air Force General Staff were created.
Between 1976 and 1978 sixteen other Israeli aircraft were acquired, of the IAI \ Dassault Super-Mystere B.2 \ J-52 S'aar type, six new Cessna A-37 Dragonfly COIN aircraft and fifty UH-1 Iroquois helicopters. By then, the Sabres were in such a poor condition and deteriorated quickly under the harsh local climate, that a replacement was soon needed. The choice fell on the G.91X, not only because of the aircraft’s simplicity and ruggedness, but also because of its (though limited) reconnaissance capability as well as the engine and ammunition commonality with the ex-Israeli Sa’ars. A total of twelve G.91X were procured in 1977 and delivered until late 1979, and they were immediately put into action during the 1980s confrontation with the Sandinista government of Nicaragua, with heavy involvements in bombing raids and COIN missions. The Honduran G.91Xs flew frequent attack and reconnaissance missions, and even though they were no fighters the Ginas downed several Sandinista helicopters, including a Mil Mi-24 Hind (rather accidently shot down, though, through a salvo of unguided 5” FFARs which crossed the helicopter's flight path).
After the hostilities with Nicaragua had ended in 1990, the Honduran G.91Xs became actively involved in fighting drug trafficking and flew frequent reconnaissance and attack missions over home soil. By that time, the Honduran aircraft fleet was augmented or replaced (three G.91Xs had been lost through accidents or enemy fire by 1991) with 11 ex-USAF OA/A-37B Dragonflies, 12 ex-USAF Northrop F-5E/F Tiger II interceptors, 12 new Embraer T-27 Tucano armed trainers and four new CASA 101BB-02 attack airplanes.
By 1996, all eight remaining Honduran G.91Xs were, together with the Super Mystères, retired. The surviving aircraft were put up for sale as surplus, and one, already grounded G.91X airframe has been preserved at the Honduras Air Museum.
General characteristics:
Crew: one
Length: 11.67 m (38 ft 3.5 in)
Wingspan: 9.01 m (29 ft 6.5 in)
Height: 4.43 m (14 ft 6.3 in)
Wing area: 18.13 m² (195.149 ft²)
Empty weight: 4,400 kg (9,692 lb)
Loaded weight: 8,100 kg (17,842 lb)
Max. takeoff weight: 9,000 kg (19,823 lb)
Powerplant:
1× Pratt & Whitney J52-P6A turbojet with 8,500 lbf (38,000 N) of thrust
Performance:
Maximum speed: 1,110 km/h (600 kn, 690 mph, Mach 0.95) at 10,000 m (33,000 ft)
Range: 1,100 km (594 nmi, 683 mi)
Max. ferry range with drop tanks: 3,200 km (1,988 mls)
Service ceiling: 12,500 m (41,000 ft)
Rate of climb: 58 m/s (11.400 ft/min)
Wing loading: max. 480 kg/m² (98.3 lb/ft²)
Thrust/weight: 0.47 at maximum loading
Armament:
2× 30 mm (1.18 in) DEFA cannons with 120 RPG
4× under-wing pylon stations with a capacity of 1,814 kg (4,000 lb)
The kit and its assembly:
This build is my submission the 2020 "One week” group build at whatifmodellers.com. I had originally earmarked my Thai Navy A-4 for this event, but already built it for the “In the navy” GB that ran a couple of weeks earlier, since it was a perfect thematic match.
While searching for an alternative I found a Matchbox G.91Y in the stash and wondered about a single engine alternative, a simpler aircraft in the spirit of the original G.91R variants. Since I had some surplus fuselages from G.91R Revell kits in the donor bank, the G.91X was born.
The basis is the Matchbox G.91Y kit, a basic affair with mediocre fit and only few details. It was mostly built OOB, except for lowered flaps (easy to realize on this kit) and a completely new lower rear fuselage from a smaller G.91R section with only a single exhaust. This feat was a little more challenging than it seems, since the G.91R is considerably smaller and shorter than the G.91Y – a lot of improvisation and PSR went into this cosmetic stunt. For instance, the seams between the parts had to be reinforced from the inside, bridging the different fuselage shapes, and a 2-3mm gap between the fuselage halves had to be filled. In order to emphasize the new engine arrangement, the G.91Y’s dorsal air scoops were sanded away and a new jet exhaust had to be found for the new, rather oval tail orifice. I eventually settled upon a protective cap from y syringe needle.
Furthermore, the cast-on guns were replaced with hollow steel needles, and some blade antennae (styrene sheet) as well as gun nozzle protectors (thin wire) were added. The cockpit was also slightly pimped with styrene profiles and some wire (on the ejection seat and for some side consoles), the pilot figure – even though the Matchbox figures are among the best I know – was replaced by a pilot from an Airfix A-4 Skyhawk (left over from the recent Thai Navy A-4LT build). However, the canopy remained closed, since opening it would require more fuselage cutting.
The ordnance was kept simple, reflecting the attack/COIN role of this aircraft: a pair of LAU-19 unguided missile pods and two Mk. 82 bombs; these came from an Italeri NATO weapon set and an Airfix A-4 kit, respectively.
Painting and markings:
Another inspiration for this build were pictures from a PC-7 trainer of the Guatemala Air Force, which carried a livery in three murky shades of green. I found this paint scheme pretty interesting, esp. as an alternative to the ubiquitous SEA scheme (that Honduran A-37s carried). For the G.91X I adapted the scheme with slightly more contrasty tones of two shades of green and a more brownish hue: Faded Olive Drab (Modelmaster #2051), Olive Drab (Humbrol 155) and Dark Green (Humbrol 30). The undersides were painted in a light grey (Humbrol 166). I initially considered a wrap-around scheme, but eventually found it to look too boring – also with a look at the potential markings, because aircraft of the Honduran Air Force typically only carried and carry minimal markings. Instead of the Guatemalan PC-7’s apparently symmetrical scheme I rather went for a more disruptive pattern, though.
The model was seriously weathered with a black ink washing and post panel shading, simulating constant use and the influence of tropical climate conditions. The decals were puzzled together from various sources and improvised. Most stencils come from the OOB sheet, the roundels on the fuselage and the flags on the fin were printed at home on clear sheet, with a white decal base added underneath. Quite complicated, but the alternative white decal paper as printing base would not yield sufficiently opaque markings. In order to add some eye-catchers I gave the Gina roundels on the fuselage and on the wings, too – these are rather modern markings, but just with the flags on the fin I found the model to look quite murky and boring. Artistic freedom… The “FAH” abbreviations were created with single USAF 45° letters.
Finally, after some soot stains around the guns and the exhaust with grinded graphite, the aircraft was sealed with matt Italeri acrylic varnish.
A relatively simple project – chosen with the perspective of just a week (well, eight days, to be honest) to tackle and finish it, despite the major fuselage surgery and the photo shooting and editing on top.
Bright sunshine on a beautiful Autumn day persuaded me to drive to Fraserburgh and re visit its magnificent fishing harbour for the first time in a few months, hence today Tuesday 13th November 2018 I visited and captured as many trawlers and scenes that I could, I had a great couple of hours.
Fraserburgh Harbour is situated in Aberdeenshire in the North East corner of Scotland and is ideally positioned for the fishing grounds of the North and East of Scotland, as well as being in close proximity to the North Sea oil and gas fields and the emerging offshore renewables market. The location also makes it well placed for trade with Scandinavia and the Baltic sea ports.
The Port caters and provides facilities for:
Safe Berthing with a 24 hour advisory service
Fishing, Cargo, Oil Related, Offshore Renewables and Ship Repair
Fuel, water, electricity, Stevedores available as required
Extensive local supply chain
Haulage - UK and Worldwide
Fraserburgh Harbour Commissioners are committed to providing first class services to the fishing fleet. This commitment has been demonstrated over the years through deepening projects which have provided safe berthing facilities and two of the most up to date fish markets in the UK. Both markets, which are completely chilled, are capable of maintaining a temperature of +1ºC allowing landings of fish and nephrops over a 24 hour period, five days per week with the fish being kept in prime condition for the sales that take place at a later period. The markets cover 3100 square metres and can handle 6,000 boxes of fish daily. The very successful summer and autumn squid fishery takes place a few miles from the port and vessels often choose to land through Fraserburgh Fishmarket. A Wi-Fi internet connection was recently installed in the market and is available for all users.
The harbour houses a number of full time crab fishermen who operate throughout the year. The vast majority of crab landed is trucked to markets in England with the balance processed locally. Many of these smaller vessels also take part in the seasonal mackerel fishery with line mackerel also being landed and sold through the Fishmarket.
Fraserburgh Harbour is also home to a number of the large pelagic fishing vessels who class Fraserburgh Harbour as their “home” port. These vessels can be seen moored in the Balaclava basin between fishing seasons for mackerel, herring, blue whiting etc. The harbour and bay are designated and approved pelagic landing areas seeing large quantities of herring and mackerel landed during the season with demand coming from local processors as well as continental buyers. Catches can be landed direct into the Lunar Freezing factory, one of the most up to date and modernised processing factory in the country, which is located alongside the pier in the Balaclava Harbour. These catches can be landed either by lorry or by pipeline on specific berths straight into the factory.
The Harbour offers fresh water, shore power, waste disposal, oil reception facilities, etc all essential services for the fishing fleet.
Information on these can be obtained from the Harbour Office or from the Marine Watchtower.
Google and Wiki have the folowing info on this fine town.
Fraserburgh (/ˈfreɪzərbrə/; Scots: The Broch or Faithlie, Scottish Gaelic: A' Bhruaich) is a town in Aberdeenshire, Scotland with a population recorded in the 2001 Census at 12,454 and estimated at 12,630 in 2006.
It lies at the far northeast corner of Aberdeenshire, about 40 miles (64 km) north of Aberdeen, and 17 miles (27 km) north of Peterhead. It is the biggest shellfish port in Europe, landing over 12,000 tonnes in 2008, and is also a major white fish port and busy commercial harbour.
History
The name of the town means, literally, 'burgh of Fraser', after the Fraser family that bought the lands of Philorth in 1504 and thereafter brought about major improvement due to investment over the next century. Fraserburgh became a burgh of barony in 1546. By 1570, the Fraser family had built a castle (Fraserburgh Castle) at Kinnaird's Head and within a year the area church was built. By the 1590s the area known as Faithlie was developing a small harbour.
In 1592, Faithlie was renamed Fraserburgh by a charter of the Crown under King James VI. Sir Alexander Fraser was given permission to improve and govern the town as Lord Saltoun. At present this title is still in existence and is held by Flora Fraser, 20th Lady Saltoun and head of Clan Fraser. The Royal Charter also gave permission to build a college and university in Fraserburgh allowing the Lord Saltoun to appoint a rector, a principal, a sub-principal, and all the professors for teaching the different sciences.
A grant from the Scottish Parliament in 1595 allowed the first college building to be erected by Alexander Fraser, and in 1597 the General Assembly of the Church of Scotland recommended the Rev. Charles Ferme, then minister at the Old Parish, to be its first (and only) principal.
In 1601, Fraserburgh became a burgh of regality. The college, however, closed only a decade or so after Ferme's arrest on the orders of James VI for taking part in the 1605 General Assembly, being used again only for a short time in 1647 when King's College, Aberdeen temporarily relocated owing to an outbreak of plague. A plaque commemorating its existence may be seen on the exterior wall of the remains of the Alexandra Hotel in College Bounds.
Fraserburgh thereafter remained relatively quiet until 1787 when Fraserburgh Castle was converted to Kinnaird Head Lighthouse, Scotland's first mainland lighthouse. In 1803, the original 1571 church building was replaced and enlarged to seat 1000 people. The Auld Kirk was to be the standing authority in the town up until the 1840s.
The Statistical Account on the Parish of Fraserburgh, written between 1791–1799 (probably 1791) by Rev. Alexander Simpson of the Old Parish Church, shows that the population of Fraserburgh was growing with peaks due to seasonal employment. He records a population of about 2000 in 1780 of whom only 1000 resided in the town.
There was an additional population of 200 in the village of Broadsea. He makes a point of the arrival of Dr. Webster in Fraserburgh in 1755 claiming that the population then only stood at 1682. By the time the account was written the population had increased by 518 souls since 1755. Rev. Simpson also gives accounts of deaths, births and marriages. Between 1784-1791, he claims to have an average of 37 baptisms, 14 marriages and 19 deaths per year. The statistical account mentions activities with the harbour. He describes the harbour as small but good, telling that it had the capability to take vessels with '200 tons burden' at the time the account was written.
The account also mentions that Fraserburgh had tried and succeeded in shipbuilding especially after 1784. His account finishes speaking of a proposed enlargement of the harbour. He claims that the local people would willingly donate what they could afford but only if additional funding was provided by the Government and Royal Burghs.
The second statistical account, written as a follow up to the first of the 1790s, was written in January 1840 by Rev. John Cumming. He records population in 1791 as 2215 growing to only 2271 by 1811, but increasing massively to 2954 by 1831. He considered the herring fishing, which intensified in 1815, to be the most important reason for this population boom. By 1840 he writes that seamen were marrying early with 86 marriages and 60 births in the parish in the space of one year. On top of this increased population, he explains that the herring season seen an additional 1200 people working in the Parish. There is also mention of the prosperity of this trade bringing about an increase in general wealth with a change in both dress and diet. Cumming also records 37 illegitimate children from 1837–1840 although he keeps no record of death.
The prosperity of the economy also brought about improvement within the town with a considerable amount of new houses being built in the town. The people were gaining from the herring industry as in real terms rent fell by 6% from 1815 to 1840. Lord Saltoun was described as the predominant land owner earning £2266,13s,4d in rents.
This period also saw the extension of the harbour with a northern pier of 300 yards built between 1807–1812 and, in 1818, a southern pier built by Act of Parliament. Cumming states that no less than £30,000 was spent developing the harbour between 1807 and 1840 by which time the harbour held eight vessels of 45–155 tons and 220 boats of the herring fishery.
A railway station opened in 1865 and trains operated to Aberdeen via Maud and Dyce, as well as a short branch line to St. Combs. It was, however, closed to passengers in 1965 as part of the Beeching cuts, though freight trains continued to operate until 1979, after which the station site was redeveloped. Currently, the closest operating station is Inverurie, 56 km (35 miles) away.
Climate[
Fraserburgh has a marine climate heavily influenced by its proximity to the sea. As such summer highs and winter lows are heavily moderated, with very mild winter temperatures for a location so far north. The differences between seasons are very narrow as a result, with February averaging highs of 6.7 °C (44.1 °F) and August 17.2 °C (63.0 °F).[6] As a result of its marine influence, there is significant seasonal lag, with September being milder than June and October has slightly milder nights than May, in spite of a massive difference of daylight. The climate is overcast and wet with 1351.8 hours of sunshine. Temperature extremes have ranged from 26.6.C (July 1995) down to -14.4.C (February 1991) 747.7 millimetres (29.44 in) of precipitation per annum.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The Indian HAL HG-30 Bāja (‘Hawk’) had been designed and manufactured by Hindustan Aeronautics Ltd. in the early 60ies, when it became clear that the Indian Air Force was left without a capable and rather simple aircraft for these roles - the “jet age” had been in full development, but fast and large aircraft like the Su-7 or Hawker Hunter were just not suited for low-altitude missions against day and night visible ground targets in a broad area.
Indian military planners assumed that potential aggressor will first disable airfields, so the Bāja was designed to take-off from short unprepared runways, and it was readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions.
The resulting HG-30 Bāja was a light, single-engine, low-wing single-seat aircraft with a metal airframe, capable of performing close air support, counter insurgency (COIN), and reconnaissance missions. The type featured a license-built Rolls Royce Dart turboprop engine and a reinforced, retractable tricycle landing gear for operations on rugged terrain. The unpressurized cockpit was placed as far forward and high as possible, offering the pilot an excellent view. The ejection seat was armored and the cockpit lined with nylon flak curtains.
The first HG-30 prototype flew in February 1962, and a total of 89 examples of the Bāja were built between 1963 and 1965, including two pre-production aircraft. These introduced some improvements like fixed wingtip tanks, a bulged canopy which improved the rear view or self-sealing and foam-filled fuselage tanks.
Armament consisted of four fixed 20mm cannons in the wings, plus unguided missiles, unguided bombs or napalm tanks under the wings and the fuselage on a total of 11 hardpoints. The inner pair under the wings as well as the centerline pylon were able to carry 1.000 lbs each and were ‘wet’ for optional drop tanks. The next pair could carry 500 lbs each, and the outer six attachment points were reserved for missile rails or single bombs of up to 200 lbs caliber. A total external ordnance load of up to 4.500 lbs could be carried, even though this was rarely practiced since it severely hampered handling.
The Bāja was exclusively used by the Indian Air Force, serving with 3rd (‘Cobras’) and 5th (‘Tuskers’) Squadrons in the Eastern and Western regions, alongside Toofani and Ajeet fighter bombers. Even though there was some foreign interest (e .g. from Israel and Yugoslavia,) no export sales came to fruition.
A tandem-seated trainer version was envisaged, but never left the drawing board, since Hindustan had already developed the HJT-16 Kiran jet trainer for the IAF which was more suitable, esp. with its side-by-side cockpit. Even a maritime version with foldable outer wings, arresting hook and structural reinforcements was considered for the Indian Navy.
The HG-30 did not make it in time into service for the five-week Indo-Pakistani war of 1965, but later saw serious action in the course of the Bangladesh Liberation War and the ensuing next clash between India and Pakistan in December 1971, when all aircraft (originally delivered in a natural metal finish) quickly received improvised camouflage schemes.
The 1971 campaign settled down to series of daylight anti-airfield, anti-radar and close-support attacks by fighters, with night attacks against airfields and strategic targets, into which the HG-30s were heavily involved. Sporadic raids by the IAF continued against Pakistan's forward air bases in the West until the end of the war, and large scale interdiction and close-support operations were maintained.
The HG-30 excelled at close air support. Its straight wings allowed it to engage targets 150 MPH slower than swept-wing jet fighters. This slower speed improved shooting and bombing accuracy, enabling pilots to achieve an average accuracy of less than 40 feet, and the turboprop engine offered a much better fuel consumption than the jet engines of that era.
While it was not a fast aircraft and its pilots were a bit looked down upon by their jet pilot colleagues, the HG-30 was well liked by its crews because of its agility, stability at low speed, ease of service under field conditions and the crucial ability to absorb a lot of punishment with its rigid and simple structure.
After the 1971 conflict the Bāja served with the IAF without any further warfare duty until 1993, when, after the loss of about two dozen aircraft due to enemy fire and (only three) accidents, the type was completely retired and its COIN duties taken over by Mi-25 and Mi-35 helicopters, which had been gradually introduced into IAF service since 1984.
General characteristics
Crew: 1
Length: 10.23 m (33 ft 6¼ in)
Wingspan: 12.38 m (40 ft 7¼ in) incl. wing tip tanks
Height: 3.95 m (12 ft 11¼ in)
Empty weight: 7,689 lb (3,488 kg)
Max. take-off weight: Loaded weight: 11,652 lb (5,285 kg)
Powerplant:
1× Rolls Royce Dart RDa.7 turboprop engine, with 1.815 ehp (1.354 kW)/1.630 shp (1.220 kW) at 15,000 rpm
Performance
Maximum speed: 469 mph (755 km/h) at sea level and in clean configuration
Stall speed: 88 km/h (48 knots 55 mph)
Service ceiling: 34,000 ft (10,363 m)
Rate of climb: 5,020 ft/min (25.5 m/s)
Range: 1,385 miles (2,228 km) at max. take-off weight
Armament:
4× 20mm cannons (2 per wing) with 250 RPG
A total of 11 underwing and fuselage hardpoints with a capacity of 4.500 lbs (2.034 kg); provisions to carry combinations of general purpose or cluster bombs, machine gun pods, unguided missiles, air-to-ground rocket pods, fuel drop tanks, and napalm tanks.
The kit and its assembly
This fictional COIN aircraft came to be when I stumbled across the vintage Heller Breguet Alizé kit in 1:100 scale. I did some math and came to the conclusion that the kit would make a pretty plausible single-seat propeller aircraft in 1:72...
Finding a story and a potential user was more of a challenge. I finally settled on India – not only because the country had and has a potent aircraft industry, a COIN aircraft (apart from obsolete WWII types) would have matched well into the IAF in the early 70ies. Brazil was another manufacturer candidate – but then I had the vision of Indian Su-7 and their unique camouflage scheme, and this was what the kit was to evolve to! Muahahah!
What started as a simple adaptation idea turned into a true Frankenstein job, because only little was left from the Heller Alizé – the kit is SO crappy…
What was thrown into the mix:
• Fuselage, rudder and front wheel doors from the Heller Alizé
• Horizontal stabilizers from an Airfix P-51 Mustang
• Wings are the outer parts from an Airfix Fw 189, clipped and with new landing gear wells
• Landing gear comes from a Hobby Boss F-86, the main wheels from the scrap box
• Cockpit tub comes from a Heller Alpha Jet, seat and pilot from the scrap box
• The canopy comes from a Hobby Boss F4U Corsair
• Ordnance hardpoints were cut from styrene strips
• Propeller consists of a spinner from a Matchbox Mitsubishi Zero and blades from two AH-1 tail rotors
• Ordnance was puzzled together from the scrap box; the six retarder bombs appeared appropriate, the four missile pods were built from Matchbox parts. The wingtip tanks are streamlines 1.000 lbs bombs.
The only major sculpting work was done around the nose, in order to make the bigger propeller fiat and to simulate an appropriate air intake for the engine. Overall this thing looks pretty goofy, rather jet-like, with the slightly swept wings. On the other side, the Bāja does not look bad at all, and it has that “Small man’s A-10” aura to it.
Putting the parts together only posed two trouble zones: the canopy and the wings. The Corsair canopy would more or less fit, getting it in place and shaping the spine intersection was more demanding than expected. Still not perfect, but this was a “quick and dirty” project with a poor basis, anyway, so I don’t bother much.
Another tricky thing were the wings and getting them on the fuselage. That the Fw 189 wings ended up here has a reason: the original kit provided two pairs of upper wing halves, the lower halves were lacking! Here these obsolete parts finally found a good use, even though the resulting wing is pretty thick and called for some serious putty work on the belly side… Anyway, this was still easier than trying to modify the Alizé wings into something useful, and a thick wing ain’t bad for low altitude and bigger external loads.
Painting and markings
As mentioned before, the garish paint scheme is inspired by IAF Su-7 fighter bombers during/after the India-Pakistani confrontation of 1971. It’s almost surreal, reason enough to use it. Since a 1:72 Su-7 takes up so much shelf space I was happy to find this smaller aircraft as a suitable placebo.
I used Su-7 pictures as benchmarks, and settled for the following enamels as basic tones for the upper grey, brown and green:
• Humbrol 176 (Neutral Grey, out of production), for a dull and bluish medium grey
• Testors 1583 (Rubber), a very dark, reddish brown
• Humbrol 114 (Russian Green, out of production)
For the lower sides I used Testors 2123 (Russian Underside Blue). The kit received a black ink wash and some dry painting for weathering/more depth. Judging real life aircraft pics of IAF Su-7 and MiG-21, the original underside tone is hardly different from the upper blue grey and it seems on some aircraft as if the upper tone had been wrapped around. The aircraft do not appear very uniform at all, anyway.
Together with the bright IAF roundels the result looks a bit as if that thing had been designed by 6 year old, but the livery has its charm - the thing looks VERY unique! The roundels come from a generic TL Modellbau aftermarket sheet, the tactical codes are single white letters from the same manufacturer. Other stencils, warning signs and the squadron emblem come from the scrap box – Indian aircraft tend to look rather bleak and purposeful, except when wearing war game markings...
In the end, a small and quick project. The model was assembled in just two days, basic painting done on the third day and decals plus some weathering and detail work on the forth – including pics. A new record, even though this one was not built for perfectionism, rather as a recycling kit with lots of stock material at hand. But overall the Bāja looks exotic and somehow quite convincing?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Fiat G.91 was an Italian jet fighter aircraft designed and built by Fiat Aviazione, which later merged into Aeritalia. The G.91 had its origins in the NATO-organized NBMR-1 competition in 1953, which sought a light fighter-bomber "Light Weight Strike Fighter" to be adopted as standard equipment across the air forces of the various NATO nations. The competition was intended to produce an aircraft that was light, small, expendable, equipped with basic weapons and avionics and capable of operating with minimal ground support. These specifications were developed for two reasons: the first was the nuclear threat to large air bases, many cheaper aircraft could be better dispersed, and the other was to counter the trend towards larger and more expensive aircraft. After reviewing multiple submissions, the G.91 was picked as the winning design of the NBMR-1 competition.
The G.91 entered into operational service with the Italian Air Force in 1961, and with the West German Luftwaffe in the following year. Various other nations adopted it, such as the Portuguese Air Force, who made extensive use of the type during the Portuguese Colonial War in Africa. The G.91 remained in production for 19 years, during which a total of 756 aircraft were completed, including the prototypes and pre-production models. The assembly lines were finally closed in 1977, and the original G.91 enjoyed a long service life that extended over 35 years.
The G.91 was also used as a basis for a two-seat trainer variant with a stretched fuselage and further developments, based on this bigger airframe: the twin-engine development G.91Y, which was originally ordered by the Italian Air Force and Switzerland (as G.91YS) and later also operated by Poland, as well as the simpler, single-engine G-91X, a dedicated export alternative.
Like the G.91Y, the G.91X was an increased-performance version of the nimble baseline Fiat G.91, but unlike the G.91Y it was not funded by the Italian government but rather a private venture of Fiat. Like the G.91Y, it was based on the G.91T two-seat trainer variant. Structural modifications to reduce airframe weight increased performance and an additional fuel tank occupying the space of the G.91T's rear seat provided extra range. Combat manoeuvrability was improved with the addition of automatic leading-edge slats. While the G.91Y and X had a very similar appearance, their internal structure behind the cockpit section differed considerably and their tail section was visibly different, while the aerodynamic surfaces as well as the nose section (including the radar-less nose housing three cameras) were identical.
Instead of being powered by the G.91Y’s pair of small afterburning General Electric J85 turbojets, the G.91X only carried a single Pratt & Whitney J52 axial-flow dual-spool turbojet engine without reheat, a proven engine that was used in a number of successful aircraft, most of all the late Douglas A-4 Skyhawk versions. The bigger engine increased thrust by 60% over the original, earlier Orpheus-powered single-engine variants, and made the light G.91 a very agile aircraft. However, the J52 was considerably heavier than the small J85s, and despite less complex auxiliary installations, the G.91X weighed roughly 1.000 lb more than the G.91Y.
Performance-wise, the G.91X was, despite its conservative and heavier J52 powerplant, on par with the G.91Y, even though range, acceleration and rate of climb were not as good, the G.91Y’s afterburners gave the “Yankee Gina” a significant extra punch. On the other side, the G.91X was more robust, technically simpler and therefore easier to maintain and even better suited to operations from unprepared frontline airfields with minimal infrastructure.
Basically, the G.91X was designed to carry the same sophisticated avionics equipment as the G.91Y, which had been considerably upgraded with many of the American, British and Canadian systems being license-manufactured in Italy, but for the intended export customers in small countries with a limited budget, only a rather basic avionics package was offered, making the G.91X a simple daylight attack aircraft without any smart weapon or guided AAM capability (which the G.91Y lacked, too, only the YS for Switzerland could deploy weapons like the AIM-9 or the AGM-65).
Flight testing of two prototypes aircraft ran in July 1968 in parallel to the G.91Y program and was successful, with one aircraft reaching a maximum speed of Mach 0.95 in level flight, slightly less than its two-engine sibling. Airframe buffeting was noted and was rectified in production aircraft by raising the position of the tailplane slightly, and canted fins - similar to the G.91Y, but smaller - were added under the lower rear fuselage to improve directional stability. Unlike the G.91Y, which had been designed to NATO specifications, the G.91X did not feature an arrester hook, just a tail bumper.
The initial order of 55 G.91Y aircraft for the Italian Air Force was completed by Fiat in March 1971, by which time the company had changed its name to Aeritalia (from 1969, when Fiat Aviazione joined the Aerfer). The order was increased to 75 aircraft with 67 eventually being delivered.
In contrast to this success, the G.91X did not find immediate takers, though, because the potential market of Western-oriented countries was in the Seventies largely dominated by US American military support programs, which aggressively marketed the supersonic Northrop F-5 as a counterpart to MiG-17 and MiG-21 fighters, which had been provided to many countries by the USSR.
One large potential customer had been Israel, but the G.91X was declined in favor of the bigger and more sophisticated A-4N Skyhawk. Turkey and Greece also showed interest, but both eventually procured F-5 variants, heavily promoted by the USA. In the end, only a small number of the G.91X were built and sold to rather small and obscure air forces.
One of these few G.91X operators became Honduras. After the so-called Football War with El Salvador in 1969, the Honduran Air Force (HAF) entered the jet era in 1971 and started a re-organization and modernization program. This included the procurement of 10 old, ex-Yugoslav Canadair CL-13 Mk.4 Sabre. Later, in 1974 and as a result of an institutional growth of the Honduran Air Force, the "Coronel Hernán Acosta Mejía" Air Base, the "Coronel Armando Escalón Espinal" Base as well as the General Command of the Air Force and General Air Force General Staff were created.
Between 1976 and 1978 sixteen other Israeli aircraft were acquired, of the IAI \ Dassault Super-Mystere B.2 \ J-52 S'aar type, six new Cessna A-37 Dragonfly COIN aircraft and fifty UH-1 Iroquois helicopters. By then, the Sabres were in such a poor condition and deteriorated quickly under the harsh local climate, that a replacement was soon needed. The choice fell on the G.91X, not only because of the aircraft’s simplicity and ruggedness, but also because of its (though limited) reconnaissance capability as well as the engine and ammunition commonality with the ex-Israeli Sa’ars. A total of twelve G.91X were procured in 1977 and delivered until late 1979, and they were immediately put into action during the 1980s confrontation with the Sandinista government of Nicaragua, with heavy involvements in bombing raids and COIN missions. The Honduran G.91Xs flew frequent attack and reconnaissance missions, and even though they were no fighters the Ginas downed several Sandinista helicopters, including a Mil Mi-24 Hind (rather accidently shot down, though, through a salvo of unguided 5” FFARs which crossed the helicopter's flight path).
After the hostilities with Nicaragua had ended in 1990, the Honduran G.91Xs became actively involved in fighting drug trafficking and flew frequent reconnaissance and attack missions over home soil. By that time, the Honduran aircraft fleet was augmented or replaced (three G.91Xs had been lost through accidents or enemy fire by 1991) with 11 ex-USAF OA/A-37B Dragonflies, 12 ex-USAF Northrop F-5E/F Tiger II interceptors, 12 new Embraer T-27 Tucano armed trainers and four new CASA 101BB-02 attack airplanes.
By 1996, all eight remaining Honduran G.91Xs were, together with the Super Mystères, retired. The surviving aircraft were put up for sale as surplus, and one, already grounded G.91X airframe has been preserved at the Honduras Air Museum.
General characteristics:
Crew: one
Length: 11.67 m (38 ft 3.5 in)
Wingspan: 9.01 m (29 ft 6.5 in)
Height: 4.43 m (14 ft 6.3 in)
Wing area: 18.13 m² (195.149 ft²)
Empty weight: 4,400 kg (9,692 lb)
Loaded weight: 8,100 kg (17,842 lb)
Max. takeoff weight: 9,000 kg (19,823 lb)
Powerplant:
1× Pratt & Whitney J52-P6A turbojet with 8,500 lbf (38,000 N) of thrust
Performance:
Maximum speed: 1,110 km/h (600 kn, 690 mph, Mach 0.95) at 10,000 m (33,000 ft)
Range: 1,100 km (594 nmi, 683 mi)
Max. ferry range with drop tanks: 3,200 km (1,988 mls)
Service ceiling: 12,500 m (41,000 ft)
Rate of climb: 58 m/s (11.400 ft/min)
Wing loading: max. 480 kg/m² (98.3 lb/ft²)
Thrust/weight: 0.47 at maximum loading
Armament:
2× 30 mm (1.18 in) DEFA cannons with 120 RPG
4× under-wing pylon stations with a capacity of 1,814 kg (4,000 lb)
The kit and its assembly:
This build is my submission the 2020 "One week” group build at whatifmodellers.com. I had originally earmarked my Thai Navy A-4 for this event, but already built it for the “In the navy” GB that ran a couple of weeks earlier, since it was a perfect thematic match.
While searching for an alternative I found a Matchbox G.91Y in the stash and wondered about a single engine alternative, a simpler aircraft in the spirit of the original G.91R variants. Since I had some surplus fuselages from G.91R Revell kits in the donor bank, the G.91X was born.
The basis is the Matchbox G.91Y kit, a basic affair with mediocre fit and only few details. It was mostly built OOB, except for lowered flaps (easy to realize on this kit) and a completely new lower rear fuselage from a smaller G.91R section with only a single exhaust. This feat was a little more challenging than it seems, since the G.91R is considerably smaller and shorter than the G.91Y – a lot of improvisation and PSR went into this cosmetic stunt. For instance, the seams between the parts had to be reinforced from the inside, bridging the different fuselage shapes, and a 2-3mm gap between the fuselage halves had to be filled. In order to emphasize the new engine arrangement, the G.91Y’s dorsal air scoops were sanded away and a new jet exhaust had to be found for the new, rather oval tail orifice. I eventually settled upon a protective cap from y syringe needle.
Furthermore, the cast-on guns were replaced with hollow steel needles, and some blade antennae (styrene sheet) as well as gun nozzle protectors (thin wire) were added. The cockpit was also slightly pimped with styrene profiles and some wire (on the ejection seat and for some side consoles), the pilot figure – even though the Matchbox figures are among the best I know – was replaced by a pilot from an Airfix A-4 Skyhawk (left over from the recent Thai Navy A-4LT build). However, the canopy remained closed, since opening it would require more fuselage cutting.
The ordnance was kept simple, reflecting the attack/COIN role of this aircraft: a pair of LAU-19 unguided missile pods and two Mk. 82 bombs; these came from an Italeri NATO weapon set and an Airfix A-4 kit, respectively.
Painting and markings:
Another inspiration for this build were pictures from a PC-7 trainer of the Guatemala Air Force, which carried a livery in three murky shades of green. I found this paint scheme pretty interesting, esp. as an alternative to the ubiquitous SEA scheme (that Honduran A-37s carried). For the G.91X I adapted the scheme with slightly more contrasty tones of two shades of green and a more brownish hue: Faded Olive Drab (Modelmaster #2051), Olive Drab (Humbrol 155) and Dark Green (Humbrol 30). The undersides were painted in a light grey (Humbrol 166). I initially considered a wrap-around scheme, but eventually found it to look too boring – also with a look at the potential markings, because aircraft of the Honduran Air Force typically only carried and carry minimal markings. Instead of the Guatemalan PC-7’s apparently symmetrical scheme I rather went for a more disruptive pattern, though.
The model was seriously weathered with a black ink washing and post panel shading, simulating constant use and the influence of tropical climate conditions. The decals were puzzled together from various sources and improvised. Most stencils come from the OOB sheet, the roundels on the fuselage and the flags on the fin were printed at home on clear sheet, with a white decal base added underneath. Quite complicated, but the alternative white decal paper as printing base would not yield sufficiently opaque markings. In order to add some eye-catchers I gave the Gina roundels on the fuselage and on the wings, too – these are rather modern markings, but just with the flags on the fin I found the model to look quite murky and boring. Artistic freedom… The “FAH” abbreviations were created with single USAF 45° letters.
Finally, after some soot stains around the guns and the exhaust with grinded graphite, the aircraft was sealed with matt Italeri acrylic varnish.
A relatively simple project – chosen with the perspective of just a week (well, eight days, to be honest) to tackle and finish it, despite the major fuselage surgery and the photo shooting and editing on top.
The Douglas A-4 Skyhawk is a single seat subsonic carrier-capable attack aircraft developed for the United States Navy and United States Marine Corps in the early 1950s. The delta winged, single turbojet engined Skyhawk was designed and produced by Douglas Aircraft Company, and later by McDonnell Douglas. It was originally designated A4D under the U.S. Navy's pre-1962 designation system.
The Skyhawk is a relatively lightweight aircraft with a maximum takeoff weight of 24,500 pounds (11,100 kg) and has a top speed of more than 670 miles per hour (1,080 km/h). The aircraft's five hardpoints support a variety of missiles, bombs and other munitions. It was capable of carrying a bomb load equivalent to that of a World War II-era Boeing B-17 bomber, and could deliver nuclear weapons using a low-altitude bombing system and a "loft" delivery technique. The A-4 was originally powered by the Wright J65 turbojet engine; from the A-4E onwards, the Pratt & Whitney J52 was used.
Skyhawks played key roles in the Vietnam War, the Yom Kippur War, and the Falklands War. Sixty years after the aircraft's first flight in 1954, some of the 2,960 produced (through February 1979) remain in service with several air arms around the world.
The USS Midway Museum is a maritime museum located in downtown San Diego, California at Navy Pier. The museum consists of the aircraft carrier Midway. The ship houses an extensive collection of aircraft, many of which were built in Southern California
For the video; youtu.be/xQdAifKkz_k
Completely covered as i like it & looks best.
Heavy Weather
Toa Mazeka is fully capable of conjuring normal, heavy and even bizarre weather patterns with his Storm Ruler lance.
Gather friends, listen to a tale that has never been told, the Red Star, a mystery old as time, always seen flying high in the sky, unknown & full of wonder for far too long, beings known as the kestora, primary residents on board, alien to us as we are are to them. Who knew the stars purpose and that a race of beings were up far in the heavens, as you know, Makuta has taken over the Great Spirit, as a precaution to the ruler of shadow's actions and new stolen power, the Kestora have been busy planning & building Titans that would serve as gods and stop Makuta if he ever attempted to seize the Red Star, resurrect his servants he used and traveled to the rest of the matoran universe and alternate dimensions
one of four trusted and selected warriors were.. Mazeka
Before his days as a toa and the makuta's invasion in Karda Nui, mazeka was a brilliant matoran, keeping his spirits and hopes high, mazeka worked hard to be the greatest inventor, creating the proto jets and the machines the toa would pilot, the brave matoran would lead his fellow matoran to new heights, however the makuta attacked while he was away on a scouting flight in a uncharted area that would be a nest, mazeka went missing but avoided having the light drained from him, lost and fallen mid flight from a unknown makuta, meeting his end in a raging storm that raged up into the sky, carried away by powerful winds and striked with a flash of lightning, assumed and dead, mazeka was beamed up to the red star, there he would be reborn and avenge his fallen matoran
Toa Mazeka
Alias: Sky God
Kanohi: Zeus
Allows the user to instantly clear the skies to shine light, reform thick clouds and conjure a storm of strong wind, freezing rain, acid rain and violent lighting strikes.
Element: Air
Powers: Master of weather
Weapon: Storm Ruler
Abilities:
Full control over the Air and Weather
Normal Weather like rain storms, snow storms, wind storms, lightning and thunder storms.
or Heavy Weather by making it rain dangerous rahi, acid/fiery rain. Hail hard and thick as rocks. or weird as mutating Matoran, Makuta and Toa into Ussal's
One of 8 Type C's built by Aston Martin, one of only 6 remaining in original specification. An EXTREMLY rare Aston Martin. For More info and pictures click
www.rmsothebys.com/en/auctions/LF17/London/lots/r157-1939...
Rarer than an Ulster Team Car, capable of reaching speeds over 100 mph in 1938 and with a modern-looking aerodynamic body that continues to turn heads even today, the C-Type was Aston Martin’s last model before World War II, and a car to be proud of. It signifies the end of an era even while invoking the image of the future.
The cancellation of the 1936 Le Mans was a crushing blow for Aston Martin; coming high off a class win in 1935, it was supposed to be an easy win. More than that, the marque had just spent years producing its newest model, the 2-Litre Speed Model. Like the one offered here, they were equipped with Claude Hill’s latest engine, a 2-litre with larger carburettors, higher lift cams and importantly, fitted with a dry sump. To house this engine a new chassis was also made, stronger, shorter and wider than the former chassis. The cancellation of Le Mans meant that these vehicles needed selling; however, with the recent change in ownership, the Speed Models were forced to take a backseat, and it would take until 1940 for all 23 of the Speed Models to be sold.
In order to maintain the model, Aston Martin sold the Speed Model in several forms – the last of these would come to be called the Type C. The Speed Model offered here, A9/722/U, is one of only eight Speed Models bodied with the Type C body; this body had steel-framed bodies designed by Claude Hill. An engineer by trade, he focused on the aerodynamic efficiency of the bodies, hence the very smooth, streamlined look. The main body panels were constructed of light alloy and the wings from steel. First introduced to the public at the 1938 Earls Court Motor Show, the final iteration of this design featured the headlamps dramatically set behind the rounded radiator shell. The Type C’s were nearly 20 mph faster than the open-wheeled and 2/4-seater bodied cars, almost certainly as a result of their wind-cheating shape.
Chassis number A9/722/U was one of the original three Type C’s produced, and the first one after the prototype. Registered KMD 69, a registration it still holds today, the car took place in the RAC Rally that April, driven by Aston Martin owner Mr P.B. Mayne, and finished 8th in class. Shortly thereafter, the car lapped Brooklands at an average speed of 94 mph. Presumably at this time, the car remained property of Aston Martin as the car’s first private owner purchased the car in July 1939. Intriguingly, the car is photographed at Le Mans in June 1939 alongside Robert Hitchens and Mortimer Goodall’s Aston Martin Speed Model, car number 29.
After the war, the car was sold to a Mr Crawford, who still owned the car in 1953 when the build sheets recorded an engine rebuild. At some point in its history, the body was detached from the chassis and is thought to be lost to time. Under current ownership, KMD 69 was reunited with what is believed to be the majority of an original Type C body and passed to renowned marque specialist Ecurie Bertelli to receive a full restoration to original specifications, which included stripping the found body to bare metal before re-spraying it in the original duo-tone colours of biscuit and green.
Since the restoration, the Type C has been displayed at the 2012 Villa d’Este Concours d’Elegance and Aston Martin’s 2013 Centenary Celebrations. Further to those events, the Type C has run a handful of vintage driving events as well, including the Ennstal Classic, Paris-Madrid Rally, the Sanremo Rally Storico and finally the Grand Premio Terre di Canossa each year from 2014–2016, winning a prize at the associated concours in 2014. As such, the car is accompanied by a FIVA passport, category A/3.
One of Aston Martin’s more unusual models, but certainly worthy of the marque’s reputation for high-speed sports cars given their full competition specification, the Type C should not be overlooked. A9/722/U would be at home with any collector with a serious need for speed and a love of the unique.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Ling-Temco-Vought A-7 Corsair II was a carrier-capable subsonic light attack aircraft introduced to replace the Douglas A-4 Skyhawk. The A-7 airframe design was based on the successful supersonic Vought F-8 Crusader, although it was somewhat smaller and rounded off. The Corsair II initially entered service with the United States Navy during the Vietnam War. It was later adopted by the United States Air Force, including the Air National Guard, to replace the Douglas A-1 Skyraider and North American F-100 Super Sabre. The aircraft was also exported to several foreign countries, including Greece, Portugal, Thailand and New Zealand.
For the latter operator, the Corsair II was part of a major modernization campaign in the early 1970s. For instance, in 1970 14 McDonnell Douglas A-4 Skyhawks were purchased to replace the Vampire FB5's, which had been the primary light attack aircraft for the RNZAF for years, but the type was hopelessly outdated.
Furthermore New Zealand was also looking for a replacement of its similarly ageing Canberra fleet. These 31 aircraft were also phased out of service in mid 1970, and the A-7 chosen as the RNZAFs new fighter bomber because of its proven all-weather strike capability and advances avionics.
The RNZAF bought and operated 22 LTV A-7 Corsair II aircraft primarily in the coastal defense/anti-ship and sea patrol roles, air interdiction and air defense roles being secondary duties. The RNZAF Corsair II was very similar to the US Navy’s A-7E, even though the machines would only be operated form land bases. Designated A-7N, the machines featured an AN/APN-190 navigational radar with a Doppler groundspeed and drift detector plus an AN/APQ-128 terrain following radar. For the deployment of smart weapons, the machines were outfitted with a Pave Penny laser target acquisition system under the air intake lip, similar to the USAF’s A-7D, and could carry a wide range of weaponry and sensors, including AN/AAR-45 FLIR pods for an improved all-weather performance. Against enemy ships and large ground targets, visually guided smart bombs (AGM-62 and the more modern GBU-8 HOBOS) were bought, as well as AGM-65 Maverick against smaller, high priority targets.
Active service lasted between 1975 and 1999, and the A-7Ns were originally allocated between RNZAF 2 and 75 Squadron at Ohakea, where they were operated together with A-4K and TA-4K. The latter were also emplyed for A-7N pilot conversion training, since the RNZAF did not operate any Corsair II two seaters.
Several times the Squadron deployed to Clark Air Base in the Philippines and to Hawaii with both of the Corsair IIs and Skyhawks to exercise with the United States Air Force. Furthermore, the annual deployments as part of the Five Power Defence Agreement (called Exercise Vanguard) had the Squadron visit Australia, Singapore, Malaysia and Thailand to practice with those countries. Two RNZAF A-7s of 75 Squadron even made visits to Great Britain.
In the early Nineties the Corsair IIs started to suffer from numerous maintenance and logistic problems due to the lack of spare parts and general financial problems. This also prevented a major avionics update and the procurement of AGM-84 Harpoon missiles for the A-7Ns and the RNZAF P-3 Orion maritime patrol aircraft. The maintenance situation became so dire that several aircraft were cannibalized for spare parts to service other fighters. In 1992 only sixteen A-7Ns remained operational. This resulted in the available fighters no longer being assigned and dedicated to one specific squadron, but shared and assigned to one of the RNZAF combat squadrons (2, 14 and 75 Squadron, respectively), as needed.
During its 24 years of duty in the RNZAF, the A-7 fleet suffered 8 severe accidents with aircraft losses (and two pilots being killed). Nevertheless, the introduction of the A-7 was seen as a success due to the evolution that it allowed the Air Force in aircraft maintenance, with focus in modern computer and electronic systems, and in the steady qualification of pilots and technicians.
In 1999, the National Government selected an order of 28 F-16A/B Fighting Falcon aircraft to replace the complete fleet of A-4 Skyhawks and A-7 Corsair IIs, but this procurement plan was cancelled in 2001 following election by the incoming Labour Government under Helen Clark. This was followed by the disbanding of several fixed wing aircraft squadrons, with the consequence of removing the RNZAF's air combat capability. The last A-7 flight in RNZAF service took place on 1st of October 2001. Subsequently, most of the RNZAF's fighter pilots left New Zealand to serve in the Royal Australian Air Force and the Royal Air Force.
General characteristics:
Crew: 1
Length: 46 ft 2 in (14.06 m)
Wingspan: 38 ft 9 in (11.8 m), 23 ft 9 in (7.24 m) wings folded
Height: 16 ft 1 in (4.9 m)
Wing area: 374.9 sq ft (34.83 m²)
Airfoil: NACA 65A007 root and tip
Empty weight: 19,127 lb (8,676 kg)
Max takeoff weight: 41,998 lb (19,050 kg) overload condition.
Fuel capacity: 1,338 US gal (5,060 l; 1,114 imp gal) (10,200 lb (4,600 kg)) internal
Powerplant:
1 × Allison TF41-A-2 non-afterburning turbofan engine, 15,000 lbf (66.7 kN) thrust
Performance:
Maximum speed: 600 kn (690 mph; 1,111 km/h) at Sea level
Range: 1,070 nmi; 1,231 mi (1,981 km) maximum internal fuel
Ferry range: 1,342 nmi; 1,544 mi (2,485 km) with maximum internal and external fuel
Service ceiling: 42,000 ft (13,000 m)
Wing loading: 77.4 lb/sq ft (378 kg/m²)
Thrust/weight: 0.50
Take-off run: 1,705 ft (519.7 m) at 42,000 lb (19,000 kg)
Armament:
1× M61A1 Vulcan 20 mm (0.787 in) rotary cannon with 1,030 rounds
6× under-wing and 2× fuselage pylon stations (for mounting AIM-9 Sidewinder AAMs only)
with a total ordnance capacity of 15,000 lb (6,803.9 kg)
The kit and its assembly:
An idea that had been lingering on my project list for some years, and a recent build of an RNZAF A-7 by fellow modeler KiwiZac at whatifmodelers.com eventually triggered this build, a rather simple alternative livery whif. I had this idea on the agenda for some time, though, already written up a background story (which was accidently deleted early last year and sent the project into hiatus - until now) and had the kit as well as decals collected and stashed away.
The basis is the Hobby Boss A-7, which is available in a wide range of variant in 1:72 scale. Not cheap, but IMHO the best Corsair II kit at the moment, because it is full of ample surface details, goes together nicely and features a complete air intake, a good cockpit tub and even some maintenance covers that can be displayed in open position, in case you want to integrate the kit in a diorama. In my case it’s the A-7E kit, because I wanted a late variant and the US Navy’s refueling probe instead of the A-7D’s dorsal adapter for the USAF refueling boom system.
For the fictional RNZAF A-7N no fundamental changes were made. I just deliberately used OOB parts like the A-7D’s Pave Penny laser targeting pod under the air intake. As a personal addition I lowered the flaps slightly for a more lively look. Around the hull, some blade antennae were changed or added, and I installed the pair of pitots in front of the windscreen (made from thin wire).
The FLIR pod came with the kit, as well as the drop tank under the inner starboards wing pylon and the AIM-9Bs. Only the GBU-8s were externally sourced, from one of the Hasegawa USAF ordnance sets.
For the finalized kit on display I mounted the maintenance covers in open position, but for the beauty pics they were provisionally placed in closed position onto the kit’s flanks. The covers had to be modified for this stunt, but since their fit is very good and tight they easily stayed in place, even for the flight scenes!
Painting and markings:
This was the more interesting part – I wanted „something special“ for the fictional RNZAF Corsair II. Upon delivery, the USAF SEA scheme would certainly have been the most appropriate camouflage – the A-4K’s were painted this way and the aforementioned inspiring build by KiwiZac was finished this way.
Anyway, my plan had been from the start a machine in late service with low-viz markings similar to the A-4Ks, which received an attractive three-tone wrap-around scheme (in FS 34102, 34079 and 36081) or a simple all-around coat of FS 34079.
Both of these schemes could have been a sensible choice for this project, but… no! Too obvious, too simple for my taste. I rather wanted something that makes you wonder and yet make the aircraft look authentic and RNZAF-esque.
While digging for options and alternatives I stumbled upon the RNZAF’s C-130 Hercules transporters, which, like Canadian machines, carry a wrap-around scheme in two tones of grey (a light blue grey and a darker tone with a reddish hue) and a deep olive green tone that comes close to Dark Slate Grey, together with low-viz markings. A pretty unique scheme! Not as murky as the late A-4Ks and IMHO also well suited for the naval/coastal environment that the machine would patrol.
I was not able to positively identify the original tones on the CAF and RNZAF Hercs, so I interpreted various aircraft pictures. I settled upon Humbrol 163 (RAF Dark Green) 125 (FS 36118, Gunship Grey) and Revell 57 (RAL 7000, similar to FS 35237, but lighter and “colder”). For the wraparound scheme I used the C-130s as benchmark.
The cockpit became Dark Gull Grey (Humbrol 140) while the landing gear and the air intake duct became – behind 5mm of grey around the intake lip - white. The maintenance hatches’ interior was painted with a mix of Humbrol 81 and 38, for a striking zinc chromate primer look.
After a light black ink wash the kit received some panel post-shading for more contrast esp. between the dark colors and a slightly worn and sun-bleached look, since the aircraft would be depicted towards the end of its active service life.
Decals were the most challenging task, though: finding suitable RNZAF roundels is not easy, and I was happy when Xtradecal released an appropriate sheet that offers kiwi roundels for all positions (since motifs for port and starboard have to be mirrored). The Kiwi squadron emblem actually belongs to an RNZAF A-4K (from an Old Models sheet). The serial codes were puzzled together from single letter (TL Modellbau), most stencils come from the Hobby Boss OOB sheet.
A simple build, yet a very interesting topic and in the end also an IMHO very cool-looking aircraft in its fictional livery. Building the Hobby Boss A-7 was easy, despite some inherent flaws of the kit (e .g. totally blank dashboard and side consoles, and even no decals included!). The paint scheme lent from the RNZAF Hercs suits the SLUF well, though.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.
The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.
From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.
The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.
After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.
The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.
Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.
The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.
The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.
The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.
After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.
General characteristics:
Crew: 1
Length: 31 ft 10 in (9.70 m)
Wingspan: 36 ft 10 in (11.23 m)
Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical
Wing area: 242.1 ft² (22.5 m²)
Empty weight: 5,564 lb (2,524 kg)
Gross weight: 7,415 lb (3,363 kg)
Powerplant:
1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,
delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller
Performance:
Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)
Cruise speed: 272 mph (438 km/h, 236 kn)
Range: 493 mi (793 km) on internal fuel at cruising speed
965 mi (1,553 km) with 90 gal drop tank
Service ceiling: 42,500 ft (12,954 m)
Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)
Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds
Armament:
4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard
Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb
(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers
The kit and its assembly:
This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.
With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.
With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.
Painting and markings:
The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.
Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!
Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.
I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.
The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.
The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.
The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.
A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.
DISCLAIMER
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.
The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.
The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.
There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.
Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.
Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.
The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.
Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.
As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.
Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.
The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.
In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.
The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.
BAE Lightning F.6S general characteristics
Crew: 1
Length: 55 ft 3 in (16.8 m)
Wingspan: 34 ft 10 in (10.6 m)
Height: 19 ft 7 in (5.97 m)
Wing area: 474.5 ft² (44.08 m²)
Empty weight: 31,068 lb (14.092 kg)
Max. take-off weight: 45,750 lb (20.752 kg)
Powerplant:
2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner
Performance:
Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.
Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)
Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks
Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft
Rate of climb: 20.000 ft/min (100 m/s)
Wing loading: 76 lb/ft² (370 kg/m²)
Thrust/weight: 0.78
Armament:
2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)
Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)
2× overwing pylon stations for 260 gal ferry tanks
The kit and its assembly
The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.
The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).
Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!
Externally…
· the flaps were lowered
· some antennae and a finer pitot added
· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open
· the IRST sensor fairing added, sculpted from a simple piece of sprue
· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)
· the scratch-built quadruple Sidewinder rails are worth mentioning
The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.
Painting and markings
More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.
A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.
Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.
The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.
The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.
As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.
The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.
After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !
As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)
The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.
Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.
Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.
After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!
Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.
A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?
As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber for the United States Navy and Marine Corps. The final development in a lineage that included the Air Force's F-86 Sabre, the FJ-4 shared its general layout and engine with the earlier FJ-3, but, compared to that of the FJ-3, the FJ-4's new wing was much thinner, with a six percent thickness-to-chord ratio, and featured skin panels milled from solid alloy plates. It also had an increased area and tapered more sharply towards the tips. Slight camber behind the leading edge improved low speed characteristics. The main landing gear design had to be considerably modified to fold wheel and strut within the contours of the new wing. The track of the main wheels was increased, and because they were closer to the center of gravity, there was less weight on the nosewheel. Wing folding was limited to the outer wing panels.
The FJ-4 was intended as an all-weather interceptor, a role that required considerable range on internal fuel. The FJ-4 had 50% more fuel capacity than the FJ-3 and was lightened by omitting armor and reducing ammunition capacity. The new wing was "wet"; that is, it provided for integral fuel tankage. The fuselage was deepened to add more fuel and had a distinctive "razorback" rear deck. A modified cockpit made the pilot more comfortable during the longer missions. The tail surfaces were also extensively modified, had a thinner profile and featured an extended, taller fin. The overall changes resulted in an aircraft that had little in common with the earlier models, although a family resemblance was still present.
The FJ-4 was developed into a family of aircraft. Of the original order for 221 FJ-4 day fighters, the last 71 were modified into the FJ-4B fighter-bomber version. This had a stronger wing with six instead of four underwing stations and stronger landing gear. Additional aerodynamic brakes under the aft fuselage made landing safer by allowing pilots to use higher thrust settings and were also useful for dive attacks. External load was doubled. The most important characteristic of the FJ-4B was, since the Navy was eager to maintain a nuclear role in its rivalry with the Air Force, that it was capable of carrying a nuclear weapon on the inboard port station. For the delivery of nuclear weapons, the FJ-4B was equipped with the Low-Altitude Bombing System (LABS), and with this capability it replaced the carrier-based A-3 Skywarrior bombers, which were not suited well for the new low-level approach tactics.
In April 1956, the Navy ordered 151 more FJ-4Bs, 10 US Navy squadrons became equipped with the FJ-4B, and the type was also flown by three Marine squadrons. At the same time, the Navy requested a carrier-borne fighter with all-weather capability, radar-guided missiles and a higher performance. This new type was to replace several 1st generation US Navy jets, including the ponderous and heavy Douglas F3D Skyknight, the lackluster Vought F7U as well as the Grumman F9F-8 Cougar. This requirement led to the Douglas F4D Skyray and North American’s FJ-5, another thorough modification of the Fury’s basic design and its eventual final evolution stage.
North American’s FJ-5 was designed with compact dimensions in mind, so that the type could be operated on older Essex Class carriers, which offered rather limited storage and lift space. At the time of the FJ-5’s conception, several of these carriers were still in service – and this argument led to an order for the FJ-5 in addition to the F4D.
For the FJ-5, the FJ-4’s aerodynamic surfaces were retained, but the fuselage had to be modified considerably in order to accept an APQ-50A radar with a parabolic 24 inches diameter antenna in the nose. The radome was placed above the air intake, similar to the F-86D, and coupled with an Aero 13F fire-control system, which together provided full all-weather capability and information on automatic firing of rockets.
A deeper rear fuselage became necessary, too, because the FJ-5 was powered by a reheated J65-W-18 engine (a development of the Armstrong Siddeley Sapphire turbojet, optimized for a naval environment), which delivered up to 10,500 lbf (47 kN) at full power instead of the FJ-4’s original 7,700 lbf (34 kN). This upgrade had, limited by the airframe’s aerodynamics, only marginal impact on the aircraft’s top speed, but the extra power almost doubled its initial rate of climb, slightly raised the service ceiling and markedly improved acceleration and carrier operations handling through a better response to throttle input and a higher margin of power reserves.
Internal armament still consisted of four 20mm cannon. These had to be placed lower in the nose now, flanking the air intake underneath the radome. The FJ-4B’s six underwing hardpoints were retained and could carry AIM-9 Sidewinders (both the IR-guided AIM-9B as well as the Semi-Active Radar Homing (SARH) AIM-9C) as well as the new radar-guided medium-range AIM-7C Sparrow, even though the latter only on the outer pylons, limiting their number to four. Up to six pods with nineteen unguided 70 mm/2.75” unguided Mk 4/Mk 40 Folding-Fin Aerial Rocket (Mighty Mouse FFARs) were another armament option.
Beyond these air-to-air weapons, a wide range of other ordnance could be carried. This included the AGM-12 “Bullpup” guided missile (which necessitated a guidance pod on the right inner wing hardpoint), bombs or napalm tanks of up to 1.000 lb caliber, missile pods, drop tanks and ECM pods. The FJ-4B’s strike capabilities were mostly retained, even though the dedicated fighter lost the ability to carry and deliver nuclear weapons in order to save weight and internal space for the radar equipment.
The first FJ-5, a converted early FJ-4, made its maiden flight in April 1958. After a short and successful test phase, the type was quickly put into production and introduced to service with US Navy and US Marine Corps units. The new fighter was quickly nicknamed “Fury Dog” by its crews, a reminiscence of the USAF’s F-86D “Sabre Dog” and its characteristic nose section, even though the FJ-5 was officially still just called “Fury”, like its many quite different predecessors.
With the new unified designation system adopted in 1962, the FJ-4 became the F-1E, the FJ-4B the AF-1E and the FJ-5 the F-1F. From the prolific Fury family, only the FJ-5/F-1F became involved in a hot conflict: in late 1966, the USMC deployed F-1Fs to Vietnam, where they primarily flew escort and top cover missions for fighter bombers (esp. A-4 Skyhawks) from Da Nang AB, South Vietnam, plus occasional close air support missions (CAS) on their own. The Marines’ F-1Fs remained in Vietnam until 1970, with a single air-to-air victory (a North-Vietnamese MiG-17 was shot down with a Sidewinder missile), no losses and only one aircraft seriously damaged by anti-aircraft artillery (AAA) fire.
After this frontline experience, a radar upgrade with an AN/APQ-124 was briefly considered but never carried out, since the F-1F showed the age of the original Fifties design – the type already lacked overall performance for an all-weather fighter that could effectively engage supersonic bomber targets or low flying attack aircraft. However, the aircraft was still popular because of its ruggedness, good handling characteristics and compact dimensions.
Other upgrades that would improve the F-1F’s strike capability, e. g. additional avionics to deploy the AGM-62 Walleye glide bomb or the new AGM-65 Maverick, esp. the USMC’s laser-guided AGM-65E variant, were also rejected, because more capable types for both interceptor and attack roles, namely the Mach 2 Douglas F-4 Phantom II and the LTV A-7 Corsair II, had been introduced in the meantime.
Another factor that denied any updates were military budget cuts. Furthermore, the contemporary F-8 Crusader offered a better performance and was therefore selected in favor of the F-1F to be updated to the H-L variants. In the wake of this decision, all F-1Fs still in Navy service were, together with the decommission of the last Essex Class carriers, in 1975 handed over to the USMC in order to purge the Navy’s inventory and simplify maintenance and logistics.
FJ-4 and FJ-4B Fury fighter bombers served with United States Naval Reserve units until the late 1960s, while the F-1F soldiered on with the USMC until the early Eighties, even though only in reserve units. A considerable number had the heavy radar equipment removed and replaced by ballast in the late Seventies, and they were used as fighter-bombers, for dissimilar air combat training (simulating Soviet fighter types like the MiG-17 and -19), as high-speed target tugs or as in-flight refueling tankers, since the FJ-5 inherited this capability from the FJ-4, with up to two buddy packs under the wings. A few machines survived long enough to receive a new low-visibility livery.
However, even in the USMC reserve units, the FJ-5 was soon replaced by A-4 Skyhawks, due to the age of the airframes and further fleet reduction measures. The last F-1F was retired in 1982, ending the long career of North American’s F-86 design in US service.
A total of 1,196 Furies of all variants were received by the Navy and Marine Corps over the course of its production life, including 152 FJ-4s, 222 FJ-4Bs and 102 FJ-5s.
General characteristics:
Crew: 1
Length: 40 ft 3 in (12.27 m)
Wingspan: 39 ft 1 in (11.9 m)
Height: 13 ft 11 in (4.2 m)
Wing area: 338.66 ft² (31.46 m²)
Empty weight: 13,518 lb (6,132 kg)
Gross weight: 19,975 lb (9,060 kg)
Max. takeoff weight: 25,880 lb (11,750 kg)
Powerplant:
1× Wright J65-W-18 turbojet with 7,400 lbf (32.9 kN) dry thrust
and 10,500 lbf (46.7 kN) with afterburner
Performance:
Maximum speed: 708 mph (1,139 km/h, 615 kn) at sea level,
737 mph (1,188 km/h/Mach 0.96) at height
Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles
Service ceiling: 49,750 ft (15,163 m)
Rate of climb: 12,150 ft/min (61.7 m/s)
Wing loading: 69.9 lb/ft² (341.7 kg/m²)
Armament:
4× 20 mm (0.787 in) Colt Mk 12 cannon (144 RPG, 578 rounds in total)
6× underwing hardpoints for 3,000 lb (1,400 kg) of ordnance, including AIM-9 and AIM-7 missiles
The kit and its assembly:
A project I had on the agenda for a long time. But, due to the major surgeries involved, I have been pushing it away – until the “In the navy” group build at whatifmolders.com came along in early 2020. So I collected my courage, dusted off the donor kits that had already been stashed away for years, and eventually started work.
The original inspiration was the F-8 Crusader’s career: I really like the look of the late RF-8s, which were kept long enough in service to receive the Eighties’ Low-Viz USN “Compass Ghost” livery. This looks cool, but also a little wrong. And what if the FJ-4B had been kept in service long enough to receive a similar treatment…?
In order to justify a career extension, I made up an all-weather development of the FJ-4B with a radar and a more powerful engine, a kind of light alternative to the Vought A-7. A plausible solution was a mix of FJ-4B and F-86D parts – this sounds easy, but both aircraft and their respective model kits actually have only VERY little in common.
At its core, the FJ-5 model is a kitbashing of parts from an Emhar FJ-4B (Revell re-boxing) and an Airfix F-86D. The FJ-4B provided the raised cockpit section with the canopy, spine and fin in the form of a complete transplant, which furthermore had to be extended by about 1cm/0.5” because the F-86D is longer than the Fury. The FJ-4B also provided its wings, stabilizers and the landing gear. The Fury’s ventral arrester hook section, a separate part, was also transferred into the F-86D’s lower rear fuselage, under the openings for the air brakes.
For a more lively look, the (thick!) Fury canopy was sawed into two pieces for open display and the flaps were lowered, too.
The cockpit was taken from the Airfix kit, since it would fit well into the lower fuselage and it looked much better than their respective counterparts from the relatively basic Emhar kit, which just comes with a narrow board with a strange, bulky seat-thing. As an extra, the cockpit received side consoles, a scratched gunsight and a different ejection seat that raised the pilot’s position into the Fury’s higher canopy.
Since the F-1F was supposed to be a fighter, still equipped with the radar set, I retained the OOB pylons from the Fury with its four launch rails. For an aircraft late in the career, I gave it a reduced ordnance, though, just a pair of drop tanks (left over from a Matchbox F3D Skyknight; I wanted something more slender than the stubby OOB drop tanks from the Emhar Fury kit), plus a better Sidewinder training round (hence its blue body) and a single red ACMI data pod on the outer pylons, as an aerial combat training outfit and nice color highlights on the otherwise dull/grey aircraft.
Painting and markings:
As mentioned above, the idea for livery was a vintage aircraft in modern, subdued markings. So I adapted the early USN Compass Ghost scheme, and the F-1F received a two-tone livery in FS 36320 and 36375 (Dark and Light Compass Ghost Grey, Humbrol 128 and 127, respectively) with a high, wavy waterline and a light fin. In front of the cockpit, a slightly darker anti-glare panel in Humbrol 145 (FS 35237) was added, inspired by early USN F-14s in Compass Ghost camouflage.
The radome was painted with Humbrol 156, for a slightly darker/different shade of grey than the aircraft’s upper surfaces – I considered a black or a beige (unpainted glass fiber) radome first, but that would have been a very harsh contrast to the rest.
The landing gear as well as the air intake duct were painted glossy white (Humbrol 22), the cockpit became medium grey (Humbrol 140, Dark Gull Gray). The inside of the air brakes as well es the edges of the flaps, normally concealed when they are retracted, were painted in bright red (Humbrol 174). The same tone was also used to highlight the edges of the land gear covers.
The grey leading edges on the wings the stabilizers were created with decal sheet strips (generic material from TL Modellbau), the gun blast plates were made with silver decal material.
In order to give the model a worn look, I applied a black ink wash, an overall, light treatment with graphite and some post shading. Some extra graphite was applied around the exhaust and the gun nozzles.
The markings were taken for an USMC A-4E/F from a Revell kit (which turned out to be a bit bluish). I wanted a consequent dull/toned-down look, typical for early Compass Ghost aircraft. Later, colored highlights, roundels and squadron markings crept back onto the aircraft, but in the early Eighties many USN/USMC machines were consequently finished in a grey-in-grey livery.
Finally, the model was sealed with matt acrylic varnish (Italeri) and the ordnance added.
Well, the end result looks simple, but creating this kitbashed Fury all-weather fighter was pretty demanding. Even though both the Fury and the F-86D are based on the same aircraft, they are completely different, and the same is also true for the model kits. It took major surgeries and body sculpting to weld the parts together. But I am quite happy with the outcome, the fictional F-1F looks pretty conclusive and natural, also in the (for this aircraft) unusual low-viz livery.
ADULT SEA OTTERS: MONTEREY BAY
The southern, or California, sea otter (Enhydra lutris nereis) has been listed as a threatened species under the Endangered Species Act since 1977. It belongs to the order Carnivora and the family Mustelidae. Two other otter subspecies are also recognized – E. lutris kenyoni, which is found from Oregon to Alaska, and E. lutris lutris, which inhabits parts of Russia and northern Japan. Sea otters are highly specialized marine mammals capable of living their entire lives without ever having to leave the ocean, have the densest fur of any mammal and are one of the few marine species to use tools. Sea otters are an apex predator of the near shore ecosystem. The species is considered a keystone species because of their critical importance to the health and stability of the near shore marine ecosystem. They are also considered a sentinel species because their health reflects that of California’s coastal oceans. The southern sea otter population has exhibited high levels of mortality in recent years. Scientists attribute up to 40 percent of southern sea otter mortality to infectious diseases alone, many of which are known to have anthropogenic causes and land-sea linkages. The single greatest threat to the sea otter is an oil spill. One large oil spill in central California could be catastrophic, with the potential of driving the entire southern sea otter population into extinction.
Description
The sea otter is one of the smallest marine mammals, but one of the largest members of the family Mustelidae, a group that includes skunks and weasels among others. Adult males reach an average length of 4.5 feet (1.4 m) with a typical weight between 50 and 100 lbs. (23 to 45 kg), while adult females reach an average length of 4 feet (1.2 m) and typically weigh 45 lbs. (20 kg). It has a highly buoyant, elongated body, blunt snout and small, wide head. Sea otters have an acute sense of smell and taste and have good vision both above and below the water surface. They also rely heavily on their sense of touch.
Sea otters exhibit numerous adaptations, which help them survive in their challenging marine environment. Long whiskers help them to detect vibrations in murky waters and sensitive forepaws, with retractable claws, help them to groom, locate and capture prey underwater, and use tools. When underwater, they can close their nostrils and small ears. The sea otter’s hind feet are webbed and flipper-like, and are used in conjunction with its lower body to propel the animal through the water. It has a long, flattened tail, which they use as a rudder and for added propulsion. Hearing is one sense that is not yet fully understood, although studies suggest they are particularly sensitive to high-frequency sounds. Their teeth are unique for a mammal in that they are blunt and designed for crushing, rather than being sharp for tearing like most marine mammals are equipped with.
With the exception of its nose and pads of its paws, the sea otter’s body is covered in dense fur. The fur consists of two layers. The short, brown under fur can be as dense as 1 million hairs per square inch, making its fur the densest of any mammal. By comparison, we only have about 100,000 hairs in total on our heads. A top layer of long, waterproof guard hairs helps to keep the under fur layer dry by keeping cold water away from the skin. The pelage is typically deep brown in color with silver-gray highlights, with the coloration of the head and neck being lighter than the body. Unlike other marine mammals, such as seals and sea lions, sea otters do not have any blubber, so they depend on this exceptionally thick, water-resistant fur to stay warm in the cold, coastal Pacific.
Range & Habitat
Historically, southern sea otters were present in coastal marine habitats from northern California to Baja California in Mexico. This range decreased significantly during the fur trade during the 18th and 19th centuries, with excessive hunting nearly driving the species into extinction by the early 1900s. The current range extends along the California coast from Half Moon Bay in the north to Santa Barbara in the south, though individuals are occasionally seen outside these limits. A small population of sea otters lives at San Nicolas Island as a result of translocation efforts initiated in 1987.
Sea otters are found in a variety of coastal marine habitats, including rocky shores and sea-bottoms, sandy sea-bottoms, as well as coastal wetlands. Sea otters naturally inhabit offshore areas with an abundance of food and kelp canopy. They tend to live in ocean depths shallower than 130 feet (40 m) with water temperatures ranging between 35°F and 60°F.
Behavior
Most of a sea otter’s life is spent at sea, though they do occasionally haul out on land, where they appear clumsy and walk with a rather awkward gait. They eat, sleep, mate and give birth in the water. Sea otters spend most of their time floating on their backs at the surface grooming, eating, resting, and diving for food on the seafloor. Sea otters are relatively slow swimmers, generally traveling at 3-5 mph (5-8 km/h). They typically swim belly-up on their backs, propelling themselves through the water using their webbed hind feet. If a faster speed is required, for instance when a male is patrolling it’s territory for competing males or when in hot pursuit of a sexually receptive female, it turns over onto its stomach and in addition to using its webbed hind feet, it undulates its entire body for greater propulsion and acceleration.
Sea otters groom themselves almost continuously while at the surface, a practice critical for maintaining the insulating and water repellant properties of their fur. Its pliable skeleton and loosely fitted skin allow the animal the flexibility to reach any part of its body. During a grooming bout, which generally occurs directly after a foraging bout (a period of time in which diving and eating takes place) or resting bout, the animal can be seen somersaulting, twisting and turning, and meticulously rubbing its fur at the water surface. This behavior not only cleans the fur, but also traps air bubbles against the skin within the millions of hairs of its pelage. This layer of entrapped air creates an insulating barrier (similar to that of a double-paned window), which prevents water from reaching the skin. Constant grooming is absolutely critical for their survival. If cold ocean water reaches their skin, it will immediately begin to draw heat out of the animal, which disrupts the animal’s ability to thermo regulate and will ultimately lead to hypothermia and death.
Sea otters often rest together in single-sex groups called rafts. They are known to wrap themselves up in kelp to keep from drifting out to sea. While resting at the surface, a sea otter will often times hold its forepaws above the water surface and fold its hind feet up onto to its torso to help conserve heat.
With the exception of territorial males, who have the privilege of living among females, males and females tend to live in separate groups. The center of the sea otter range is predominately occupied by females (of all ages) and territorial males, as well as some dependent pups and recently weaned juvenile males. The northern and southern edges of the range are largely male dominated areas; consisting of juvenile, sub adult and adult males. Numbers in these male areas tend to increase in winter and spring because there are fewer mating opportunities with sexually receptive females during this time of the year.
Females generally have small home territories while many adult males hold larger aquatic territories consisting of several adult females. Bachelor males (animals who are either to young or too old to defend their own territories) reside in the large male-only groups at either end of the range. Males travel much greater distances throughout the range than females, typically making seasonal treks of up to 200 miles between the months of June and November when the highest proportion of females are in estrous. On any given day though, males tend to remain in the same general location, moving only a mile or two along the coastline. Females, on the other hand, are sedentary by nature, generally staying within 10 – 20 miles of their home ranges. Their home ranges are smaller because they have higher metabolic costs while pregnant and raising their pup.
Sea otters are equally active both night and day. A foraging bout occurs for several hours in the morning, typically starting just before sunrise. A second foraging bout begins in the afternoon, usually lasting for several hours until sunset. A grooming bout occurs before and after each foraging bout and resting bout follows at midday, followed again by another grooming and resting bout. A third foraging bout may also occur around midnight.
Although difficult to hear from shore, sea otters exhibit a variety of vocal behaviors. Pups are the most vocal. A pup can be heard squealing when its mother leaves it to dive for food and often times when a male approaches. Their cry is similar to that of a gull. Other vocalizations include: coos and grunts, which occur when an animal is eating or when content, as in the case of a pair-bonded couple during courtship; whines occur when an animal is frustrated, as in the case of an older pup wanting to suckle or an adult male attempting to mate with an uninterested female; growls, snarls, whistles and hisses can be heard when an animal is frightened or distressed, as in the case of a captured otter.
Food & Foraging
An otter must consume approximately 25% of its bodyweight in prey each day just to stay alive! A 75-pound otter can eat up to 1,500 sea urchins a day, or about 25 pounds of seafood (for a 75 pound kid, that would amount to eating 75 quarter pound hamburgers every day!). To meet its high energetic and thermoregulation demands, a sea otter’s metabolic rate is 2 to 3 times that of comparatively sized mammals. Sea otters consume a wide variety of benthic invertebrates. Prey items include sea urchins, abalone, crabs, mussels, clams, marine snails, marine worms, sea stars, and squid. In total, otters eat at least 50 species of benthic (bottom-dwelling) invertebrates, although individuals tend to specialize on only a few main prey types. Prey specialization and feeding preferences are passed on from mother to pup.
The strong forelegs paws are used to locate and capture prey. Pockets of loose skin under each foreleg are used to store prey it has gathered on the seafloor for the ascent to the surface. Rocks are often used as tools to dislodge prey on the sea floor and to break open the hard outer shells of some prey items upon returning to the surface. Floating belly-up in the water, they place rocks on their chests and repeatedly pound hard-shelled prey against them to gain access the meat inside. While eating, an otter will roll repeatedly in the water to wash away food scraps from its chest. Unlike most other marine mammals, sea otters commonly drink seawater. Although most of the animal’s water needs are met through the consumption of prey, its large kidneys allow it to extract fresh water from seawater.
Sea otters generally forage close to shore in depths shallower than 60 feet (18 m) but are capable of diving to depths of 300 feet (90 m) or more. With a relatively large lung capacity for it’s size, an otter can hold its breath for 5 minutes, but most dives are two minutes or less in duration. Source: www.seaotters.com
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .
The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).
Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.
The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.
The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.
In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.
During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.
The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.
General characteristics:
Crew: 1
Length: 36 ft 4 in (11.1 m)
Wingspan: 39 ft 1 in (11.9 m)
Height: 13 ft 11 in (4.2 m)
Wing area: 338.66 ft² (31.46 m²)
Empty weight: 13,210 lb (6,000 kg)
Loaded weight: 20,130 lb (9,200 kg)
Max. take-off weight: 23,700 lb (10,750 kg)
Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)
Performance:
Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)
Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles
Service ceiling: 46,800 ft (14,300 m)
Rate of climb: 7,660 ft/min (38.9 m/s)
Wing loading: 69.9 lb/ft² (341.7 kg/m²)
Thrust/weight: .325
Armament:
4× 20 mm (0.787 in) cannon
6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.
The kit and its assembly
Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.
Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.
I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.
Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!
The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.
The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.
The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!
Painting and markings
I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.
Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).
I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.
The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.
The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.
The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.
Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.
finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!
So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.
The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.
From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.
The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.
After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.
The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.
Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.
The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.
The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.
The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.
After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.
General characteristics:
Crew: 1
Length: 31 ft 10 in (9.70 m)
Wingspan: 36 ft 10 in (11.23 m)
Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical
Wing area: 242.1 ft² (22.5 m²)
Empty weight: 5,564 lb (2,524 kg)
Gross weight: 7,415 lb (3,363 kg)
Powerplant:
1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,
delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller
Performance:
Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)
Cruise speed: 272 mph (438 km/h, 236 kn)
Range: 493 mi (793 km) on internal fuel at cruising speed
965 mi (1,553 km) with 90 gal drop tank
Service ceiling: 42,500 ft (12,954 m)
Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)
Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds
Armament:
4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard
Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb
(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers
The kit and its assembly:
This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.
With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.
With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.
Painting and markings:
The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.
Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!
Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.
I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.
The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.
The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.
The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.
A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Fiat G.91 was an Italian jet fighter aircraft designed and built by Fiat Aviazione, which later merged into Aeritalia. The G.91 had its origins in the NATO-organized NBMR-1 competition in 1953, which sought a light fighter-bomber "Light Weight Strike Fighter" to be adopted as standard equipment across the air forces of the various NATO nations. The competition was intended to produce an aircraft that was light, small, expendable, equipped with basic weapons and avionics and capable of operating with minimal ground support. These specifications were developed for two reasons: the first was the nuclear threat to large air bases, many cheaper aircraft could be better dispersed, and the other was to counter the trend towards larger and more expensive aircraft. After reviewing multiple submissions, the G.91 was picked as the winning design of the NBMR-1 competition.
The G.91 entered into operational service with the Italian Air Force in 1961, and with the West German Luftwaffe in the following year. Various other nations adopted it, such as the Portuguese Air Force, who made extensive use of the type during the Portuguese Colonial War in Africa. The G.91 remained in production for 19 years, during which a total of 756 aircraft were completed, including the prototypes and pre-production models. The assembly lines were finally closed in 1977, and the original G.91 enjoyed a long service life that extended over 35 years.
The G.91 was also used as a basis for a two-seat trainer variant with a stretched fuselage and further developments, based on this bigger airframe: the twin-engine development G.91Y, which was originally ordered by the Italian Air Force and Switzerland (as G.91YS) and later also operated by Poland, as well as the simpler, single-engine G-91X, a dedicated export alternative.
Like the G.91Y, the G.91X was an increased-performance version of the nimble baseline Fiat G.91, but unlike the G.91Y it was not funded by the Italian government but rather a private venture of Fiat. Like the G.91Y, it was based on the G.91T two-seat trainer variant. Structural modifications to reduce airframe weight increased performance and an additional fuel tank occupying the space of the G.91T's rear seat provided extra range. Combat manoeuvrability was improved with the addition of automatic leading-edge slats. While the G.91Y and X had a very similar appearance, their internal structure behind the cockpit section differed considerably and their tail section was visibly different, while the aerodynamic surfaces as well as the nose section (including the radar-less nose housing three cameras) were identical.
Instead of being powered by the G.91Y’s pair of small afterburning General Electric J85 turbojets, the G.91X only carried a single Pratt & Whitney J52 axial-flow dual-spool turbojet engine without reheat, a proven engine that was used in a number of successful aircraft, most of all the late Douglas A-4 Skyhawk versions. The bigger engine increased thrust by 60% over the original, earlier Orpheus-powered single-engine variants, and made the light G.91 a very agile aircraft. However, the J52 was considerably heavier than the small J85s, and despite less complex auxiliary installations, the G.91X weighed roughly 1.000 lb more than the G.91Y.
Performance-wise, the G.91X was, despite its conservative and heavier J52 powerplant, on par with the G.91Y, even though range, acceleration and rate of climb were not as good, the G.91Y’s afterburners gave the “Yankee Gina” a significant extra punch. On the other side, the G.91X was more robust, technically simpler and therefore easier to maintain and even better suited to operations from unprepared frontline airfields with minimal infrastructure.
Basically, the G.91X was designed to carry the same sophisticated avionics equipment as the G.91Y, which had been considerably upgraded with many of the American, British and Canadian systems being license-manufactured in Italy, but for the intended export customers in small countries with a limited budget, only a rather basic avionics package was offered, making the G.91X a simple daylight attack aircraft without any smart weapon or guided AAM capability (which the G.91Y lacked, too, only the YS for Switzerland could deploy weapons like the AIM-9 or the AGM-65).
Flight testing of two prototypes aircraft ran in July 1968 in parallel to the G.91Y program and was successful, with one aircraft reaching a maximum speed of Mach 0.95 in level flight, slightly less than its two-engine sibling. Airframe buffeting was noted and was rectified in production aircraft by raising the position of the tailplane slightly, and canted fins - similar to the G.91Y, but smaller - were added under the lower rear fuselage to improve directional stability. Unlike the G.91Y, which had been designed to NATO specifications, the G.91X did not feature an arrester hook, just a tail bumper.
The initial order of 55 G.91Y aircraft for the Italian Air Force was completed by Fiat in March 1971, by which time the company had changed its name to Aeritalia (from 1969, when Fiat Aviazione joined the Aerfer). The order was increased to 75 aircraft with 67 eventually being delivered.
In contrast to this success, the G.91X did not find immediate takers, though, because the potential market of Western-oriented countries was in the Seventies largely dominated by US American military support programs, which aggressively marketed the supersonic Northrop F-5 as a counterpart to MiG-17 and MiG-21 fighters, which had been provided to many countries by the USSR.
One large potential customer had been Israel, but the G.91X was declined in favor of the bigger and more sophisticated A-4N Skyhawk. Turkey and Greece also showed interest, but both eventually procured F-5 variants, heavily promoted by the USA. In the end, only a small number of the G.91X were built and sold to rather small and obscure air forces.
One of these few G.91X operators became Honduras. After the so-called Football War with El Salvador in 1969, the Honduran Air Force (HAF) entered the jet era in 1971 and started a re-organization and modernization program. This included the procurement of 10 old, ex-Yugoslav Canadair CL-13 Mk.4 Sabre. Later, in 1974 and as a result of an institutional growth of the Honduran Air Force, the "Coronel Hernán Acosta Mejía" Air Base, the "Coronel Armando Escalón Espinal" Base as well as the General Command of the Air Force and General Air Force General Staff were created.
Between 1976 and 1978 sixteen other Israeli aircraft were acquired, of the IAI \ Dassault Super-Mystere B.2 \ J-52 S'aar type, six new Cessna A-37 Dragonfly COIN aircraft and fifty UH-1 Iroquois helicopters. By then, the Sabres were in such a poor condition and deteriorated quickly under the harsh local climate, that a replacement was soon needed. The choice fell on the G.91X, not only because of the aircraft’s simplicity and ruggedness, but also because of its (though limited) reconnaissance capability as well as the engine and ammunition commonality with the ex-Israeli Sa’ars. A total of twelve G.91X were procured in 1977 and delivered until late 1979, and they were immediately put into action during the 1980s confrontation with the Sandinista government of Nicaragua, with heavy involvements in bombing raids and COIN missions. The Honduran G.91Xs flew frequent attack and reconnaissance missions, and even though they were no fighters the Ginas downed several Sandinista helicopters, including a Mil Mi-24 Hind (rather accidently shot down, though, through a salvo of unguided 5” FFARs which crossed the helicopter's flight path).
After the hostilities with Nicaragua had ended in 1990, the Honduran G.91Xs became actively involved in fighting drug trafficking and flew frequent reconnaissance and attack missions over home soil. By that time, the Honduran aircraft fleet was augmented or replaced (three G.91Xs had been lost through accidents or enemy fire by 1991) with 11 ex-USAF OA/A-37B Dragonflies, 12 ex-USAF Northrop F-5E/F Tiger II interceptors, 12 new Embraer T-27 Tucano armed trainers and four new CASA 101BB-02 attack airplanes.
By 1996, all eight remaining Honduran G.91Xs were, together with the Super Mystères, retired. The surviving aircraft were put up for sale as surplus, and one, already grounded G.91X airframe has been preserved at the Honduras Air Museum.
General characteristics:
Crew: one
Length: 11.67 m (38 ft 3.5 in)
Wingspan: 9.01 m (29 ft 6.5 in)
Height: 4.43 m (14 ft 6.3 in)
Wing area: 18.13 m² (195.149 ft²)
Empty weight: 4,400 kg (9,692 lb)
Loaded weight: 8,100 kg (17,842 lb)
Max. takeoff weight: 9,000 kg (19,823 lb)
Powerplant:
1× Pratt & Whitney J52-P6A turbojet with 8,500 lbf (38,000 N) of thrust
Performance:
Maximum speed: 1,110 km/h (600 kn, 690 mph, Mach 0.95) at 10,000 m (33,000 ft)
Range: 1,100 km (594 nmi, 683 mi)
Max. ferry range with drop tanks: 3,200 km (1,988 mls)
Service ceiling: 12,500 m (41,000 ft)
Rate of climb: 58 m/s (11.400 ft/min)
Wing loading: max. 480 kg/m² (98.3 lb/ft²)
Thrust/weight: 0.47 at maximum loading
Armament:
2× 30 mm (1.18 in) DEFA cannons with 120 RPG
4× under-wing pylon stations with a capacity of 1,814 kg (4,000 lb)
The kit and its assembly:
This build is my submission the 2020 "One week” group build at whatifmodellers.com. I had originally earmarked my Thai Navy A-4 for this event, but already built it for the “In the navy” GB that ran a couple of weeks earlier, since it was a perfect thematic match.
While searching for an alternative I found a Matchbox G.91Y in the stash and wondered about a single engine alternative, a simpler aircraft in the spirit of the original G.91R variants. Since I had some surplus fuselages from G.91R Revell kits in the donor bank, the G.91X was born.
The basis is the Matchbox G.91Y kit, a basic affair with mediocre fit and only few details. It was mostly built OOB, except for lowered flaps (easy to realize on this kit) and a completely new lower rear fuselage from a smaller G.91R section with only a single exhaust. This feat was a little more challenging than it seems, since the G.91R is considerably smaller and shorter than the G.91Y – a lot of improvisation and PSR went into this cosmetic stunt. For instance, the seams between the parts had to be reinforced from the inside, bridging the different fuselage shapes, and a 2-3mm gap between the fuselage halves had to be filled. In order to emphasize the new engine arrangement, the G.91Y’s dorsal air scoops were sanded away and a new jet exhaust had to be found for the new, rather oval tail orifice. I eventually settled upon a protective cap from y syringe needle.
Furthermore, the cast-on guns were replaced with hollow steel needles, and some blade antennae (styrene sheet) as well as gun nozzle protectors (thin wire) were added. The cockpit was also slightly pimped with styrene profiles and some wire (on the ejection seat and for some side consoles), the pilot figure – even though the Matchbox figures are among the best I know – was replaced by a pilot from an Airfix A-4 Skyhawk (left over from the recent Thai Navy A-4LT build). However, the canopy remained closed, since opening it would require more fuselage cutting.
The ordnance was kept simple, reflecting the attack/COIN role of this aircraft: a pair of LAU-19 unguided missile pods and two Mk. 82 bombs; these came from an Italeri NATO weapon set and an Airfix A-4 kit, respectively.
Painting and markings:
Another inspiration for this build were pictures from a PC-7 trainer of the Guatemala Air Force, which carried a livery in three murky shades of green. I found this paint scheme pretty interesting, esp. as an alternative to the ubiquitous SEA scheme (that Honduran A-37s carried). For the G.91X I adapted the scheme with slightly more contrasty tones of two shades of green and a more brownish hue: Faded Olive Drab (Modelmaster #2051), Olive Drab (Humbrol 155) and Dark Green (Humbrol 30). The undersides were painted in a light grey (Humbrol 166). I initially considered a wrap-around scheme, but eventually found it to look too boring – also with a look at the potential markings, because aircraft of the Honduran Air Force typically only carried and carry minimal markings. Instead of the Guatemalan PC-7’s apparently symmetrical scheme I rather went for a more disruptive pattern, though.
The model was seriously weathered with a black ink washing and post panel shading, simulating constant use and the influence of tropical climate conditions. The decals were puzzled together from various sources and improvised. Most stencils come from the OOB sheet, the roundels on the fuselage and the flags on the fin were printed at home on clear sheet, with a white decal base added underneath. Quite complicated, but the alternative white decal paper as printing base would not yield sufficiently opaque markings. In order to add some eye-catchers I gave the Gina roundels on the fuselage and on the wings, too – these are rather modern markings, but just with the flags on the fin I found the model to look quite murky and boring. Artistic freedom… The “FAH” abbreviations were created with single USAF 45° letters.
Finally, after some soot stains around the guns and the exhaust with grinded graphite, the aircraft was sealed with matt Italeri acrylic varnish.
A relatively simple project – chosen with the perspective of just a week (well, eight days, to be honest) to tackle and finish it, despite the major fuselage surgery and the photo shooting and editing on top.
The World Land Speed Record Breaking
1905 200-hp Darracq Sprint Two-Seater
FOOTNOTES
For a real thrill and for pure joy, nothing ever came up to a full throttle run on the 200, with the car in Algy Guinness capable hands. Old Iron, as its owner had christened it, was definitely one of the great cars of all time! Captain H.W. Bunbury
If the heartbeat of America is the matchless throb of a big V8, then that heart beats with a decidedly French accent, for this impressive centenarian is powered by the first true example of a V8 engine to be seen on either side of the Atlantic. Moreover, this mighty Darracq was the first petrol car to travel at two miles a minute. Built in France with the sole aim of breaking speed records, it was shipped to the United States soon after its debut to show its prowess and made its first 120-mph run at Americas birthplace of speed, the Ormond-Daytona Beach in Florida.
Alexandre Darracq had made his fortune in the cycle industry before building his first car under his Gladiator marque in 1895, but sold out to an English syndicate headed by Terah Hooley and Harry Lawson in 1896 and formed A. Darracq & Cie the following year. Real success came in 1900 with a 6.5-hp single-cylinder car designed by Paul Ribeyrolles, a graduate of the Arts et Métiers college at Chalons-sur-Marne. The Darracq company was acquired by an English financial grouping in 1903, which left Alexandre Darracq in charge. He decided to publicise the company by racing powerful racing cars but concentrating on the manufacture of small and medium-sized automobiles particularly aimed at the British market.
These were all the work of Ribeyrolles, described by that doyen of Continental correspondents W.F.Bradley as a born engineer who had a tiny drawing office overlooking the main machine shop.
Darracqs policy of promoting the marque in competition moved into high gear with an all-out assault on the Gordon Bennett Cup in 1904, dodging the rule restricting each competing country to an entry of three cars by having 11.25-litre four-cylinder cars designed by Ribeyrolles built in Germany as Opels and in Great Britain as Weir-Darracqs, a ploy which sadly failed to bring results.
However, one of the Weir-Darracqs was acquired by Algernon Lee Guinness, who, with his younger brother Kenelm (Bill), was building up a stable of fast racing cars at his home at Windsor, and completely reconstructed by his mechanics Harold Cook and Davy Cleghorn (who had come from Weirs with the car), to such good effect that it proved one of the fastest cars in the eliminating trials to choose the British team for the 1905 Gordon Bennett race before piston failure put it out of contention.
Meanwhile, Paul Ribeyrolles was intent on building the fastest car in the world, following a policy colourfully described by the Guinnesss good friend and business partner H.W. (Bill) Bunbury as putting large engines into the lightest possible chassis; in search of what we now call today better power to weight ratio
he stripped his cars of every possible trapping, leaving the bare necessities to make the wheels go round, and to stop the car, otherwise stark naked, showing everything they had got, with not even a bikini to hide their nakedness
The first fruit of this policy was a 100-hp car with an engine of 190 bore, put into a very flimsy chassis with just two bucket seats with which works driver Paul Baras set a new world speed record of 104.5 mph for the flying kilometre, and which was then bought by Algy Lee Guinness.
Ribeyrolles then set to work developing an even faster sprint car and in order to obtain maximum power for minimum weight hit upon the brilliant idea of mounting eight cylinders in a 90-degree vee configuration on a common crankcase, using forked conrods to enable two opposed cylinders to be served from one crankshaft throw.
He used four sets of pair-cast cylinders of the Gordon Bennett pattern, bored out to 170mm, giving a total swept volume of 25,422 cc, set low in an Arbel pressed steel chassis. A two-speed rear axle was fitted, with a short gear lever placed between the drivers legs; there was neither reverse gear nor differential. A vee-shaped Grouvel & Arquembourg radiator was supplemented by a projectile-shaped water tank above the cylinders. Weighing in at just 900 kg (1982 lb), the new 200-hp Darracq was completed on 28 December 1905 and was immediately taken south to Provence to be tested on the classic speed road that ran arrow-straight for over nine miles across the plain of Le Crau, between Salon-de-Provence and St Martin de Crau (the modern N113).
On Saturday 30 December, Darracqs leading driver Victor Hemery who had already won the Circuit des Ardennes and Vanderbilt Cup during 1905 made four timed runs on the Salon road, observed by the official timekeepers of the Automobile Club de France, MM Gaudichard and Hunziker, and the president of the Automobile Club de Salon, M Bertin. His times were remarkably consistent: with one run in 21.8 sec and one in 20.8 sec, twice he covered the flying kilometre in 20.6 sec, a speed of 175 km/h (109.65 mph), faster than the fastest express train, making the Darracq the fastest vehicle on earth and beating the existing speed record by almost 5 mph.
Gasped L. Gerard, who reported the cars speed run for La Vie Automobile: Can you imagine what that frightening speed of 5 metres a second [110 mph] must be like? No? Well, its that of hurricanes that flatten houses and trees, of tempests that exert the formidable pressure of 300 kg per square metre on the surfaces that they meet
this time, without any exaggeration, the car has beaten the train
The mercurial Hemery grumbled that the very cold weather had adversely affected the carburation, and declared that the car would be even faster in finer weather.
Three weeks later, he was given the opportunity to prove his assertion when he and the 200-hp Darracq formed part of a four-car team competing in the fourth annual Ormond-Daytona Beach Automobile Races. However, while three of the cars successfully passed the weight test for the event, the fourth was ruled to be too heavy and thus ineligible for the lightweight class.
Hemery protested the decision, and when he was over-ruled, had all four cars hauled back to the garage at Ormond. Charles Cooke, Darracqs American distributor, declared that all four cars would race, whether Hemery agreed or not. Then it was found that the car that had been declared overweight could be lightened enough to comply with the regulations and Hemery relented and decided to compete after all.
But then he fell out with the judges again when it was declared that he had made a false start in a race against Fred Marriotts streamlined Stanley Steamer and a 110-hp FIAT, and was barred from the event.
Declared Motor Age in its issue of 25 January 1906: Hemery, successor to the great Théry, has been given a taste of American discipline, which will do his peppery temper good. He had a close call yesterday from being set down, and this was not enough for him, for he broke loose again today and got what was coming to him and he got is good and plenty, nothing less than disqualification for the entire meeting for refusing to obey orders.
Charles Cooke was given full control of the four Darracqs and Louis Chevrolet drove the 200-hp to a new world one-mile record for petrol cars of 30.6 sec (Marriott had just set a steam car record of 28.2 sec, equivalent to 127.66 mph). Then on the last day of the race, Cooke put Darracqs No 2 driver Victor Demogeot in the 200-hp. Matched against the Stanley in a 2-mile race, Demogeot riposted to a time of 59.6 sec by Marriott with a run in 58.8 sec, or 122.5 mph and was crowned Speed King of the World by 14-year-old Mary Simrall, the prettiest girl in Florida.
Then, recalled Bill Bunbury, the 200 returned to the Darracq works at Suresnes, and Algy travelled one day [in May]. After a terrifying trial run round and about the works conducted by Hemery and a bit of haggling, he bought the car for what was a very reasonable figure [and] brought it to Windsor.
On 14 July Algy Lee Guinness competed in the Ostend speed trials in Belgium with the 200-hp Darracq and set a new European flying kilometre record of 117.7 mph, covering the distance in just 19 seconds. Three days later the Darracq was first of the big speed cars in the Circuit du Littoral.
The Darracq was scheduled to race against formidable opposition, including the Maharajah of Tikaris 130-hp De Dietrich and Cecil Edges 90-hp Napier, during the Notts ACs annual race meeting on Skegness Sands on 8 September, but the deteriorating condition of the course meant that these fast cars only made demonstration runs.
But a week later the Darracq covered itself in glory at the race meeting organised along the Blackpool Promenade by the Blackpool & Fylde Motor Club, winning silver cups for setting new world records for the standing kilometre (32.4 sec) and standing mile (45.6 sec), and also created a British flying kilometre record of 21.0 sec (106.52 mph).
On 21 October Algy Lee Guinness took the 200-hp Darracq back to France and set a new world record for the flying kilometre of 20.0 sec, equivalent to 180 km/h (111.8 mph) at the Dourdan speed meeting. A week later he drove the car at Gaillon, and climbed the famous La Barbe hill in 25 seconds, averaging 144 km/h.
Around this time the Guinness brothers and Bill Bunbury set up a business in an old farmhouse at Datchet to manufacture an ignition device known as the Hi-Lo and to operate as a garage and repair business, tuning peoples cars for the newly-opened Brooklands track. The 200-hp Darracq was still very competitive, and was tuned for maximum speed, with the addition of forced lubrication with drilled crankshaft and conrods and a pump chain driven from the front end of the crankshaft, a high-tension magneto instead of the low-tension ignition and a supplementary lightweight radiator.
The car was tested on the open road over Hartford Bridge Flats in Surrey. Recalled Bill Bunbury: It was towed there at night, and we used to time our arrival so as to get the first run in soon after dawn. Other cars brought materials and mechanics and were also used as patrols. We had no trouble from the police, however; the noise could not have disturbed many people. Actually the police used to ask when we should be there, for they loved to look on - unofficially.
It was a thrilling sight to see the 200 approaching, thundering down the road, stabs of flame coming from the stub exhaust pipes, the two occupants crouching down on the car and a great plume of dust following behind
I was very lucky to have a few runs on the Flats with Algy, and can say without question they were the biggest thrills I ever experienced on any car, including the big Benz on Brooklands with Hornsted.
I will try and give some idea of what a run on the 200 felt like. Firstly the bucket seat was more bucket than seat - one seemed to be sitting on it, not in it. There being no floorboards, one's feet had to be braced against a cross member of the frame, the right arm stretched out behind Algy gripping the flange at the end of the petrol tank, the left hand engaged with the air pressure pump. Failure to keep up the pressure was a short jump off murder in Algy's opinion! And so you started. Up to about 40 mph the car seemed to be devoid of any springs at all, and one felt shaken to pieces. That period lasted a very few seconds, after which, when on full throttle, the car was not unduly uncomfortable as far as springing went, but the air pressure on one's body was terrific. Remember that the seats were well perched up with absolutely no protection, which made one hang on for dear life.
I remember glancing down between my legs one day, and to see the road passing in one grey-coloured ribbon within inches of one's anatomy made me very hastily look up, but with ugly thoughts of what would happen supposing one's foot slipped off the cross member!
Added H.J. Needham, who subsequently joined the trio in the garage at Datchet: One day somebody bet Algy he would not drive over to Maidenhead and back on the "200". Needless to say, it was a foregone conclusion. The following Sunday, a lovely hot Summer's day, Algy and "Snowball" Whitehead, attired in white flannels, blue "reefer" coats, and straw boaters, fixed themselves firmly in the two bucket seats of the 200, all hands turned out to push, and with a roar and a sheet of flame from the eight stubby open exhausts, and in a cloud of dust, off she went up our lane. Snowball was hanging on like grim death to his seat with one hand (when it was not pumping pressure into the brass cylindrical petrol tank mounted behind the seat) and to the two straw hats with the other! The car had only two speeds forward and NO reverse, was unlicensed, and had no number plates attached!
Algy duly arrived at Maidenhead, turned into the entrance of Skindles Hotel and out again and left into the Bath Road, and drove straight back to Datchet without stopping. By some miracle, no policeman seemed to have seen (or heard!) them, and nothing was ever heard in the way of complaint. The Gents Straw Boaters were donned for the last few hundred yards to and from Skindles, and Algy and Snowball were bowing left and right to the youth and beauty of Maidenhead like royalty!
June 1907 saw more successes for the big Darracq. On 16 June it set a new standing kilometre record at Schveningen (Hague), and the following week at the Saltburn speed trials, on 22 June, Algy Lee Guinness set a new Yorkshire record for the flying kilometre of 111.84 mph over sands awash with water from the heavy rains.
On 20 September the 200-hp Darracq was taken to the newly opened Brooklands track where it was demonstrated to an American enthusiast named Dugald Ross, who had offered to buy the car for £2000, provided that it could reach a speed of 100 mph. Though Algy Lee Guinness made two runs of 112.2 mph and 115.4 mph, the sale fell through, apparently because Ross was too frightened to complete the £2000 deal.
Indeed, Algy Lee Guinness continued to compete with the mighty Darracq at Saltburn during the following two seasons, and on 28 June 1908 he announced that he would not only attempt to beat the national record that he had set the previous year but would try and establish a world record, too. On his second attempt on the flying kilometre he recorded a speed of 121.57 mph to equal the existing world record and set a new British & European record. The event was captured in a dramatic painting illustrated here - by Autocar artist Frederick Gordon Crosby, which created the legend that yards of flame poured from the stub exhausts of the eight-cylinder engine, imperilling the trousers of Bill Lee Guinness, acting mechanic, who had to hold two chronometers all the time.
The Darracq made one final appearance at Saltburn on 26 June 1909, where it recorded fastest time of the day by covering the flying kilometre at 120.25 mph and averaging 118.09 mph over the four runs it made that day.
That was, it seems, the end of the Darracqs competitive career, but it remained in the garage at Datchet until the business closed down, when it was sold. It apparently fell into the hands of a dealer who we understand scrapped the axles and front and rear of the chassis and just retained the power unit in the remaining chassis channels.
Some time later, noted Bunbury, Algy managed to lay hands on the engine, which remained in his workshop for the rest of his life.
When Algy Lee Guinness died in 1954, his widow was determined that the engine should go to a good home. She canvassed expert opinion and the name of Gerald Firkins, who already owned a 1914 16-hp Darracq, was put forward. He already knew of the car and was able to purchase the engine, still mounted with part of the original chassis, from the family in 1956.
He eventually decided to recreate the 200-hp racer, and a slow and painstaking restoration began, using period Darracq components wherever possible, for the car had originally used a production chassis. When the engine was dismantled, it was found to be in surprisingly good condition. Measurements proved that its swept volume, long believed to be 22.5 litres, was actually 25.5 litres. The original crankshaft, con-rods and camshaft were retained, but eight new pistons were cast in 1991, as one of the original 6.7 in diameter cast iron pistons was found to be cracked, apparently a legacy of its final run at Saltburn.
The long-lost two-speed rear axle had to be recreated, for it had no production equivalent: fortunately a drawing of this component was found in a 90-year-old book, which enabled an accurate replica to be made.
The rebuild was advanced enough for the car to be shown as a static exhibit at Shelsley Walsh, Brooklands and Goodwood in 2004-5, and it was virtually finished in time for its centenary on 30 December 2005. It was shown at Retromobile in Paris in February 2006, and was fired up for the first time in 97 years on 1 April 2006, making its first public run on the long drive of Madresfield Court in Worcestershire on 4 July 2006.
Now offered for sale for only the third time in a century, the Darracq is a unique survivor from the heroic age of motor racing awaiting a new custodian to realise its full potential.
Auctioned in 2006 realising £199,500
It is easily crumbled to be added to a lit coal in an incense burner. There are a lot of other scents stored elsewhere.
The frankincense was of good quality.
Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.
Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.
Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.
A variety of incense cones which thankfully were not overly sweet. I am sad to have likely lost this annual Toronto ON sconce of incense cones.
Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.
Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.
Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.
HISTORY:
The word incense comes from Latin incendere meaning "to burn".
Combustible bouquets were used by the ancient Egyptians, who employed incense in both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, giving evidence for the prominence of incense and related compounds in Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.
The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.
Incense burners have been found in the Indus Civilization (3300–1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the formulation to encompass aromatic roots and other indigenous flora. This was the first usage of subterranean plant parts in incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians.
At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented use of incense comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, and sandalwood) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song dynasty with numerous buildings erected specifically for incense ceremonies.
Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th-century Ashikaga shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whoever might take his head in battle). It wasn't until the Muromachi period during the 15th and 16th century that incense appreciation (kōdō) spread to the upper and middle classes of Japanese society.
COMPOSITION:
A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.
Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, such as clergy and physicians.
COMBUSTIBLE BASE:
The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:
Fuel and oxidizer mixtures: Charcoal or wood powder provides the fuel for combustion while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are added to the base prior to shaping, as in the case of powdered incense materials, or after, as in the case of essential oils. The formula for charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.
Natural plant-based binders: Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together. Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. These include:
Makko (incense powder) made from the bark of various trees in the genus Persea (such as Persea thunbergii) Xiangnan pi (made from the bark of trees of genus Phoebe such as Phoebe nanmu or Persea zuihoensis.
Jigit: a resin based binder used in India
Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.
Typical compositions burn at a temperature between 220 °C and 260 °C.
TYPES:
Incense is available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types. Preference for one form or another varies with culture, tradition, and personal taste. The two differ in their composition due to the former's requirement for even, stable, and sustained burning.
INDIRECT-BURNING:
Indirect-burning incense, also called "non-combustible incense", is an aromatic material or combination of materials, such as resins, that does not contain combustible material and so requires a separate heat source. Finer forms tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually, having less surface area. Heat is traditionally provided by charcoal or glowing embers. In the West, the best known incense materials of this type are the resins frankincense and myrrh, likely due to their numerous mentions in the Bible. Frankincense means "pure incense", though in common usage refers specifically to the resin of the boswellia tree.
Whole: The incense material is burned directly in raw form on top of coal embers.
Powdered or granulated: Incense broken into smaller pieces burns quickly and provides brief but intense odour.
Paste: Powdered or granulated incense material is mixed with a sticky incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type, and Japan has a history of kneaded incense, called nerikō or awasekō, made using this method. Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.
DIRECT-BURNING:
Direct-burning incense, also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn the rest of the incense without further application of external heat or flame. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types are commonly encountered, though direct-burning incense can take nearly any form, whether for expedience or whimsy.
Coil: Extruded and shaped into a coil without a core, coil incense can burn for an extended period, from hours to days, and is commonly produced and used in Chinese cultures.
Cone: Incense in this form burns relatively quickly. Incense cones were invented in Japan in the 1800s.
Cored stick: A supporting core of bamboo is coated with a thick layer of incense material that burns away with the core. Higher-quality variations have fragrant sandalwood cores. This type of incense is commonly produced in India and China. When used in Chinese folk religion, these are sometimes known as "joss sticks".
Dhoop or solid stick: With no bamboo core, dhoop incense is easily broken for portion control. This is the most commonly produced form of incense in Japan and Tibet.
Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. Powder incense is typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.
Paper: Paper infused with incense, folded accordion style, is lit and blown out. Examples include Carta d'Armenia and Papier d'Arménie.
Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is easily transported and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.
Moxa tablets, which are disks of powdered mugwort used in Traditional Chinese medicine for moxibustion, are not incenses; the treatment is by heat rather than fragrance.
Incense sticks may be termed joss sticks, especially in parts of East Asia, South Asia and Southeast Asia. Among ethnic Chinese and Chinese-influenced communities these are traditionally burned at temples, before the threshold of a home or business, before an image of a religious divinity or local spirit, or in shrines, large and small, found at the main entrance of every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door or open window as an offering to heaven, or the devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.
PRODUCTION:
The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, is then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition is made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.
Certain proportions are necessary for direct-burning incense:
Oil content: an excess of oils may prevent incense from smoldering effectively. Resinous materials such as myrrh and frankincense are typically balanced with "dry" materials such as wood, bark and leaf powders.
Oxidizer quantity: Too little oxidizer in gum-bound incense may prevent the incense from igniting, while too much will cause the incense to burn too quickly, without producing fragrant smoke.
Binder: Water-soluble binders such as "makko" ensure that the incense mixture does not crumble when dry, dilute the mixture.
Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.
Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.
"Dipped" or "hand-dipped" direct-burning incense is created by dipping "incense blanks" made of unscented combustible dust into any suitable kind of essential or fragrance oil. These are often sold in the United States by flea-market and sidewalk vendors who have developed their own styles. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia.
Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.
Traditionally, the bamboo core of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. In a process known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and split in halves until the thin sticks of bamboo have square cross sections of less than 3mm. This process has been largely replaced by machines in modern incense production.
In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:
Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.
Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are evenly separated, then dipped into a tray of incense powder consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the sticks while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks produced in this fashion and burned in temples of Chinese folk religion can have a thickness between 2 and 4 millimeters.
Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more common due to the higher labor cost of producing powder-coated or paste-rolled sticks.
BURNING INCENSE:
Indirect-burning incense burned directly on top of a heat source or on a hot metal plate in a censer or thurible.
In Japan a similar censer called a egōro (柄香炉) is used by several Buddhist sects. The egōro is usually made of brass, with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as sonae-kō (religious burning).
For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. The flame is then fanned or blown out, leaving the incense to smolder.
CULTURAL VARIATIONS:
ARABIAN:
In most Arab countries, incense is burned in the form of scented chips or blocks called bakhoor (Arabic: بخور [bɑˈxuːɾ, bʊ-]. Incense is used on special occasions like weddings or on Fridays or generally to perfume the house. The bakhoor is usually burned in a mabkhara, a traditional incense burner (censer) similar to the Somali Dabqaad. It is customary in many Arab countries to pass bakhoor among the guests in the majlis ('congregation'). This is done as a gesture of hospitality.
CHINESE:
For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life. Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.
Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The first known record is by poet Yu Jianwu (487-551): "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.
Incense-stick burning is an everyday practice in traditional Chinese religion. There are many different types of stick used for different purposes or on different festive days. Many of them are long and thin. Sticks are mostly coloured yellow, red, or more rarely, black. Thick sticks are used for special ceremonies, such as funerals. Spiral incense, with exceedingly long burn times, is often hung from temple ceilings. In some states, such as Taiwan,
Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon incense sticks are sometimes used. These generate so much smoke and heat that they are only burned outside.
Chinese incense sticks for use in popular religion are generally odorless or only use the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum. Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Though they contain no sandalwood, they often include the Chinese character for sandalwood on the label, as a generic term for incense.
Highly scented Chinese incense sticks are used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, agarwood, or floral scents used. The sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, or City of Ten Thousand Buddhas do not use incense.
INDIAN:
Incense sticks, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, are the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepali/Tibetan and Japanese methods of stick making without bamboo cores. Though the method is also used in the west, it is strongly associated with India.
The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder – an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India that take raw unperfumed sticks hand-rolled by approximately 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale. An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 large companies that together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Mysore.
JEWISH TEMPLE IN JERUSALEM:
KETORET:
Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus to be a mixture of stacte, onycha, galbanum and frankincense.
TIBETAN:
Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, and sahi jeera.
Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.
JAPANESE:
In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like calligraphy, ikebana, and scroll arrangement. The art of incense appreciation, or koh-do, is generally practiced as a separate art form from the tea ceremony, and usually within a tea room of traditional Zen design.
Agarwood (沈香 Jinkō) and sandalwood (白檀 byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation. It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.
Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.
Some terms used in Japanese incense culture include:
Incense arts: [香道, kodo]
Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.
Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning
Charcoal: [木炭] – only the odorless kind is used.
Incense woods: [ 香木 ] – a naturally fragrant resinous wood.
USAGE:
PRACTICAL:
Incense fragrances can be of such great strength that they obscure other less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. An example, as well as of religious use, is the giant Botafumeiro thurible that swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.
A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single long handle on one side. The perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.
The regular burning of direct-burning incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve multiple senses.
Incense made from materials such as citronella can repel mosquitoes and other irritating, distracting, or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.
Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.
Incense is also used often by people who smoke indoors and do not want the smell to linger.
AESTHETIC:
Many people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the aroma. An example is the kōdō (香道), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.
RELIGIOUS:
Religious use of incense is prevalent in many cultures and may have roots in the practical and aesthetic uses, considering that many of these religions have little else in common. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense), etc.
Aphrodisiac Incense has been used as an aphrodisiac in some cultures. Both ancient Greek and ancient Egyptian mythology suggest the usage of incense by goddesses and nymphs. Incense is thought to heighten sexual desires and sexual attraction.
Time-keeper Incense clocks are used to time social, medical and religious practices in parts of eastern Asia. They are primarily used in Buddhism as a timer of mediation and prayer. Different types of incense burn at different rates; therefore, different incense are used for different practices. The duration of burning ranges from minutes to months.
Healing stone cleanser Incense is claimed to cleanse and restore energy in healing stones. The technique used is called “smudging” and is done by holding a healing stone over the smoke of burning incense for 20 to 30 seconds. Some people believe that this process not only restores energy but eliminates negative energy.
HEALTH RISK FROM INCENSE SMOKE:
Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and adsorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. In a comparison, Indian sandalwood was found to have the highest emission rate, followed by Japanese aloeswood, then Taiwanese aloeswood, while Chinese smokeless sandalwood had the least.
Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.
A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.
In contrast, epidemiologists at the Hong Kong Anti-Cancer Society, Aichi Cancer Center in Nagoya, and several other centers found: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified their findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."
Although several studies have not shown a link between incense and lung cancer, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also were 80% more likely to develop squamous-cell carcinomas. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."
In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters' ovarian cells to be even higher than cigarettes.
Incensole acetate, a component of Frankincense, has been shown to have anxiolytic-like and antidepressive-like effects in mice, mediated by activation of poorly-understood TRPV3 ion channels in the brain.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Mikoyan-Gurevich MiG-19 (Russian: Микоян и Гуревич МиГ-19) (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engined fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. It was, more oe less, the counterpart of the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam.
On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", which was to be powered by two Mikulin AM-5 non-afterburning jet engines (a scaled-down version of the Mikulin AM-3) with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 1) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 0.97) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).
The new fighter, internally designated "SM-1", was designed around the "SI-02" airframe (a MiG-17 prototype) modified to accept two engines in a side-by-side arrangement and was completed in March 1952.
Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph) (compared to 160 km/h (100 mph) in the MiG-15), combined with absence of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.
Approximately 5.500 MiG-19s were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.
All Soviet-built MiG-19 variants were single-seaters only, although the Chinese later developed the JJ-6 trainer version of the Shenyang J-6. Among the original "Farmer" variants were also several radar-equipped all-weather fighters and the MiG-19R, a reconnaissance version of the MiG-19S with cameras replacing the nose cannon in a canoe-shaped fairing under the forward fuselage and powered by uprated RD-9BF-1 engines with about 10% more dry thrust and an improved afterburner system.
The MiG19R was intended for low/medium altitude photo reconnaissance. Four AFA-39 daylight cameras (one facing forward, one vertical and two obliquely mounted) were carried. Nighttime operations were only enabled through flare bombs, up to four could be carried on four hardpoints under the wings, even though the outer "wet" pylons were frequently occupied by a pair of 800l drop tanks.
The MiG-19R was not produced in large numbers and only a few were operated outside of the Soviet Union. The NATO reporting name remained unchanged (Farmer C). A recon variant of the MiG-19 stayed on many air forces' agendas, even though only the original, Soviet type was actually produced. Czechoslovakia developed an indigenous reconnaissance variant, but it did not enter series production, as well as Chinese J-6 variants, which only reached the prototype stage.
One of the MiG-19R's few foreign operators was the Polish Navy. The Polish Air Force had received a total of 22 MiG-19P and 14 MiG-19PM interceptors in 1957 (locally dubbed Lim-7), and at that time photo reconnaissance for both Air Force and Navy was covered by a version of the MiG-17 (Lim-5R). Especially the Polish Navy was interested in a faster aircraft for quick identification missions over the Baltic Sea, and so six MiG-19R from Soviet stock were bought in 1960 for the Polish Navy air arm.
Anyway, Poland generally regarded the MiG-19 family only as an interim solution until more potent types like the MiG-21 became available. Therefore, most of the fighters were already sold to Bulgaria in 1965/66, and any remaining Farmer fighters in Polish Air Force Service were phased out by 1974.
The Polish Navy MiG-19R were kept in service until 1982 through the 3rd Group of the 7th Polish Naval Squadron (PLS), even though only a quartet remained since two Lim-7R, how the type was called in Poland, had been lost through accidents during the early 70ies. Ironically, the older Lim6R (a domestic photo reconnaissance variant of the license-built MiG-17 fighter bomber) was even kept in service until the late 80ies, but eventually all these aircraft were replaced by MiG-21R and Su-22M4R.
General characteristics:
Crew: One
Length: 12.54 m (41 ft)
Wingspan: 9.0 m (29 ft 6 in)
Height: 3.9 m (12 ft 10 in)
Wing area: 25.0 m² (270 ft²)
Empty weight: 5,447 kg (11,983 lb)
Max. take-off weight: 7,560 kg (16,632 lb)
Powerplant:
2× Tumansky RD-9BF-1 afterburning turbojets, 31.9 kN (7,178 lbf) each
Performance:
Maximum speed: 1.500 km/h (930 mph)
Range: 1,390 km (860 mi) 2,200 km with external tanks
Service ceiling: 17,500 m (57,400 ft)
Rate of climb: 180 m/s (35,425 ft/min)
Wing loading: 302.4 kg/m² (61.6 lb/ft²)
Thrust/weight: 0.86
Armament:
2x 30 mm NR-30 cannons in the wing roots with 75 RPG
4x underwing pylons, with a maximum load of 1.000 kg (2.205 lb);
typically only 2 drop tanks were carried, or pods with flare missiles
The kit and its assembly:
Again, a rather subtle whif. The MiG-19R existed, but was only produced in small numbers and AFAIK only operated by the Soviet Union. Conversions of license-built machines in Czechoslovakia and China never went it beyond prototype stage.
Beyond that, there’s no kit of the recon variant, even pictures of real aircraft are hard to find for refefence – so I decided to convert a vintage Kovozavody/KP Models MiG-19S fighter from the pile into this exotic Farmer variant.
Overall, the old KP kit is not bad at all, even though you get raised details, lots of flash and mediocre fit, the pilot's seat is rather funny. Yes, today’s standards are different, but anything you could ask for is there. The kit is more complete than a lot of more modern offerings and the resulting representation of a MiG-19 is IMHO good.
Mods I made are minimal. Most prominent feature is the camera fairing in place of the fuselage cannon, scratched from a massive weapon pylon (Academy F-104G). Probably turned out a bit too large and pronounced, but it’s whifworld, after all!
Other detail changes include new main wheels (from a Revell G.91), some added/scratched details in the cockpit with an opened canopy, and extra air scoops on the fuselage for the uprated engines. The drop tanks are OOB, I just added the small stabilizer pylons from styrene sheet.
Other pimp additions are scratched cannons (made from Q-Tips!), and inside of the exhausts the rear wall was drilled up and afterburner dummies (wheels from a Panzer IV) inserted - even though you can hardly see that at all...
Painting and markings:
This is where the fun actually begins. ANY of the few MiG-19 in Polish service I have ever seen was left in a bare metal finish, and the Polish Navy actually never operated the type.
Anyway, the naval forces make a good excuse for a camouflaged machine – and the fact that the naval service used rather complex patterns with weird colors on its machines (e. g. on MiG-17, MiG-15 UTI or PZL Iskras and An-2) made this topic even more interesting, and colorful.
My paint scheme is a mix of various real world aircraft “designs”. Four(!) upper colors were typical. I ended up with:
• Dark Grey (FS 36118, Modelmaster)
• Dark Green (RAF Dark Green, Modelmaster)
• Blue-Green-Grey (Fulcrum Green-Grey, Modelmaster)
• Greenish Ochre (a mix of Humbrol 84 and Zinc Chromate Green, Modelmaster)
Plus…
• Light Blue undersides (FS 35414, Modelmaster, also taken into the air intake)
The pattern was basically lent from an Iskra trainer and translated onto the swept wing MiG. The scheme is in so far noteworthy because the stabilizers carry the upper camo scheme on the undersides, too!?
I only did light shading and weathering, since all Polish Navy service aircraft I found had a arther clean and pristine look. A light black ink wash helped to emphasize the many fine raised panel lines, as well as some final overall dry painting with light grey.
The cockpit interior was painted in the notorious “Russian Cockpit Blue-Green” (Modelmaster), dashboard and are behind the seat were painted medium grey (FS 36231). The landing gear wells were kept in Aluminum (Humbrol 56), while the struts received a lighter acrylic Aluminum from Revell.
The wheel discs were painted bright green (Humbrol 131), but with the other shocking colors around that does not stand out at all…! The engine nozzles were treated with Modelmaster Metallizer, including Steel, Gun Metal and Titanium, plus some grinded graphite which adds an extra metallic shine.
The national “checkerboard” markings were puzzled together from various old decal sheets; the red tactical code was made with single digit decals (from a Begemot MiG-29 sheet); the squadron marking on the fin is fictional, the bird scaring eyes are a strange but als typical addition and I added some few stencils.
Finally, all was sealed under a coat of matt acrylic varnish (Revell).
In the end, not a simple whif with only little conversion surgery. But the paint scheme is rather original, if not psychedelic – this MiG looks as if a six-year-old had painted it, but it’s pretty true to reality and I can imagine that it is even very effective in an environment like the Baltic Sea.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background
The Focke Wulf Ta 338 originated as a response of request by the RLM in mid 1943 for an aircraft capable of vertical takeoff and landing (VTOL), optimized for the interceptor and point defense role and without a hazardous liquid rocket engine as means of propulsion. In the course of the year, several German manufacturers responded with a multitude of highly innovative if not unusual design, including Heinkel with the ducted fan project "Lerche", Rheinmetall-Borsig with a jet-powered tailsitter, and Focke Wulf. This company’s engineering teams submitted two designs: the revolutionary "Triebflügel" concept and the more conservative, yet still futuristic "P.03.10338" tail sitter proposal, conceived by Focke Wulf’s leading engineer Kurt Tank and Walter Kappus from BMW, responsible for the engine development.
The P.03.10338 was based on the proven Fw 190 fighter, but the similarities were only superficial. Only the wings and a part of the fuselage structure around the cockpit would be used, but Tank assumed that using existing parts and tools would appreciably reduce development and production time.
A great part of the fuselage structure had to be re-designed to accommodate a powerful BMW 803 engine and its integral gearbox for an eight-bladed contraprop.
The BMW 803 was BMW's attempt to build a high-output aircraft engine, primarily for heavy bombers, by basically "coupling" two BMW 801 engines back-to-back into a single and very compact power unit. The result was a 28-cylinder, four-row radial engine, each comprising a multiple-bank in-line engine with two cylinders in each bank, which, due to cooling concerns, were liquid cooled.
This arrangement was from the start intended to drive independent contra-rotating propellers, in order to avoid stiffness problems with the whole engine driving just a single crankshaft and also to simply convert the raw power of this unit into propulsion. The front half of the engine drove the front propeller directly, while the rear engine drove a number of smaller shafts that passed between the cylinders of the front engine before being geared back together to drive the rear prop. This complex layout resulted in a rather large and heavy gearbox on the front of the engine, and the front engine needing an extended shaft to "clear" that gearbox. The four-row 803 engine weighed 2,950 kg (6,490 lb) dry and 4,130 kg (9,086 lb) fully loaded, and initial versions delivered 3,900 PS (3,847 hp; 2,868 kW).
While the engine was heavy and there were alternatives with a better weight/output ratio (e. g. the Jumo 222), the BMW 803 was favored for this project because it was the most powerful engine available, and it was relatively compact so that it could be fitted into a fighter's airframe. On the P.03.10338 it drove an all-metal, eight-blade contraprop with a diameter of 4,25 m (13 ft 11 in).
In order to accept this massive engine, the P.03.10338’s structure had to be stiffened and the load-bearing structures re-arranged. The aircraft kept the Fw 190's wing structure and surface, but the attachment points at the fuselage had to be moved for the new engine mount, so that they ended up in mid position. The original space for the Fw 190's landing gear was used for a pair of radiator baths in the wings' inner leading edge, the port radiator catering to the front engine half while the radiator on starboard was connected with the rear half. An additional annular oil and sodium cooler for the gearbox and the valve train, respectively, was mounted in the fuselage nose.
The tail section was completely re-designed. Instead of the Fw 190's standard tail with fin and stabilizers the P.03.10338’s tail surfaces were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. On the four fin tips, aerodynamic bodies carried landing pads while the fuselage end contained an extendable landing damper. The pilot sat in a standard Fw 190 cockpit, and the aircraft was supposed to start and land vertically from a mobile launch pad. In the case of an emergency landing, the lower stabilizers could be jettisoned. Nor internal armament was carried, instead any weaponry was to be mounted under the outer wings or the fuselage, in the form of various “Rüstsätze” packages.
Among the many exotic proposals to the VTOL fighter request, Kurt Tank's design appeared as one of the most simple options, and the type received the official RLM designation Ta 338. In a rush of urgency (and maybe blinded by clever Wunderwaffen marketing from Focke Wulf’s side), a series of pre-production aircraft was ordered instead of a dedicated prototype, which was to equip an Erprobungskommando (test unit, abbreviated “EK”) that would evaluate the type and develop tactics and procedures for the new fighter.
Fueled by a growing number of bomber raids over Germany, the “EK338” was formed as a part of JG300 in August 1944 in Schönwalde near Berlin, but it took until November 1944 that the first Ta 338 A-0 machines were delivered and made operational. These initial eight machines immediately revealed several flaws and operational problems, even though the VTOL concept basically worked and the aircraft flew well – once it was in the air and cruising at speeds exceeding 300 km/h (186 mph).
Beyond the many difficulties concerning the aircraft’s handling (esp. the landing was hazardous), the lack of a landing gear hampered ground mobility and servicing. Output of the BMW 803 was sufficient, even though the aircraft had clear limits concerning the take-off weight, so that ordnance was limited to only 500 kg (1.100 lb). Furthermore, the noise and the dust kicked up by starting or landing aircraft was immense, and servicing the engine or the weapons was more complicated than expected through the high position of many vital and frequently tended parts.
After three Ta 338 A-0 were lost in accidents until December 1944, a modified version was ordered for a second group of the EK 338. This led to the Ta 338 A-1, which now had shorter but more sharply swept tail fins that carried single wheels and an improved suspension under enlarged aerodynamic bodies.
This machine was now driven by an improved BMW 803 A-2 that delivered more power and was, with an MW-50 injection system, able to produce a temporary emergency output of 4.500 hp (3.308 kW).
Vertical start was further assisted by optional RATO units, mounted in racks at the rear fuselage flanks: either four Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or two larger 9.8 kN (2,203 lbf) solid fuel booster rockets, could be used. These improvements now allowed a wider range of weapons and equipment to be mounted, including underwing pods with unguided rockets against bomber pulks and also a conformal pod with two cameras for tactical reconnaissance.
The hazardous handling and the complicated maintenance remained the Ta 338’s Achilles heel, and the tactical benefit of VTOL operations could not outbalance these flaws. Furthermore, the Ta 338’s range remained very limited, as well as the potential firepower. Four 20mm or two 30mm cannons were deemed unsatisfactory for an interceptor of this class and power. And while bundles of unguided missiles proved to be very effective against large groups of bombers, it was more efficient to bring these weapons with simple and cheap vehicles like the Bachem Ba 349 Natter VTOL rocket fighter into target range, since these were effectively “one-shot” weapons. Once the Ta 338 fired its weapons it had to retreat unarmed.
In mid 1945, in the advent of defeat, further tests of the Ta 338 were stopped. I./EK338 was disbanded in March 1945 and all machines retreated from the Eastern front, while II./EK338 kept defending the Ruhrgebiet industrial complex until the Allied invasion in April 1945. Being circled by Allied forces, it was not possible to evacuate or destroy all remaining Ta 338s, so that at least two more or less intact airframes were captured by the U.S. Army and later brought to the United States for further studies.
General characteristics:
Crew: 1
Length/height on the ground: 10.40 m (34 ft 2 in)
Wingspan: 10.50 m (34 ft 5 in)
Fin span: 4:07 m (13 ft 4 in)
Wing area: 18.30 m² (196.99 ft²)
Empty weight: 11,599 lb (5,261 kg)
Loaded weight: 16,221 lb (7,358 kg)
Max. takeoff weight: 16,221 lb (7,358 kg)
Powerplant:
1× BMW 803 A-2 28-cylinder, liquid-cooled four-row radial engine,
rated at 4.100 hp (2.950 kW) and at 4.500 hp (3.308 kW) with emergency boost.
4x Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or
2x 9.8 kN (2,203 lbf) solid fuel booster rockets
Performance:
Maximum speed: 860 km/h (534 mph)
Cruise speed: 650 km/h (403 mph)
Range: 750 km (465 ml)
Service ceiling: 43,300 ft (13,100 m)
Rate of climb: 10,820 ft/min (3,300 m/min)
Wing loading: 65.9 lb/ft² (322 kg/m²)
Armament:
No internal armament, any weapons were to be mounted on three hardpoints (one under the fuselage for up to 1.000 kg (2.200 lb) and two under the outer wings, 500 kg (1.100 lb) each. Total ordnance was limited to 1.000 kg (2.200 lb).
Various armament and equipment sets (Rüstsätze) were tested:
R1 with 4× 20 mm (.79 in) MG 151/20 cannons
R2 with 2x 30 mm (1.18 in) MK 213C cannons
R3 with 48x 73 mm (2.874 in) Henschel Hs 297 Föhn rocket shells
R4 with 66x 55 mm (2.165 in) R4M rocket shells
R5 with a single 1.000 kg (2.200 lb) bomb under the fuselage
R6 with an underfuselage pod with one Rb 20/20 and one Rb 75/30 topographic camera
The kit and its assembly:
This purely fictional kitbashing is a hardware tribute to a highly inspiring line drawing of a Fw 190 VTOL tailsitter – actually an idea for an operational RC model! I found the idea, that reminded a lot of the Lockheed XFV-1 ‘Salmon’ prototype, just with Fw 190 components and some adaptations, very sexy, and so I decided on short notice to follow the urge and build a 1:72 version of the so far unnamed concept.
What looks simple (“Heh, it’s just a Fw 190 with a different tail, isn’t it?”) turned out to become a major kitbashing. The basis was a simple Hobby Boss Fw 190 D-9, chose because of the longer tail section, and the engine would be changed, anyway. Lots of work followed, though.
The wings were sliced off and moved upwards on the flanks. The original tail was cut off, and the cruciform fins are two pairs of MiG-21F stabilizers (from an Academy and Hasegawa kit), outfitted with reversed Mk. 84 bombs as aerodynamic fairings that carry four small wheels (from an 1:144 T-22M bomber) on scratched struts (made from wire).
The cockpit was taken OOB, only a pilot figure was cramped into the seat in order to conceal the poor interior detail. The engine is a bash from a Ju 188’s BMW 801 cowling and the original Fw 190 D-9’s annular radiator as well as a part of its Jumo 213 cowling. BMW 801 exhaust stubs were inserted, too, and the propeller comes from a 1:100 VEB Plasticart Tu-20/95 bomber.
Since the BMW 803 had liquid cooling, radiators had to go somewhere. The annular radiator would certainly not have been enough, so I used the space in the wings that became available through the deleted Fw 190 landing gear (the wells were closed) for additional radiators in the wings’ leading edges. Again, these were scratched with styrene profiles, putty and some very fine styrene mesh.
As ordnance I settled for a pair of gun pods – in this case these are slipper tanks from a Hobby Boss MiG-15, blended into the wings and outfitted with hollow steel needles as barrels.
Painting and markings:
Several design options were possible: all NMF with some colorful markings or an overall RLM76 finish with added camouflage. But I definitively went for a semi-finished look, inspired by late WWII Fw 190 fighters.
For instance, the wings’ undersides were partly left in bare metal, but the rudders painted in RLM76 while the leading edges became RLM75. This color was also taken on the wings’ upper sides, with RLM82 thinly painted over. The fuselage is standard RLM76, with RLM82 and 83 on the upper side and speckles on the flanks. The engine cowling became NMF, but with a flashy ‘Hartmann Tulpe’ decoration.
Further highlights are the red fuselage band (from JG300 in early 1945) and the propeller spinner, which received a red tip and segments in black and white on both moving propeller parts. Large red “X”s were used as individual aircraft code – an unusual Luftwaffe practice but taken over from some Me 262s.
After a light black ink wash some panel shading and light weathering (e.g. exhaust soot, leaked oil, leading edges) was done, and the kit sealed under matt acrylic varnish.
Building this “thing” on the basis of a line drawing was real fun, even though challenging and more work than expected. I tried to stay close to the drawing, the biggest difference is the tail – the MiG-21 stabilizers were the best option (and what I had at hand as donation parts), maybe four fins from a Hawker Harrier or an LTV A-7 had been “better”, but now the aircraft looks even faster. ;)
Besides, the Ta 338 is so utterly Luft ’46 – I am curious how many people might take this for real or as a Hydra prop from a contemporary Captain America movie…
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.
The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.
The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.
There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.
Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.
Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.
The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.
Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.
As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.
Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.
The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.
In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.
The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.
BAE Lightning F.6S general characteristics
Crew: 1
Length: 55 ft 3 in (16.8 m)
Wingspan: 34 ft 10 in (10.6 m)
Height: 19 ft 7 in (5.97 m)
Wing area: 474.5 ft² (44.08 m²)
Empty weight: 31,068 lb (14.092 kg)
Max. take-off weight: 45,750 lb (20.752 kg)
Powerplant:
2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner
Performance:
Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.
Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)
Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks
Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft
Rate of climb: 20.000 ft/min (100 m/s)
Wing loading: 76 lb/ft² (370 kg/m²)
Thrust/weight: 0.78
Armament:
2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)
Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)
2× overwing pylon stations for 260 gal ferry tanks
The kit and its assembly
The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.
The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).
Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!
Externally…
· the flaps were lowered
· some antennae and a finer pitot added
· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open
· the IRST sensor fairing added, sculpted from a simple piece of sprue
· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)
· the scratch-built quadruple Sidewinder rails are worth mentioning
The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.
Painting and markings
More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.
A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.
Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.
The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.
The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.
As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.
The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.
After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !
As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)
The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.
Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.
Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.
After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!
Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.
A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?
As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
MiG-19 is a Soviet second-generation, single-seat, twin jet-engined fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight.
DSC_9331 GYA Sept 15
C.S. SOVEREIGN
C.S. Sovereign is a multi-role DPS-2 vessel capable of undertaking both cable maintenance and installation projects. Her open deck enables her to deploy a variety of subsea vehicles and her powered turntables make her the ideal solution for a diverse range of offshore engineering activities. C.S. Sovereign is primarily committed to serving ACMA, the Atlantic Cable Maintenance Agreement, and is based in Portland, UK.
C.S. Sovereign has been involved in many projects as well as being used as a charter vessel. Her accomplishments include: installation and burial of 30km of inter platform cable on the Fibre to Judy project in 2010 and completing the main lay installation operation, utilising the Atlas ROV and Cable Plough on the ValHall Clyde project.
Vessel
BuildersVan Der Giessen, Netherlands
Date built1991
FlagUK
ClassABS, A1, Ice Class 1C, AMS, ACCU DPS-2
Length overall130.70m
Breadth moulded21.00m
Designed draft7.014m
Gross tonnage11,242t
Maximum speed13.5kts
Main engines3
Bow thruster2
Stern thruster2
DP systemDPS-2 Duplex C-Series
Berths78
Bollard pull80t
Fuel
Fuel capacity1,108t MGO
Communications
1 x VSAT SEATEL 4006, MTN Service Contract on KU Band
2 x Satcom B
Cable Tanks
Main cable tanks2 x 2,300t powered turntables installed in C/Tks 1 & 3. Basket height 5.50m
Outer diameter15.20m
Cone external diameter6.00m
Maximum load per tank2,200t
Wing tanks2
Internal diameter6.60m
Cone outer diameter2.45m
Maximum load per tank432t
Theater at Priene;
Built during the Hellenistic period, the theater survived the Roman period with only minor modifications. The theater extends beyond a semicircle, and the 50 rows of seats were capable of holding up to 5,000 people. There are five stone armchairs (image 2) lining the orchestra portion of the theater, which were perhaps reserved for priests and dignitaries
Priene, ancient city of Ionia about 6 miles (10 km) north of the Menderes (Maeander) River and 10 miles (16 km) inland from the Aegean Sea, in southwestern Turkey. Its well-preserved remains are a major source of information about ancient Greek town.
By the 8th century bc Priene was a member of the Ionian League, whose central shrine, the Panionion, lay within the city’s territory. Priene was sacked by Ardys of Lydia in the 7th century bc but regained its prosperity in the 8th. Captured by the generals of the Persian king Cyrus (c. 540), the city took part in several revolts against the Persians (499–494). Priene originally lay along the Maeander River’s mouth, but about 350 bc the citizens built a new city farther inland, on the present site. The new city’s main temple, of Athena Polias, was dedicated by Alexander the Great in 334. The little city grew slowly over the next two centuries and led a quiet existence; it prospered under the Romans and Byzantines but gradually declined, and after passing into Turkish hands in the 13th century ad, it was abandoned. Excavations of the site, which is occupied by the modern town of Samsun Kale, began in the 19th century.
Modern excavations have revealed one of the most beautiful examples of Greek town planning. The city’s remains lie on successive terraces that rise from a plain to a steep hill upon which stands the Temple of Athena Polias. Built by Pythius, probable architect of the Mausoleum of Halicarnassus, the temple was recognized in ancient times as the classic example of the pure Ionic style. Priene is laid out on a grid plan, with 6 main streets running east-west and 15 streets crossing at right angles, all being evenly spaced. The town was thereby divided into about 80 blocks, or insulae, each averaging 150 by 110 feet (46 by 34 m). About 50 insulae are devoted to private houses; the better-class insulae had four houses apiece, but most were far more subdivided. In the centre of the town stand not only the Temple of Athena but an agora, a stoa, an assembly hall, and a theatre with well-preserved stage buildings. A gymnasium and stadium are in the lowest section. The private houses typically consisted of a rectangular courtyard enclosed by living quarters and storerooms and opening to the south onto the street by way of a small vestibule. planning.
www.britannica.com/place/Priene
T e m p l e o f A t h e n a P o l i a s
a t P r i e n e - The Temple of Athena
www.goddess-athena.org/Museum/Temples/Priene/index.htm
The Sanctuary of Athena Polias at Priene
The Temple of Athena
This Temple, located on the culminating point of the city, rose over a wide terrace of rocks and the defense walls, and was the oldest, the most important, the largest and the must magnificent building in Priene. It was oriented on an east-west axis in conformity with the city plan and faced east.
Map of Priene, the Acropolis, the Temples and the village.
It is believed that the construction of the Temple was begun at the same time as the founding of Priene (4th century BCE). The architect of the building was Pythius, who also constructed the Mausoleum of Halicarnassus, counted as one of the seven wonders of the world. The Temple is accepted as being a classical example of the Anatolian-Ionian architectural style.
The building was destroyed completely in an earthquake in ancient times and the pieces were scattered over a large area. It also suffered great destruction in a later fire. However, the construction of the plan and the reconstruction of the building have been possible through the fragments found in the excavations.
Large-grained grey-blue local marble brought from Mycale was used as construction material.
The Temple, constructed in the Ionic style, consists of a pronaos (an entrance-hall), a naos (the sacred chamber where the statue of the cult was kept) and an opisthodomus (a porch at the rear). The pronaos is larger than in earlier examples. There was no opisthodomus in previous Temples; it is first seen here. Pythius has taken this characteristic from the Doric style and applied it to his plan, and has thus set a model for later Temples. The building, a combination of the Ionic and Doric architectural styles, emerges as a different architectural example.
While the C-141A Starlifter had done well in the 1960s, especially in supply efforts over Vietnam, the aircraft had one glaring problem: it would “bulk out” before it reached its projected payload weight: the fuselage would be full, but the aircraft was capable of carrying more. In response to this and the C-141’s need for fueling stops on long trips, the USAF began upgrading the C-141A fleet to C-141B standard.
By adding two plugs fore and aft of the wings, the fuselage was stretched 23 feet. While the Starlifter was still incapable of carrying oversize loads, it now could carry up to its full weight. Inflight refuelling capability was also added. All surviving C-141As were upgraded between 1977 and 1982 to B standard, essentially adding 90 new C-141s to the fleet without building new aircraft. With the C-5B Galaxy also entering service, the C-141B gave the USAF unmatched air transport capability, something that would be very useful in time of war. Its first wartime service would be Operation Desert Shield, the buildup to the First Gulf War of 1991. Starlifters carried nearly half of all payloads delivered to the Southwest Asia theater.
The 1990s would see the most use of the aircraft, especially over the wartorn former nations of Yugoslavia. During NATO efforts to resupply Bosnian towns cut off by Serbian forces, C-141s were flown from Rhein-Main airbase at low level over Bosnia, where cargo pallets were dropped from the rear filled with food. As these pallets could cause damage when they hit the ground, the pallets were replaced by food boxes tied together: these boxes would break apart in midair and float down on individual parachutes. These “food bombs” would be used later in other areas where the C-141 was unable to land. Other Rhein-Main based Starlifters made the trip into the Bosnian capital of Sarajevo, the airport of which was considered one of the most dangerous spots on earth, constantly subject to mortar and sniper fire, and required a diving approach to avoid being shot at by Serbian antiaircraft units posted in the mountains around the airport. C-141s and other NATO transports kept the city alive during its three-year siege, which finally ended in 1995.
In response to this, 13 C-141Bs were modified to SOLL II standard, with low-light vision equipment, GPS, and defensive chaff/flare countermeasures, for operations over high-threat areas or in conjunction with Special Forces units. Later, about a third of the lowest-timed Starlifters were modified to C-141C standard, with a new “glass” cockpit and upgraded avionics.
Despite the upgrade, the days of the C-141 were numbered. It was getting old, and wing cracks had begun to appear on older aircraft. As the C-17 Globemaster III was now coming into service, Starlifters began to be retired. The C-141Cs soldiered on long enough to be used in Afghanistan and Iraq, where they finally used their paratroop-carrying capability in combat, dropping elements of the 101st Airborne Division near Tikrit in northern Iraq. After 2004, the Starlifter was retired from active units and passed on to Air National Guard and Reserve units; the last eight operational C-141s were used to shuttle supplies into New Orleans after the Hurricane Katrina disaster of 2005. This was the Starlifter’s swan song, as after this operation ended the C-141 finally left USAF service after forty years of service. Of 285 aircraft, 19 were lost in accidents; 13 are preserved in museums.
The most famous C-141 ever flown, 66-0177 is known better by its nickname--the "Hanoi Taxi." First assigned as a C-141A to the 63rd Military Airlift Wing at Norton AFB, California, 66-0177 was a regular visitor to Southeast Asia on transport missions. A month after the Paris Peace Accords were signed, North Vietnam began the release of American prisoners of war held at the infamous "Hanoi Hilton"--in some cases, since 1965. 66-0177 was the first to land at Hanoi to pick up the first batch of 80 POWs, and as such became the first bit of America to welcome the prisoners home. Though only one of almost a dozen C-141s that brought POWs out of North Vietnam, 66-0177 was the first, and thus became dubbed the Hanoi Taxi.
Long after the Vietnam War was over, 66-0177 remained in service. In the early 1980s, it was stretched and became a C-141B, and was eventually assigned to the 445th Airlift Wing (USAF Reserve), based at Wright-Patterson AFB, Ohio; in the early 1990s, it received the C-141C upgrade. As the Taxi closed in on the end of her service life, she was repainted from her AMC Gray scheme to the older Military Airlift Command colors to commemorate the aircraft's history. As such, the Taxi became something of a touchstone and living history museum for former Vietnam POWs. In 2004, the Taxi made one final trip to Hanoi, this time to pick up the remains of two American servicemembers once listed as missing in action. Finally, in May 2006, it was retired and made the short flight from the main part of Wright-Patterson to the National Museum of the USAF.
Today the Hanoi Taxi sits in the Experimental Aircraft and Transport Gallery at the NMUSAF. As mentioned above, it carries the old white-over-gray MAC scheme, complete with MAC stripe on the tail (though it reads "AFRC" for Air Force Reserve Command). The aircraft is open to the public to tour the cavernous cargo bay, as well as see the signatures of POWs who signed the interior.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The Indian HAL HG-30 Bāja (‘Hawk’) had been designed and manufactured by Hindustan Aeronautics Ltd. in the early 60ies, when it became clear that the Indian Air Force was left without a capable and rather simple aircraft for these roles - the “jet age” had been in full development, but fast and large aircraft like the Su-7 or Hawker Hunter were just not suited for low-altitude missions against day and night visible ground targets in a broad area.
Indian military planners assumed that potential aggressor will first disable airfields, so the Bāja was designed to take-off from short unprepared runways, and it was readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions.
The resulting HG-30 Bāja was a light, single-engine, low-wing single-seat aircraft with a metal airframe, capable of performing close air support, counter insurgency (COIN), and reconnaissance missions. The type featured a license-built Rolls Royce Dart turboprop engine and a reinforced, retractable tricycle landing gear for operations on rugged terrain. The unpressurized cockpit was placed as far forward and high as possible, offering the pilot an excellent view. The ejection seat was armored and the cockpit lined with nylon flak curtains.
The first HG-30 prototype flew in February 1962, and a total of 89 examples of the Bāja were built between 1963 and 1965, including two pre-production aircraft. These introduced some improvements like fixed wingtip tanks, a bulged canopy which improved the rear view or self-sealing and foam-filled fuselage tanks.
Armament consisted of four fixed 20mm cannons in the wings, plus unguided missiles, unguided bombs or napalm tanks under the wings and the fuselage on a total of 11 hardpoints. The inner pair under the wings as well as the centerline pylon were able to carry 1.000 lbs each and were ‘wet’ for optional drop tanks. The next pair could carry 500 lbs each, and the outer six attachment points were reserved for missile rails or single bombs of up to 200 lbs caliber. A total external ordnance load of up to 4.500 lbs could be carried, even though this was rarely practiced since it severely hampered handling.
The Bāja was exclusively used by the Indian Air Force, serving with 3rd (‘Cobras’) and 5th (‘Tuskers’) Squadrons in the Eastern and Western regions, alongside Toofani and Ajeet fighter bombers. Even though there was some foreign interest (e .g. from Israel and Yugoslavia,) no export sales came to fruition.
A tandem-seated trainer version was envisaged, but never left the drawing board, since Hindustan had already developed the HJT-16 Kiran jet trainer for the IAF which was more suitable, esp. with its side-by-side cockpit. Even a maritime version with foldable outer wings, arresting hook and structural reinforcements was considered for the Indian Navy.
The HG-30 did not make it in time into service for the five-week Indo-Pakistani war of 1965, but later saw serious action in the course of the Bangladesh Liberation War and the ensuing next clash between India and Pakistan in December 1971, when all aircraft (originally delivered in a natural metal finish) quickly received improvised camouflage schemes.
The 1971 campaign settled down to series of daylight anti-airfield, anti-radar and close-support attacks by fighters, with night attacks against airfields and strategic targets, into which the HG-30s were heavily involved. Sporadic raids by the IAF continued against Pakistan's forward air bases in the West until the end of the war, and large scale interdiction and close-support operations were maintained.
The HG-30 excelled at close air support. Its straight wings allowed it to engage targets 150 MPH slower than swept-wing jet fighters. This slower speed improved shooting and bombing accuracy, enabling pilots to achieve an average accuracy of less than 40 feet, and the turboprop engine offered a much better fuel consumption than the jet engines of that era.
While it was not a fast aircraft and its pilots were a bit looked down upon by their jet pilot colleagues, the HG-30 was well liked by its crews because of its agility, stability at low speed, ease of service under field conditions and the crucial ability to absorb a lot of punishment with its rigid and simple structure.
After the 1971 conflict the Bāja served with the IAF without any further warfare duty until 1993, when, after the loss of about two dozen aircraft due to enemy fire and (only three) accidents, the type was completely retired and its COIN duties taken over by Mi-25 and Mi-35 helicopters, which had been gradually introduced into IAF service since 1984.
General characteristics
Crew: 1
Length: 10.23 m (33 ft 6¼ in)
Wingspan: 12.38 m (40 ft 7¼ in) incl. wing tip tanks
Height: 3.95 m (12 ft 11¼ in)
Empty weight: 7,689 lb (3,488 kg)
Max. take-off weight: Loaded weight: 11,652 lb (5,285 kg)
Powerplant:
1× Rolls Royce Dart RDa.7 turboprop engine, with 1.815 ehp (1.354 kW)/1.630 shp (1.220 kW) at 15,000 rpm
Performance
Maximum speed: 469 mph (755 km/h) at sea level and in clean configuration
Stall speed: 88 km/h (48 knots 55 mph)
Service ceiling: 34,000 ft (10,363 m)
Rate of climb: 5,020 ft/min (25.5 m/s)
Range: 1,385 miles (2,228 km) at max. take-off weight
Armament:
4× 20mm cannons (2 per wing) with 250 RPG
A total of 11 underwing and fuselage hardpoints with a capacity of 4.500 lbs (2.034 kg); provisions to carry combinations of general purpose or cluster bombs, machine gun pods, unguided missiles, air-to-ground rocket pods, fuel drop tanks, and napalm tanks.
The kit and its assembly
This fictional COIN aircraft came to be when I stumbled across the vintage Heller Breguet Alizé kit in 1:100 scale. I did some math and came to the conclusion that the kit would make a pretty plausible single-seat propeller aircraft in 1:72...
Finding a story and a potential user was more of a challenge. I finally settled on India – not only because the country had and has a potent aircraft industry, a COIN aircraft (apart from obsolete WWII types) would have matched well into the IAF in the early 70ies. Brazil was another manufacturer candidate – but then I had the vision of Indian Su-7 and their unique camouflage scheme, and this was what the kit was to evolve to! Muahahah!
What started as a simple adaptation idea turned into a true Frankenstein job, because only little was left from the Heller Alizé – the kit is SO crappy…
What was thrown into the mix:
• Fuselage, rudder and front wheel doors from the Heller Alizé
• Horizontal stabilizers from an Airfix P-51 Mustang
• Wings are the outer parts from an Airfix Fw 189, clipped and with new landing gear wells
• Landing gear comes from a Hobby Boss F-86, the main wheels from the scrap box
• Cockpit tub comes from a Heller Alpha Jet, seat and pilot from the scrap box
• The canopy comes from a Hobby Boss F4U Corsair
• Ordnance hardpoints were cut from styrene strips
• Propeller consists of a spinner from a Matchbox Mitsubishi Zero and blades from two AH-1 tail rotors
• Ordnance was puzzled together from the scrap box; the six retarder bombs appeared appropriate, the four missile pods were built from Matchbox parts. The wingtip tanks are streamlines 1.000 lbs bombs.
The only major sculpting work was done around the nose, in order to make the bigger propeller fiat and to simulate an appropriate air intake for the engine. Overall this thing looks pretty goofy, rather jet-like, with the slightly swept wings. On the other side, the Bāja does not look bad at all, and it has that “Small man’s A-10” aura to it.
Putting the parts together only posed two trouble zones: the canopy and the wings. The Corsair canopy would more or less fit, getting it in place and shaping the spine intersection was more demanding than expected. Still not perfect, but this was a “quick and dirty” project with a poor basis, anyway, so I don’t bother much.
Another tricky thing were the wings and getting them on the fuselage. That the Fw 189 wings ended up here has a reason: the original kit provided two pairs of upper wing halves, the lower halves were lacking! Here these obsolete parts finally found a good use, even though the resulting wing is pretty thick and called for some serious putty work on the belly side… Anyway, this was still easier than trying to modify the Alizé wings into something useful, and a thick wing ain’t bad for low altitude and bigger external loads.
Painting and markings
As mentioned before, the garish paint scheme is inspired by IAF Su-7 fighter bombers during/after the India-Pakistani confrontation of 1971. It’s almost surreal, reason enough to use it. Since a 1:72 Su-7 takes up so much shelf space I was happy to find this smaller aircraft as a suitable placebo.
I used Su-7 pictures as benchmarks, and settled for the following enamels as basic tones for the upper grey, brown and green:
• Humbrol 176 (Neutral Grey, out of production), for a dull and bluish medium grey
• Testors 1583 (Rubber), a very dark, reddish brown
• Humbrol 114 (Russian Green, out of production)
For the lower sides I used Testors 2123 (Russian Underside Blue). The kit received a black ink wash and some dry painting for weathering/more depth. Judging real life aircraft pics of IAF Su-7 and MiG-21, the original underside tone is hardly different from the upper blue grey and it seems on some aircraft as if the upper tone had been wrapped around. The aircraft do not appear very uniform at all, anyway.
Together with the bright IAF roundels the result looks a bit as if that thing had been designed by 6 year old, but the livery has its charm - the thing looks VERY unique! The roundels come from a generic TL Modellbau aftermarket sheet, the tactical codes are single white letters from the same manufacturer. Other stencils, warning signs and the squadron emblem come from the scrap box – Indian aircraft tend to look rather bleak and purposeful, except when wearing war game markings...
In the end, a small and quick project. The model was assembled in just two days, basic painting done on the third day and decals plus some weathering and detail work on the forth – including pics. A new record, even though this one was not built for perfectionism, rather as a recycling kit with lots of stock material at hand. But overall the Bāja looks exotic and somehow quite convincing?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .
The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).
Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.
The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.
The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.
In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.
During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.
The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.
General characteristics:
Crew: 1
Length: 36 ft 4 in (11.1 m)
Wingspan: 39 ft 1 in (11.9 m)
Height: 13 ft 11 in (4.2 m)
Wing area: 338.66 ft² (31.46 m²)
Empty weight: 13,210 lb (6,000 kg)
Loaded weight: 20,130 lb (9,200 kg)
Max. take-off weight: 23,700 lb (10,750 kg)
Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)
Performance:
Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)
Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles
Service ceiling: 46,800 ft (14,300 m)
Rate of climb: 7,660 ft/min (38.9 m/s)
Wing loading: 69.9 lb/ft² (341.7 kg/m²)
Thrust/weight: .325
Armament:
4× 20 mm (0.787 in) cannon
6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.
The kit and its assembly
Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.
Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.
I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.
Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!
The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.
The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.
The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!
Painting and markings
I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.
Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).
I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.
The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.
The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.
The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.
Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.
finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!
So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.
See more photos of this, and the Wikipedia article.
Details, quoting from Smithsonian National Air and Space Museum | Lockheed SR-71 Blackbird:
No reconnaissance aircraft in history has operated globally in more hostile airspace or with such complete impunity than the SR-71, the world's fastest jet-propelled aircraft. The Blackbird's performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War.
This Blackbird accrued about 2,800 hours of flight time during 24 years of active service with the U.S. Air Force. On its last flight, March 6, 1990, Lt. Col. Ed Yielding and Lt. Col. Joseph Vida set a speed record by flying from Los Angeles to Washington, D.C., in 1 hour, 4 minutes, and 20 seconds, averaging 3,418 kilometers (2,124 miles) per hour. At the flight's conclusion, they landed at Washington-Dulles International Airport and turned the airplane over to the Smithsonian.
Transferred from the United States Air Force.
Manufacturer:
Designer:
Date:
1964
Country of Origin:
United States of America
Dimensions:
Overall: 18ft 5 15/16in. x 55ft 7in. x 107ft 5in., 169998.5lb. (5.638m x 16.942m x 32.741m, 77110.8kg)
Other: 18ft 5 15/16in. x 107ft 5in. x 55ft 7in. (5.638m x 32.741m x 16.942m)
Materials:
Titanium
Physical Description:
Twin-engine, two-seat, supersonic strategic reconnaissance aircraft; airframe constructed largley of titanium and its alloys; vertical tail fins are constructed of a composite (laminated plastic-type material) to reduce radar cross-section; Pratt and Whitney J58 (JT11D-20B) turbojet engines feature large inlet shock cones.
Long Description:
No reconnaissance aircraft in history has operated in more hostile airspace or with such complete impunity than the SR-71 Blackbird. It is the fastest aircraft propelled by air-breathing engines. The Blackbird's performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War. The airplane was conceived when tensions with communist Eastern Europe reached levels approaching a full-blown crisis in the mid-1950s. U.S. military commanders desperately needed accurate assessments of Soviet worldwide military deployments, particularly near the Iron Curtain. Lockheed Aircraft Corporation's subsonic U-2 (see NASM collection) reconnaissance aircraft was an able platform but the U. S. Air Force recognized that this relatively slow aircraft was already vulnerable to Soviet interceptors. They also understood that the rapid development of surface-to-air missile systems could put U-2 pilots at grave risk. The danger proved reality when a U-2 was shot down by a surface to air missile over the Soviet Union in 1960.
Lockheed's first proposal for a new high speed, high altitude, reconnaissance aircraft, to be capable of avoiding interceptors and missiles, centered on a design propelled by liquid hydrogen. This proved to be impracticable because of considerable fuel consumption. Lockheed then reconfigured the design for conventional fuels. This was feasible and the Central Intelligence Agency (CIA), already flying the Lockheed U-2, issued a production contract for an aircraft designated the A-12. Lockheed's clandestine 'Skunk Works' division (headed by the gifted design engineer Clarence L. "Kelly" Johnson) designed the A-12 to cruise at Mach 3.2 and fly well above 18,288 m (60,000 feet). To meet these challenging requirements, Lockheed engineers overcame many daunting technical challenges. Flying more than three times the speed of sound generates 316° C (600° F) temperatures on external aircraft surfaces, which are enough to melt conventional aluminum airframes. The design team chose to make the jet's external skin of titanium alloy to which shielded the internal aluminum airframe. Two conventional, but very powerful, afterburning turbine engines propelled this remarkable aircraft. These power plants had to operate across a huge speed envelope in flight, from a takeoff speed of 334 kph (207 mph) to more than 3,540 kph (2,200 mph). To prevent supersonic shock waves from moving inside the engine intake causing flameouts, Johnson's team had to design a complex air intake and bypass system for the engines.
Skunk Works engineers also optimized the A-12 cross-section design to exhibit a low radar profile. Lockheed hoped to achieve this by carefully shaping the airframe to reflect as little transmitted radar energy (radio waves) as possible, and by application of special paint designed to absorb, rather than reflect, those waves. This treatment became one of the first applications of stealth technology, but it never completely met the design goals.
Test pilot Lou Schalk flew the single-seat A-12 on April 24, 1962, after he became airborne accidentally during high-speed taxi trials. The airplane showed great promise but it needed considerable technical refinement before the CIA could fly the first operational sortie on May 31, 1967 - a surveillance flight over North Vietnam. A-12s, flown by CIA pilots, operated as part of the Air Force's 1129th Special Activities Squadron under the "Oxcart" program. While Lockheed continued to refine the A-12, the U. S. Air Force ordered an interceptor version of the aircraft designated the YF-12A. The Skunk Works, however, proposed a "specific mission" version configured to conduct post-nuclear strike reconnaissance. This system evolved into the USAF's familiar SR-71.
Lockheed built fifteen A-12s, including a special two-seat trainer version. Two A-12s were modified to carry a special reconnaissance drone, designated D-21. The modified A-12s were redesignated M-21s. These were designed to take off with the D-21 drone, powered by a Marquart ramjet engine mounted on a pylon between the rudders. The M-21 then hauled the drone aloft and launched it at speeds high enough to ignite the drone's ramjet motor. Lockheed also built three YF-12As but this type never went into production. Two of the YF-12As crashed during testing. Only one survives and is on display at the USAF Museum in Dayton, Ohio. The aft section of one of the "written off" YF-12As which was later used along with an SR-71A static test airframe to manufacture the sole SR-71C trainer. One SR-71 was lent to NASA and designated YF-12C. Including the SR-71C and two SR-71B pilot trainers, Lockheed constructed thirty-two Blackbirds. The first SR-71 flew on December 22, 1964. Because of extreme operational costs, military strategists decided that the more capable USAF SR-71s should replace the CIA's A-12s. These were retired in 1968 after only one year of operational missions, mostly over southeast Asia. The Air Force's 1st Strategic Reconnaissance Squadron (part of the 9th Strategic Reconnaissance Wing) took over the missions, flying the SR-71 beginning in the spring of 1968.
After the Air Force began to operate the SR-71, it acquired the official name Blackbird-- for the special black paint that covered the airplane. This paint was formulated to absorb radar signals, to radiate some of the tremendous airframe heat generated by air friction, and to camouflage the aircraft against the dark sky at high altitudes.
Experience gained from the A-12 program convinced the Air Force that flying the SR-71 safely required two crew members, a pilot and a Reconnaissance Systems Officer (RSO). The RSO operated with the wide array of monitoring and defensive systems installed on the airplane. This equipment included a sophisticated Electronic Counter Measures (ECM) system that could jam most acquisition and targeting radar. In addition to an array of advanced, high-resolution cameras, the aircraft could also carry equipment designed to record the strength, frequency, and wavelength of signals emitted by communications and sensor devices such as radar. The SR-71 was designed to fly deep into hostile territory, avoiding interception with its tremendous speed and high altitude. It could operate safely at a maximum speed of Mach 3.3 at an altitude more than sixteen miles, or 25,908 m (85,000 ft), above the earth. The crew had to wear pressure suits similar to those worn by astronauts. These suits were required to protect the crew in the event of sudden cabin pressure loss while at operating altitudes.
To climb and cruise at supersonic speeds, the Blackbird's Pratt & Whitney J-58 engines were designed to operate continuously in afterburner. While this would appear to dictate high fuel flows, the Blackbird actually achieved its best "gas mileage," in terms of air nautical miles per pound of fuel burned, during the Mach 3+ cruise. A typical Blackbird reconnaissance flight might require several aerial refueling operations from an airborne tanker. Each time the SR-71 refueled, the crew had to descend to the tanker's altitude, usually about 6,000 m to 9,000 m (20,000 to 30,000 ft), and slow the airplane to subsonic speeds. As velocity decreased, so did frictional heat. This cooling effect caused the aircraft's skin panels to shrink considerably, and those covering the fuel tanks contracted so much that fuel leaked, forming a distinctive vapor trail as the tanker topped off the Blackbird. As soon as the tanks were filled, the jet's crew disconnected from the tanker, relit the afterburners, and again climbed to high altitude.
Air Force pilots flew the SR-71 from Kadena AB, Japan, throughout its operational career but other bases hosted Blackbird operations, too. The 9th SRW occasionally deployed from Beale AFB, California, to other locations to carryout operational missions. Cuban missions were flown directly from Beale. The SR-71 did not begin to operate in Europe until 1974, and then only temporarily. In 1982, when the U.S. Air Force based two aircraft at Royal Air Force Base Mildenhall to fly monitoring mission in Eastern Europe.
When the SR-71 became operational, orbiting reconnaissance satellites had already replaced manned aircraft to gather intelligence from sites deep within Soviet territory. Satellites could not cover every geopolitical hotspot so the Blackbird remained a vital tool for global intelligence gathering. On many occasions, pilots and RSOs flying the SR-71 provided information that proved vital in formulating successful U. S. foreign policy. Blackbird crews provided important intelligence about the 1973 Yom Kippur War, the Israeli invasion of Lebanon and its aftermath, and pre- and post-strike imagery of the 1986 raid conducted by American air forces on Libya. In 1987, Kadena-based SR-71 crews flew a number of missions over the Persian Gulf, revealing Iranian Silkworm missile batteries that threatened commercial shipping and American escort vessels.
As the performance of space-based surveillance systems grew, along with the effectiveness of ground-based air defense networks, the Air Force started to lose enthusiasm for the expensive program and the 9th SRW ceased SR-71 operations in January 1990. Despite protests by military leaders, Congress revived the program in 1995. Continued wrangling over operating budgets, however, soon led to final termination. The National Aeronautics and Space Administration retained two SR-71As and the one SR-71B for high-speed research projects and flew these airplanes until 1999.
On March 6, 1990, the service career of one Lockheed SR-71A Blackbird ended with a record-setting flight. This special airplane bore Air Force serial number 64-17972. Lt. Col. Ed Yeilding and his RSO, Lieutenant Colonel Joseph Vida, flew this aircraft from Los Angeles to Washington D.C. in 1 hour, 4 minutes, and 20 seconds, averaging a speed of 3,418 kph (2,124 mph). At the conclusion of the flight, '972 landed at Dulles International Airport and taxied into the custody of the Smithsonian's National Air and Space Museum. At that time, Lt. Col. Vida had logged 1,392.7 hours of flight time in Blackbirds, more than that of any other crewman.
This particular SR-71 was also flown by Tom Alison, a former National Air and Space Museum's Chief of Collections Management. Flying with Detachment 1 at Kadena Air Force Base, Okinawa, Alison logged more than a dozen '972 operational sorties. The aircraft spent twenty-four years in active Air Force service and accrued a total of 2,801.1 hours of flight time.
Wingspan: 55'7"
Length: 107'5"
Height: 18'6"
Weight: 170,000 Lbs
Reference and Further Reading:
Crickmore, Paul F. Lockheed SR-71: The Secret Missions Exposed. Oxford: Osprey Publishing, 1996.
Francillon, Rene J. Lockheed Aircraft Since 1913. Annapolis, Md.: Naval Institute Press, 1987.
Johnson, Clarence L. Kelly: More Than My Share of It All. Washington D.C.: Smithsonian Institution Press, 1985.
Miller, Jay. Lockheed Martin's Skunk Works. Leicester, U.K.: Midland Counties Publishing Ltd., 1995.
Lockheed SR-71 Blackbird curatorial file, Aeronautics Division, National Air and Space Museum.
DAD, 11-11-01
Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.
Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.
Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.
HISTORY
The word incense comes from Latin incendere meaning "to burn".
Combustible bouquets were used by the ancient Egyptians, who employed incense in both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, giving evidence for the prominence of incense and related compounds in Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.
The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.
Incense burners have been found in the Indus Civilization (3300–1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the formulation to encompass aromatic roots and other indigenous flora. This was the first usage of subterranean plant parts in incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians.
At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented use of incense comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, and sandalwood) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song dynasty with numerous buildings erected specifically for incense ceremonies.
Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th-century Ashikaga shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whoever might take his head in battle). It wasn't until the Muromachi period during the 15th and 16th century that incense appreciation (kōdō) spread to the upper and middle classes of Japanese society.
COMPOSITION
A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.
Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, such as clergy and physicians.
COMBUSTIBLE BASE
The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:
Fuel and oxidizer mixtures: Charcoal or wood powder provides the fuel for combustion while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are added to the base prior to shaping, as in the case of powdered incense materials, or after, as in the case of essential oils. The formula for charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.
Natural plant-based binders: Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together. Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. These include:
Makko (incense powder) made from the bark of various trees in the genus Persea (such as Persea thunbergii)
Xiangnan pi (made from the bark of trees of genus Phoebe such as Phoebe nanmu or Persea zuihoensis.
Jigit: a resin based binder used in India
Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.
Typical compositions burn at a temperature between 220 °C and 260 °C.
TYPES
Incense is available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types. Preference for one form or another varies with culture, tradition, and personal taste. The two differ in their composition due to the former's requirement for even, stable, and sustained burning.
INDIRECT-BURNING
Indirect-burning incense, also called "non-combustible incense", is an aromatic material or combination of materials, such as resins, that does not contain combustible material and so requires a separate heat source. Finer forms tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually, having less surface area. Heat is traditionally provided by charcoal or glowing embers. In the West, the best known incense materials of this type are the resins frankincense and myrrh, likely due to their numerous mentions in the Bible. Frankincense means "pure incense", though in common usage refers specifically to the resin of the boswellia tree.
Whole: The incense material is burned directly in raw form on top of coal embers.
Powdered or granulated: Incense broken into smaller pieces burns quickly and provides brief but intense odor.
Paste: Powdered or granulated incense material is mixed with a sticky incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type, and Japan has a history of kneaded incense, called nerikō or awasekō, made using this method. Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.
DIRECT-BURNING
Direct-burning incense, also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn the rest of the incense without further application of external heat or flame. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types are commonly encountered, though direct-burning incense can take nearly any form, whether for expedience or whimsy.
Coil: Extruded and shaped into a coil without a core, coil incense can burn for an extended period, from hours to days, and is commonly produced and used in Chinese cultures.
Cone: Incense in this form burns relatively quickly. Incense cones were invented in Japan in the 1800s.
Cored stick: A supporting core of bamboo is coated with a thick layer of incense material that burns away with the core. Higher-quality variations have fragrant sandalwood cores. This type of incense is commonly produced in India and China. When used in Chinese folk religion, these are sometimes known as "joss sticks".
Dhoop or solid stick: With no bamboo core, dhoop incense is easily broken for portion control. This is the most commonly produced form of incense in Japan and Tibet.
Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. Powder incense is typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.
Paper: Paper infused with incense, folded accordion style, is lit and blown out. Examples include Carta d'Armenia and Papier d'Arménie.
Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is easily transported and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.
Moxa tablets, which are disks of powdered mugwort used in Traditional Chinese medicine for moxibustion, are not incenses; the treatment is by heat rather than fragrance.
Incense sticks may be termed joss sticks, especially in parts of East Asia, South Asia and Southeast Asia. Among ethnic Chinese and Chinese-influenced communities these are traditionally burned at temples, before the threshold of a home or business, before an image of a religious divinity or local spirit, or in shrines, large and small, found at the main entrance of every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door or open window as an offering to heaven, or the devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.
PRODUCTION
The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, is then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition is made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.
Certain proportions are necessary for direct-burning incense:
Oil content: an excess of oils may prevent incense from smoldering effectively. Resinous materials such as myrrh and frankincense are typically balanced with "dry" materials such as wood, bark and leaf powders.
Oxidizer quantity: Too little oxidizer in gum-bound incense may prevent the incense from igniting, while too much will cause the incense to burn too quickly, without producing fragrant smoke.
Binder: Water-soluble binders such as "makko" ensure that the incense mixture does not crumble when dry, dilute the mixture.
Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.
Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.
"Dipped" or "hand-dipped" direct-burning incense is created by dipping "incense blanks" made of unscented combustible dust into any suitable kind of essential or fragrance oil. These are often sold in the United States by flea-market and sidewalk vendors who have developed their own styles. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia.
Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.
Traditionally, the bamboo core of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. In a process known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and split in halves until the thin sticks of bamboo have square cross sections of less than 3mm. This process has been largely replaced by machines in modern incense production.
In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:
Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.
Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are evenly separated, then dipped into a tray of incense powder consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the sticks while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks produced in this fashion and burned in temples of Chinese folk religion can have a thickness between 2 and 4 millimeters.
Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more common due to the higher labor cost of producing powder-coated or paste-rolled sticks.
BURNING INCENSE
Indirect-burning incense burned directly on top of a heat source or on a hot metal plate in a censer or thurible.
In Japan a similar censer called a egōro (柄香炉) is used by several Buddhist sects. The egōro is usually made of brass, with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as sonae-kō (religious burning).
For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. The flame is then fanned or blown out, leaving the incense to smolder.
CULTURAL VARIATIONS
ARABIAN
In most Arab countries, incense is burned in the form of scented chips or blocks called bakhoor (Arabic: بخور [bɑˈxuːɾ, bʊ-]. Incense is used on special occasions like weddings or on Fridays or generally to perfume the house. The bakhoor is usually burned in a mabkhara, a traditional incense burner (censer) similar to the Somali Dabqaad. It is customary in many Arab countries to pass bakhoor among the guests in the majlis ('congregation'). This is done as a gesture of hospitality.
CHINESE
For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life. Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.
Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The first known record is by poet Yu Jianwu (487-551): "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.
Incense-stick burning is an everyday practice in traditional Chinese religion. There are many different types of stick used for different purposes or on different festive days. Many of them are long and thin. Sticks are mostly coloured yellow, red, or more rarely, black. Thick sticks are used for special ceremonies, such as funerals. Spiral incense, with exceedingly long burn times, is often hung from temple ceilings. In some states, such as Taiwan,
Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon incense sticks are sometimes used. These generate so much smoke and heat that they are only burned outside.
Chinese incense sticks for use in popular religion are generally odorless or only use the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum. Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Though they contain no sandalwood, they often include the Chinese character for sandalwood on the label, as a generic term for incense.
Highly scented Chinese incense sticks are used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, agarwood, or floral scents used. The sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, or City of Ten Thousand Buddhas do not use incense.
INDIAN
Incense sticks, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, are the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepali/Tibetan and Japanese methods of stick making without bamboo cores. Though the method is also used in the west, it is strongly associated with India.
The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder – an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India that take raw unperfumed sticks hand-rolled by approximately 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale. An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 large companies that together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Mysore.
JEWISH TEMPLE IN JERUSALEM
KETORET
Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus to be a mixture of stacte, onycha, galbanum and frankincense.
TIBETAN
Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, and sahi jeera.
Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.
JAPANESE
In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like calligraphy, ikebana, and scroll arrangement. The art of incense appreciation, or koh-do, is generally practiced as a separate art form from the tea ceremony, and usually within a tea room of traditional Zen design.
Agarwood (沈香 Jinkō) and sandalwood (白檀 byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation. It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.
Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.
Some terms used in Japanese incense culture include:
Incense arts: [香道, kodo]
Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.
Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning
Charcoal: [木炭] – only the odorless kind is used.
Incense woods: [ 香木 ] – a naturally fragrant resinous wood.
USAGE
PRACTICAL
Incense fragrances can be of such great strength that they obscure other less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. An example, as well as of religious use, is the giant Botafumeiro thurible that swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.
A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single long handle on one side. The perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.
The regular burning of direct-burning incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve multiple senses.
Incense made from materials such as citronella can repel mosquitoes and other irritating, distracting, or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.
Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.
Incense is also used often by people who smoke indoors and do not want the smell to linger.
AESTHETIC
Many people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the aroma. An example is the kōdō (香道), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.
RELIGIOUS
Religious use of incense is prevalent in many cultures and may have roots in the practical and aesthetic uses, considering that many of these religions have little else in common. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense), etc.
Aphrodisiac Incense has been used as an aphrodisiac in some cultures. Both ancient Greek and ancient Egyptian mythology suggest the usage of incense by goddesses and nymphs. Incense is thought to heighten sexual desires and sexual attraction.
Time-keeper Incense clocks are used to time social, medical and religious practices in parts of eastern Asia. They are primarily used in Buddhism as a timer of mediation and prayer. Different types of incense burn at different rates; therefore, different incense are used for different practices. The duration of burning ranges from minutes to months.
Healing stone cleanser Incense is claimed to cleanse and restore energy in healing stones. The technique used is called “smudging” and is done by holding a healing stone over the smoke of burning incense for 20 to 30 seconds. Some people believe that this process not only restores energy but eliminates negative energy.
HEALTH RISK FROM INCENSE SMOKE
Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and adsorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. In a comparison, Indian sandalwood was found to have the highest emission rate, followed by Japanese aloeswood, then Taiwanese aloeswood, while Chinese smokeless sandalwood had the least.
Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.
A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.
In contrast, epidemiologists at the Hong Kong Anti-Cancer Society, Aichi Cancer Center in Nagoya, and several other centers found: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified their findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."
Although several studies have not shown a link between incense and lung cancer, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also were 80% more likely to develop squamous-cell carcinomas. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."
In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters' ovarian cells to be even higher than cigarettes.
Incensole acetate, a component of Frankincense, has been shown to have anxiolytic-like and antidepressive-like effects in mice, mediated by activation of poorly-understood TRPV3 ion channels in the brain.
WIKIPEDIA
Incense is aromatic biotic material which releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for a variety of purposes, including the ceremonies of religion, to overcome bad smells, repel insects, spirituality, aromatherapy, meditation, and for simple pleasure.
Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing diversity in the reasons for burning it. Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.
HISTORY
The word incense comes from Latin for incendere meaning "to burn".
Combustible bouquets were used by the ancient Egyptians, who employed incense within both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, furnishing tangible archaeological substantiation to the prominence of incense and related compounds within Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.
The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.
Incense burners have been found in the Indus Civilization (3300 BCE- 1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the inherited formulation to encompass aromatic roots and other indigenous flora. This comprised the initial usage of subterranean plant parts within the fabrication of incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians for incense.
At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented instance of incense utilization comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, sandalwood, amongst others) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song Dynasty with numerous buildings erected specifically for incense ceremonies.
Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th century Shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whomever might take his head in battle). It wasn't until the Muromachi Era during the 15th and 16th century that incense appreciation (Kōdō) spread to the upper and middle classes of Japanese society.
COMPOSITION
A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.
The same could be said for the techniques used to make incense. Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, among them clergy and physicians who were both familiar with incense arts.
COMBUSTIBLE BASE
The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:
- Fuel and oxidizer mixtures: Charcoal or wood powder forms the fuel for the combustion. Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are combined into the base prior to formation as in the case of powdered incense materials or after formation as in the case of essential oils. The formula for the charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.
- Natural plant-based binders: Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. This includes:
- Makko (incense powder): made from the bark of various trees from the Persea such as Persea thunbergii)
- Xiangnan pi (made from the bark of Phoebe genus trees such as Phoebe nanmu, Persea zuihoensis.
- Jigit: a resin based binder used in India
- Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.
TYPES
Incense materials are available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types depending on use. Preference for one form or another varies with culture, tradition, and personal taste. Although the production of direct- and indirect-burning incense are both blended to produce a pleasant smell when burned, the two differ in their composition due to the former's requirement for even, stale, and sustained burning.
INDIRECT BURNING
Indirect-burning incense, also called "non-combustible incense", is a combination of aromatic ingredients that are not prepared in any particular way or encouraged into any particular form, leaving it mostly unsuitable for direct combustion. The use of this class of incense requires a separate heat source since it does not generally kindle a fire capable of burning itself and may not ignite at all under normal conditions. This incense can vary in the duration of its burning with the texture of the material. Finer ingredients tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually as they have less total surface area. The heat is traditionally provided by charcoal or glowing embers.
In the West, the best known incense materials of this type are frankincense and myrrh, likely due to their numerous mentions in the Christian Bible. In fact, the word for "frankincense" in many European languages also alludes to any form of incense.
- Whole: The incense material is burned directly in its raw unprocessed form on top of coal embers.
- Powdered or granulated: The incense material is broken down into finer bits. This incense burns quickly and provides a short period of intense smells.
- Paste: The powdered or granulated incense material is mixed with a sticky and incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type (Bakhoor actually refers to frankincense in Arabic) and Japan has a history of kneaded incense, called nerikō or awasekō, using this method.[17] Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.
DIRECT BURNING
Direct-burning incense also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn away the rest of the incense without continued application of heat or flame from an outside source. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types of direct-burning incense are commonly encountered, though the material itself can take virtually any form, according to expediency or whimsy:
- Coil: Extruded and shaped into a coil without a core. This type of incense is able to burn for an extended period, from hours to days, and is commonly produced and used by Chinese culture
- Cone: Incense in this form burns relatively fast. Incense cones were invented in Japan in the 1800s.
- Cored stick: This form of stick incense has a supporting core of bamboo. Higher quality varieties of this form have fragrant sandalwood cores. The core is coated by a thick layer of incense material that burns away with the core. This type of incense is commonly produced in India and China. When used for worship in Chinese folk religion, cored incensed sticks are sometimes known as "joss sticks".
- Solid stick: This stick incense has no supporting core and is completely made of incense material. Easily broken into pieces, it allows one to determine the specific amount of incense they wish to burn. This is the most commonly produced form of incense in Japan and Tibet.
- Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. They are typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.
- Paper: Paper infused with incense, folded accordion style, lit and blown out. Examples are Carta d'Armenia and Papier d'Arménie.
- Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is highly transportable and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.
The disks of powdered mugwort called 'moxa' sold in Chinese shops and herbalists are used in Traditional Chinese medicine for moxibustion treatment. Moxa tablets are not incenses; the treatment relies on heat rather than fragrance.
REED DIFFUSING
A reed diffuser is a form of incense that uses no heat. It comes in three parts: a bottle/container, scented essential incense oil, and bamboo reeds. The incense oil is placed into the container and bamboo reeds are then put into the same container. This is done to absorb some of the incense oil, as well as to help carry its scent and essence out of the container and into the surrounding air. Reeds typically have tiny tube openings that run the entire length of the stick. Oil is absorbed by the reed sticks and carried along the entire reed. These are do-it-yourself incense sticks that do not burn and look almost identical to typical incense sticks
PRODUCTION
INDIRECT BURNING
The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, are then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition are made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.
DIRECT BURNING
In order to obtain desired combustion qualities, attention has to be paid to certain proportions in direct burning incense mixtures:
- Oil content: Resinous materials such as myrrh and frankincense must not exceed the amount of dry materials in the mixture to such a degree that the incense will not smolder and burn.[citation needed] The higher the oil content relative to the dry mass, the less likely the mixture is to burn effectively.[citation needed] Typically the resinous or oily substances are balanced with "dry" materials such as wood, bark and leaf powders.
- Oxidizer quantity: The amount of chemical oxidizer in gum-bound incense must be carefully proportioned. If too little, the incense will not ignite, and if too much, the incense will burn too quickly and not produce fragrant smoke.
- Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.
- Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.
- Binder: Water-soluble binders such as "makko" have to be used in the right proportion to ensure that the incense mixture does not crumble when dry but also that the binder does not take up too much of the mixture.
Some kinds of direct-burning incense are created from "incense blanks" made of unscented combustible dust immersed into any suitable kind of essential or fragrance oil. These are often sold in America by flea-market and sidewalk vendors who have developed their own styles. Such items are often known as "dipped" or "hand-dipped" incense. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia, then simply scented with essential oils.
Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.
Traditionally, the bamboo cores of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. Through this process, known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and then continuously split in halves until thin sticks of bamboo with square cross sections of less than 3mm This process has been largely been replaced by machines in modern incense production.
In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:
- Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.
- Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are then evenly separated, then dipped into a tray of incense powder, consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the stick while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks that are burned in temples of Chinese folk religion produced in this fashion can have a thickness between 2 and 4 millimeters.
- Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more commonly found due to the higher labor cost of producing powder-coated or paste-rolled sticks.
JOSS STICKS
Joss sticks are the name given to incense sticks used for a variety of purposes associated with ritual and religious devotion in China and India. They are used in Chinese influenced East Asian and Southeast Asian countries, traditionally burned before the threshold of a home or business, before an image of a Chinese popular religion divinity or spirit of place, or in small and humble or large and elaborate shrine found at the main entrance to each and every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door, or open window as an offering to heaven, or devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.
Joss-stick burning is an everyday practice in traditional Chinese religion. There are many different types of joss sticks used for different purposes or on different festive days. Many of them are long and thin and are mostly colored yellow, red, and more rarely, black. Thick joss sticks are used for special ceremonies, such as funerals. Spiral joss sticks are also used on a regular basis, which are found hanging above temple ceilings, with burn times that are exceedingly long. In some states, such as Taiwan, Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon joss sticks are sometimes used. These generate such a massive amount of smoke and heat that they are only ever burned outside.
Chinese incense sticks for use in popular religion are generally without aroma or only the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum.[citation needed] Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Despite the fact that they contain no sandalwood at all, they often include the Chinese character for sandalwood on the label, as a generic term for incense.
Highly scented Chinese incense sticks are only used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, aloeswood, or floral scents used. The Sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, Buddhism in Sri Lanka, Buddhism in Burma and Korean Buddhism do not use incense.
BURNING INCENSE
For indirect-burning incense, pieces of the incense are burned by placing them directly on top of a heat source or on a hot metal plate in a censer or thurible.
In Japan a similar censer called a egōro (柄香炉?) is used by several Buddhist sects. The egōro is usually made of brass with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as Sonae-kō (Religious Burning).
For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. Flames on the incense are then fanned or blown out, with the incense continuing to burn without a flame on its own.
CULTURAL VARIATIONS
CHINESE INCENSE
For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life.
Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.
Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The poet Yu Jianwu (487-551) first recorded them: "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.
It is incorrect to assume that the Chinese only burn incense in the home before the family shrine. In Taoist traditions, incense is inextricably associated with the 'yin' energies of the dead, temples, shrines, and ghosts. Therefore, Taoist Chinese believe burning undedicated incense in the home attracts the dreaded hungry ghosts, who consume the smoke and ruin the fortunes of the family.
However, since Neolithic times, the Chinese have evolved using incense not only for religious ceremonies, but also for personal and environmental aromatherapy.
INDIAN INCENSE
Incense stick, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, is one of the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepal/Tibet and Japanese methods of stick making which don't use a bamboo core. Though the method is also used in the west, particularly in America, it is strongly associated with India.
The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder - an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India which take raw unperfumed sticks hand-rolled by approx 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale.[38] An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 main companies who together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Bangalore.
In the Middle East, incense burning has been along tradition. The word bukhur means incense in Arabic. The well known choice for incense is the famous agarwood which is very popular in Africa, the Gulf and amongst some south Asians, but there are many many more choices. Incense come in a variety of forms such as blocks, pieces, pellets, granules or powdered, which is placed in the oil burner called mabkharah for several minutes to heat either with coal in the traditional way or via power in the modern way, allowing it to release its rich smell. However this takes awhile and the quick alternative is to use incense sticks called Oud in Middle East and Africa, and agarbatti in south Asia - again referring to the agar wood + batti meaning some sort of agar-stick. Occasionally some get confused between bukhur and oud, bukhur is the insence ie agarwood, sandlewood etc and oud being the incense sticks (and not the otherway round sometimes wires get twisted)
JERUSALEM TEMPLE INCENSE
Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus as a mixture of stacte, onycha, galbanum and frankincense.
TIBETAN INCENSE
Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, or sahi jeera.
Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.
JAPANESE INCENSE
In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like Calligraphy, Ikebana, and Scroll Arrangement. However the art of incense appreciation or Koh-do, is generally practiced as a separate art form from the tea ceremony, however usually practiced within a tea room of traditional Zen design.
Agarwood (沈香 Jinkō) and sandalwood (白檀 Byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "Jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation.[citation needed] It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.
Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.
Some terms used in Japanese incense culture include:
- Incense Arts: [香道, Kodo]
- Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.
- Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning
- Charcoal: [木炭] – only the odorless kind is used.
- Incense woods: [ 香木 ] – a naturally fragrant resinous wood.
USAGE
Incense is used for a variety of purposes, including the ceremonies of all the main religions, to overcome bad smells, repel insects, purify or improve the atmosphere, aromatherapy, meditation, and for simple pleasure.
PRACTICAL
Incense fragrances can be of such great strength that they obscure other, less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. Another example of this use, as well as of religious use, is the giant Botafumeiro thurible which swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.
A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single, long handle on one side. It is important to note that the perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.
The regular burning of direct combustion incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve and captivate several of the senses.
Incense made from materials such as citronella can repel mosquitoes and other aggravating, distracting or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.
Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.
Incense is also used often by people who smoke indoors, and do not want the scent to linger.
AestheticMany people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the refined sensory experience. This use is perhaps best exemplified in the kōdō (香道?), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.ReligiousUse of incense in religion is prevalent in many cultures and may have their roots in the practical and aesthetic uses considering that many religions with not much else in common all use incense. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense [to ancestors/gods]), etc.
HEALTH
Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and absorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. The emission rate decreases in the row Indian sandalwood > Japanese aloeswood > Taiwanese aloeswood > smokeless sandalwood.
Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.
A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.
In contrast, a study by several Asian Cancer Research Centers showed: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified the findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."
Although several studies have not shown a link between incense and cancer of the lung, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also had higher rates of a type of cancer called squamous-cell carcinoma, which refers to tumors that arise in the cells lining the internal and external surfaces of the body. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."
In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters ovary cells to be even higher than cigarettes.
Frankincense has been shown to cause antidepressive behavior in mice. It activated the poorly understood ion channels in the brain to alleviate anxiety and depression.
WIKIPEDIA
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The Indian HAL HG-30 Bāja (‘Hawk’) had been designed and manufactured by Hindustan Aeronautics Ltd. in the early 60ies, when it became clear that the Indian Air Force was left without a capable and rather simple aircraft for these roles - the “jet age” had been in full development, but fast and large aircraft like the Su-7 or Hawker Hunter were just not suited for low-altitude missions against day and night visible ground targets in a broad area.
Indian military planners assumed that potential aggressor will first disable airfields, so the Bāja was designed to take-off from short unprepared runways, and it was readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions.
The resulting HG-30 Bāja was a light, single-engine, low-wing single-seat aircraft with a metal airframe, capable of performing close air support, counter insurgency (COIN), and reconnaissance missions. The type featured a license-built Rolls Royce Dart turboprop engine and a reinforced, retractable tricycle landing gear for operations on rugged terrain. The unpressurized cockpit was placed as far forward and high as possible, offering the pilot an excellent view. The ejection seat was armored and the cockpit lined with nylon flak curtains.
The first HG-30 prototype flew in February 1962, and a total of 89 examples of the Bāja were built between 1963 and 1965, including two pre-production aircraft. These introduced some improvements like fixed wingtip tanks, a bulged canopy which improved the rear view or self-sealing and foam-filled fuselage tanks.
Armament consisted of four fixed 20mm cannons in the wings, plus unguided missiles, unguided bombs or napalm tanks under the wings and the fuselage on a total of 11 hardpoints. The inner pair under the wings as well as the centerline pylon were able to carry 1.000 lbs each and were ‘wet’ for optional drop tanks. The next pair could carry 500 lbs each, and the outer six attachment points were reserved for missile rails or single bombs of up to 200 lbs caliber. A total external ordnance load of up to 4.500 lbs could be carried, even though this was rarely practiced since it severely hampered handling.
The Bāja was exclusively used by the Indian Air Force, serving with 3rd (‘Cobras’) and 5th (‘Tuskers’) Squadrons in the Eastern and Western regions, alongside Toofani and Ajeet fighter bombers. Even though there was some foreign interest (e .g. from Israel and Yugoslavia,) no export sales came to fruition.
A tandem-seated trainer version was envisaged, but never left the drawing board, since Hindustan had already developed the HJT-16 Kiran jet trainer for the IAF which was more suitable, esp. with its side-by-side cockpit. Even a maritime version with foldable outer wings, arresting hook and structural reinforcements was considered for the Indian Navy.
The HG-30 did not make it in time into service for the five-week Indo-Pakistani war of 1965, but later saw serious action in the course of the Bangladesh Liberation War and the ensuing next clash between India and Pakistan in December 1971, when all aircraft (originally delivered in a natural metal finish) quickly received improvised camouflage schemes.
The 1971 campaign settled down to series of daylight anti-airfield, anti-radar and close-support attacks by fighters, with night attacks against airfields and strategic targets, into which the HG-30s were heavily involved. Sporadic raids by the IAF continued against Pakistan's forward air bases in the West until the end of the war, and large scale interdiction and close-support operations were maintained.
The HG-30 excelled at close air support. Its straight wings allowed it to engage targets 150 MPH slower than swept-wing jet fighters. This slower speed improved shooting and bombing accuracy, enabling pilots to achieve an average accuracy of less than 40 feet, and the turboprop engine offered a much better fuel consumption than the jet engines of that era.
While it was not a fast aircraft and its pilots were a bit looked down upon by their jet pilot colleagues, the HG-30 was well liked by its crews because of its agility, stability at low speed, ease of service under field conditions and the crucial ability to absorb a lot of punishment with its rigid and simple structure.
After the 1971 conflict the Bāja served with the IAF without any further warfare duty until 1993, when, after the loss of about two dozen aircraft due to enemy fire and (only three) accidents, the type was completely retired and its COIN duties taken over by Mi-25 and Mi-35 helicopters, which had been gradually introduced into IAF service since 1984.
General characteristics
Crew: 1
Length: 10.23 m (33 ft 6¼ in)
Wingspan: 12.38 m (40 ft 7¼ in) incl. wing tip tanks
Height: 3.95 m (12 ft 11¼ in)
Empty weight: 7,689 lb (3,488 kg)
Max. take-off weight: Loaded weight: 11,652 lb (5,285 kg)
Powerplant:
1× Rolls Royce Dart RDa.7 turboprop engine, with 1.815 ehp (1.354 kW)/1.630 shp (1.220 kW) at 15,000 rpm
Performance
Maximum speed: 469 mph (755 km/h) at sea level and in clean configuration
Stall speed: 88 km/h (48 knots 55 mph)
Service ceiling: 34,000 ft (10,363 m)
Rate of climb: 5,020 ft/min (25.5 m/s)
Range: 1,385 miles (2,228 km) at max. take-off weight
Armament:
4× 20mm cannons (2 per wing) with 250 RPG
A total of 11 underwing and fuselage hardpoints with a capacity of 4.500 lbs (2.034 kg); provisions to carry combinations of general purpose or cluster bombs, machine gun pods, unguided missiles, air-to-ground rocket pods, fuel drop tanks, and napalm tanks.
The kit and its assembly
This fictional COIN aircraft came to be when I stumbled across the vintage Heller Breguet Alizé kit in 1:100 scale. I did some math and came to the conclusion that the kit would make a pretty plausible single-seat propeller aircraft in 1:72...
Finding a story and a potential user was more of a challenge. I finally settled on India – not only because the country had and has a potent aircraft industry, a COIN aircraft (apart from obsolete WWII types) would have matched well into the IAF in the early 70ies. Brazil was another manufacturer candidate – but then I had the vision of Indian Su-7 and their unique camouflage scheme, and this was what the kit was to evolve to! Muahahah!
What started as a simple adaptation idea turned into a true Frankenstein job, because only little was left from the Heller Alizé – the kit is SO crappy…
What was thrown into the mix:
• Fuselage, rudder and front wheel doors from the Heller Alizé
• Horizontal stabilizers from an Airfix P-51 Mustang
• Wings are the outer parts from an Airfix Fw 189, clipped and with new landing gear wells
• Landing gear comes from a Hobby Boss F-86, the main wheels from the scrap box
• Cockpit tub comes from a Heller Alpha Jet, seat and pilot from the scrap box
• The canopy comes from a Hobby Boss F4U Corsair
• Ordnance hardpoints were cut from styrene strips
• Propeller consists of a spinner from a Matchbox Mitsubishi Zero and blades from two AH-1 tail rotors
• Ordnance was puzzled together from the scrap box; the six retarder bombs appeared appropriate, the four missile pods were built from Matchbox parts. The wingtip tanks are streamlines 1.000 lbs bombs.
The only major sculpting work was done around the nose, in order to make the bigger propeller fiat and to simulate an appropriate air intake for the engine. Overall this thing looks pretty goofy, rather jet-like, with the slightly swept wings. On the other side, the Bāja does not look bad at all, and it has that “Small man’s A-10” aura to it.
Putting the parts together only posed two trouble zones: the canopy and the wings. The Corsair canopy would more or less fit, getting it in place and shaping the spine intersection was more demanding than expected. Still not perfect, but this was a “quick and dirty” project with a poor basis, anyway, so I don’t bother much.
Another tricky thing were the wings and getting them on the fuselage. That the Fw 189 wings ended up here has a reason: the original kit provided two pairs of upper wing halves, the lower halves were lacking! Here these obsolete parts finally found a good use, even though the resulting wing is pretty thick and called for some serious putty work on the belly side… Anyway, this was still easier than trying to modify the Alizé wings into something useful, and a thick wing ain’t bad for low altitude and bigger external loads.
Painting and markings
As mentioned before, the garish paint scheme is inspired by IAF Su-7 fighter bombers during/after the India-Pakistani confrontation of 1971. It’s almost surreal, reason enough to use it. Since a 1:72 Su-7 takes up so much shelf space I was happy to find this smaller aircraft as a suitable placebo.
I used Su-7 pictures as benchmarks, and settled for the following enamels as basic tones for the upper grey, brown and green:
• Humbrol 176 (Neutral Grey, out of production), for a dull and bluish medium grey
• Testors 1583 (Rubber), a very dark, reddish brown
• Humbrol 114 (Russian Green, out of production)
For the lower sides I used Testors 2123 (Russian Underside Blue). The kit received a black ink wash and some dry painting for weathering/more depth. Judging real life aircraft pics of IAF Su-7 and MiG-21, the original underside tone is hardly different from the upper blue grey and it seems on some aircraft as if the upper tone had been wrapped around. The aircraft do not appear very uniform at all, anyway.
Together with the bright IAF roundels the result looks a bit as if that thing had been designed by 6 year old, but the livery has its charm - the thing looks VERY unique! The roundels come from a generic TL Modellbau aftermarket sheet, the tactical codes are single white letters from the same manufacturer. Other stencils, warning signs and the squadron emblem come from the scrap box – Indian aircraft tend to look rather bleak and purposeful, except when wearing war game markings...
In the end, a small and quick project. The model was assembled in just two days, basic painting done on the third day and decals plus some weathering and detail work on the forth – including pics. A new record, even though this one was not built for perfectionism, rather as a recycling kit with lots of stock material at hand. But overall the Bāja looks exotic and somehow quite convincing?
Bremen, Bötchergasse
see my BREMEN-set at:
www.flickr.com/photos/8531344@N06/sets/72157605634886776/
The Bremen town musicians
There was once an ass whose master had made him carry sacks to the mill for many a long year, but whose strength began at last to fail, so that each day as it came found him less capable of work. Then his master began to think of turning him out, but the ass, guessing that something was in the wind that boded him no good, ran away, taking the road to Bremen; for there he thought he might get an engagement as town musician. When he had gone a little way he found a hound lying by the side of the road panting, as if he had run a long way. “Now, Holdfast, what are you so out of breath about?” said the ass. “Oh dear!” said the dog, “now I am old, I get weaker every day, and can do no good in the hunt, so, as my master was going to have me killed, I have made my escape; but now, how am I to gain a living?” - “I will tell you what,” said the ass, “I am going to Bremen to become town musician. You may as well go with me, and take up music too. I can play the lute, and you can beat the drum.” And the dog consented, and they walked on together. It was not long before they came to a cat sitting in the road, looking as dismal as three wet days. “Now then, what is the matter with you, old shaver?” said the ass. “I should like to know who would be cheerful when his neck is in danger,” answered the cat. “Now that I am old my teeth are getting blunt, and I would rather sit by the oven and purr than run about after mice, and my mistress wanted to drown me; so I took myself off; but good advice is scarce, and I do not know what is to become of me.” - “Go with us to Bremen,” said the ass, “and become town musician. You understand serenading.” The cat thought well of the idea, and went with them accordingly. After that the three travellers passed by a yard, and a cock was perched on the gate crowing with all his might. “Your cries are enough to pierce bone and marrow,” said the ass; “what is the matter?” - “I have foretold good weather for Lady-day, so that all the shirts may be washed and dried; and now on Sunday morning company is coming, and the mistress has told the cook that I must be made into soup, and this evening my neck is to be wrung, so that I am crowing with all my might while I can.” - “You had much better go with us, Chanticleer,” said the ass. “We are going to Bremen. At any rate that will be better than dying. You have a powerful voice, and when we are all performing together it will have a very good effect.” So the cock consented, and they went on all four together.
Es hatte ein Mann einen Esel, der schon lange Jahre die Säcke unverdrossen zur Mühle getragen hatte, dessen Kräfte aber nun zu Ende gingen, so daß er zur Arbeit immer untauglicher ward. Da dachte der Herr daran, ihn aus dem Futter zu schaffen, aber der Esel merkte, daß kein guter Wind wehte, lief fort und machte sich auf den Weg nach Bremen; dort, meinte er, könnte er ja Stadtmusikant werden. Als er ein Weilchen fortgegangen war, fand er einen Jagdhund auf dem Wege liegen, der jappte wie einer, der sich müde gelaufen hat. “Nun, was jappst du so, Packan?” fragte der Esel. “Ach,” sagte der Hund, “weil ich alt bin und jeden Tag schwächer werde, auch auf der Jagd nicht mehr fort kann, hat mich mein Herr wollen totschlagen, da hab ich Reißaus genommen; aber womit soll ich nun mein Brot verdienen?” - “Weißt du was?” sprach der Esel, “ich gehe nach Bremen und werde dort Stadtmusikant, geh mit und laß dich auch bei der Musik annehmen. Ich spiele die Laute und du schlägst die Pauken.” Der Hund war’s zufrieden, und sie gingen weiter. Es dauerte nicht lange, so saß da eine Katze an dem Weg und macht ein Gesicht wie drei Tage Regenwetter. “Nun, was ist dir in die Quere gekommen, alter Bartputzer?” sprach der Esel. “Wer kann da lustig sein, wenn’s einem an den Kragen geht,” antwortete die Katze, “weil ich nun zu Jahren komme, meine Zähne stumpf werden, und ich lieber hinter dem Ofen sitze und spinne, als nach Mäusen herumjagen, hat mich meine Frau ersäufen wollen; ich habe mich zwar noch fortgemacht, aber nun ist guter Rat teuer: wo soll ich hin?” - “Geh mit uns nach Bremen, du verstehst dich doch auf die Nachtmusik, da kannst du ein Stadtmusikant werden.” Die Katze hielt das für gut und ging mit. Darauf kamen die drei Landesflüchtigen an einem Hof vorbei, da saß auf dem Tor der Haushahn und schrie aus Leibeskräften. “Du schreist einem durch Mark und Bein,” sprach der Esel, “was hast du vor?” - “Da hab’ ich gut Wetter prophezeit,” sprach der Hahn, “weil unserer lieben Frauen Tag ist, wo sie dem Christkindlein die Hemdchen gewaschen hat und sie trocknen will; aber weil morgen zum Sonntag Gäste kommen, so hat die Hausfrau doch kein Erbarmen und hat der Köchin gesagt, sie wollte mich morgen in der Suppe essen, und da soll ich mir heut abend den Kopf abschneiden lassen. Nun schrei ich aus vollem Hals, solang ich kann.” - “Ei was, du Rotkopf,” sagte der Esel, “zieh lieber mit uns fort, wir gehen nach Bremen, etwas Besseres als den Tod findest du überall; du hast eine gute Stimme, und wenn wir zusammen musizieren, so muß es eine Art haben.” Der Hahn ließ sich den Vorschlag gefallen, und sie gingen alle vier zusammen fort.
But Bremen was too far off to be reached in one day, and towards evening they came to a wood, where they determined to pass the night. The ass and the dog lay down under a large tree; the cat got up among the branches, and the cock flew up to the top, as that was the safest place for him. Before he went to sleep he looked all round him to the four points of the compass, and perceived in the distance a little light shining, and he called out to his companions that there must be a house not far off, as he could see a light, so the ass said, “We had better get up and go there, for these are uncomfortable quarters.” The dog began to fancy a few bones, not quite bare, would do him good. And they all set off in the direction of the light, and it grew larger and brighter, until at last it led them to a robber’s house, all lighted up. The ass. being the biggest, went up to the window, and looked in. “Well, what do you see?” asked the dog. “What do I see?” answered the ass; “here is a table set out with splendid eatables and drinkables, and robbers sitting at it and making themselves very comfortable.” - “That would just suit us,” said the cock. “Yes, indeed, I wish we were there,” said the ass. Then they consulted together how it should be managed so as to get the robbers out of the house, and at last they hit on a plan. The ass was to place his forefeet on the window-sill, the dog was to get on the ass’s back, the cat on the top of the dog, and lastly the cock was to fly up and perch on the cat’s head. When that was done, at a given signal they all began to perform their music. The ass brayed, the dog barked, the cat mewed, and the cock crowed; then they burst through into the room, breaking all the panes of glass. The robbers fled at the dreadful sound; they thought it was some goblin, and fled to the wood in the utmost terror. Then the four companions sat down to table, made free with the remains of the meal, and feasted as if they had been hungry for a month.
Sie konnten aber die Stadt Bremen in einem Tag nicht erreichen und kamen abends in einen Wald, wo sie übernachten wollten. Der Esel und der Hund legten sich unter einen großen Baum, die Katze und der Hahn machten sich in die Äste, der Hahn aber flog bis an die Spitze, wo es am sichersten für ihn war. Ehe er einschlief, sah er sich noch einmal nach allen vier Winden um, da deuchte ihn, er sähe in der Ferne ein Fünkchen brennen, und rief seinen Gesellen zu, es müßte nicht gar weit ein Haus sein, denn es scheine ein Licht. Sprach der Esel: “So müssen wir uns aufmachen und noch hingehen, denn hier ist die Herberge schlecht.” Der Hund meinte: “Ein paar Knochen und etwas Fleisch dran täten ihm auch gut.” Also machten sie sich auf den Weg nach der Gegend, wo das Licht war, und sahen es bald heller schimmern, und es ward immer größer, bis sie vor ein helles, erleuchtetes Räuberhaus kamen. Der Esel, als der größte, näherte sich dem Fenster und schaute hinein. “Was siehst du, Grauschimmel?” fragte der Hahn. “Was ich sehe?” antwortete der Esel, “einen gedeckten Tisch mit schönem Essen und Trinken, und Räuber sitzen daran und lassen’s sich wohl sein.” - “Das wäre was für uns,” sprach der Hahn. “Ja, ja, ach, wären wir da!” sagte der Esel. Da ratschlagten die Tiere, wie sie es anfangen müßten, um die Räuber hinauszujagen und fanden endlich ein Mittel. Der Esel mußte sich mit den Vorderfüßen auf das Fenster stellen, der Hund auf des Esels Rücken springen, die Katze auf den Hund klettern, und endlich flog der Hahn hinauf, und setzte sich der Katze auf den Kopf. Wie das geschehen war, fingen sie auf ein Zeichen insgesamt an, ihre Musik zu machen: der Esel schrie, der Hund bellte, die Katze miaute und der Hahn krähte. Dann stürzten sie durch das Fenster in die Stube hinein, daß die Scheiben klirrten. Die Räuber fuhren bei dem entsetzlichen Geschrei in die Höhe, meinten nicht anders, als ein Gespenst käme herein, und flohen in größter Furcht in den Wald hinaus. Nun setzten sich die vier Gesellen an den Tisch, nahmen mit dem vorlieb, was übriggeblieben war, und aßen nach Herzenslust.
And when they had finished they put out the lights, and each sought out a sleeping-place to suit his nature and habits. The ass laid himself down outside on the dunghill, the dog behind the door, the cat on the hearth by the warm ashes, and the cock settled himself in the cockloft, and as they were all tired with their long journey they soon fell fast asleep. When midnight drew near, and the robbers from afar saw that no light was burning, and that everything appeared quiet, their captain said to them that he thought that they had run away without reason, telling one of them to go and reconnoitre. So one of them went, and found everything quite quiet; he went into the kitchen to strike a light, and taking the glowing fiery eyes of the cat for burning coals, he held a match to them in order to kindle it. But the cat, not seeing the joke, flew into his face, spitting and scratching. Then he cried out in terror, and ran to get out at the back door, but the dog, who was lying there, ran at him and bit his leg; and as he was rushing through the yard by the dunghill the ass struck out and gave him a great kick with his hind foot; and the cock, who had been wakened with the noise, and felt quite brisk, cried out, “Cock-a-doodle-doo!” Then the robber got back as well as he could to his captain, and said, “Oh dear! in that house there is a gruesome witch, and I felt her breath and her long nails in my face; and by the door there stands a man who stabbed me in the leg with a knife ; and in the yard there lies a black spectre, who beat me with his wooden club; and above, upon the roof, there sits the justice, who cried, ‘Bring that rogue here!’ And so I ran away from the place as fast as I could.” From that time forward the robbers never ventured to that house, and the four Bremen town musicians found themselves so well off where they were, that there they stayed. And the person who last related this tale is still living, as you see.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.
The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.
The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.
There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.
Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.
Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.
The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.
Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.
As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.
Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.
The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.
In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.
The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.
BAE Lightning F.6S general characteristics
Crew: 1
Length: 55 ft 3 in (16.8 m)
Wingspan: 34 ft 10 in (10.6 m)
Height: 19 ft 7 in (5.97 m)
Wing area: 474.5 ft² (44.08 m²)
Empty weight: 31,068 lb (14.092 kg)
Max. take-off weight: 45,750 lb (20.752 kg)
Powerplant:
2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner
Performance:
Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.
Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)
Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks
Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft
Rate of climb: 20.000 ft/min (100 m/s)
Wing loading: 76 lb/ft² (370 kg/m²)
Thrust/weight: 0.78
Armament:
2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)
Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)
2× overwing pylon stations for 260 gal ferry tanks
The kit and its assembly
The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.
The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).
Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!
Externally…
· the flaps were lowered
· some antennae and a finer pitot added
· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open
· the IRST sensor fairing added, sculpted from a simple piece of sprue
· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)
· the scratch-built quadruple Sidewinder rails are worth mentioning
The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.
Painting and markings
More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.
A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.
Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.
The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.
The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.
As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.
The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.
After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !
As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)
The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.
Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.
Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.
After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!
Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.
A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?
As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.
Incense is aromatic biotic material which releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for a variety of purposes, including the ceremonies of religion, to overcome bad smells, repel insects, spirituality, aromatherapy, meditation, and for simple pleasure.
Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing diversity in the reasons for burning it. Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.
HISTORY
The word incense comes from Latin for incendere meaning "to burn".
Combustible bouquets were used by the ancient Egyptians, who employed incense within both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, furnishing tangible archaeological substantiation to the prominence of incense and related compounds within Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.
The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.
Incense burners have been found in the Indus Civilization (3300 BCE- 1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the inherited formulation to encompass aromatic roots and other indigenous flora. This comprised the initial usage of subterranean plant parts within the fabrication of incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians for incense.
At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented instance of incense utilization comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, sandalwood, amongst others) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song Dynasty with numerous buildings erected specifically for incense ceremonies.
Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th century Shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whomever might take his head in battle). It wasn't until the Muromachi Era during the 15th and 16th century that incense appreciation (Kōdō) spread to the upper and middle classes of Japanese society.
COMPOSITION
A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.
The same could be said for the techniques used to make incense. Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, among them clergy and physicians who were both familiar with incense arts.
COMBUSTIBLE BASE
The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:
- Fuel and oxidizer mixtures: Charcoal or wood powder forms the fuel for the combustion. Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are combined into the base prior to formation as in the case of powdered incense materials or after formation as in the case of essential oils. The formula for the charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.
- Natural plant-based binders: Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. This includes:
- Makko (incense powder): made from the bark of various trees from the Persea such as Persea thunbergii)
- Xiangnan pi (made from the bark of Phoebe genus trees such as Phoebe nanmu, Persea zuihoensis.
- Jigit: a resin based binder used in India
- Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.
TYPES
Incense materials are available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types depending on use. Preference for one form or another varies with culture, tradition, and personal taste. Although the production of direct- and indirect-burning incense are both blended to produce a pleasant smell when burned, the two differ in their composition due to the former's requirement for even, stale, and sustained burning.
INDIRECT BURNING
Indirect-burning incense, also called "non-combustible incense", is a combination of aromatic ingredients that are not prepared in any particular way or encouraged into any particular form, leaving it mostly unsuitable for direct combustion. The use of this class of incense requires a separate heat source since it does not generally kindle a fire capable of burning itself and may not ignite at all under normal conditions. This incense can vary in the duration of its burning with the texture of the material. Finer ingredients tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually as they have less total surface area. The heat is traditionally provided by charcoal or glowing embers.
In the West, the best known incense materials of this type are frankincense and myrrh, likely due to their numerous mentions in the Christian Bible. In fact, the word for "frankincense" in many European languages also alludes to any form of incense.
- Whole: The incense material is burned directly in its raw unprocessed form on top of coal embers.
- Powdered or granulated: The incense material is broken down into finer bits. This incense burns quickly and provides a short period of intense smells.
- Paste: The powdered or granulated incense material is mixed with a sticky and incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type (Bakhoor actually refers to frankincense in Arabic) and Japan has a history of kneaded incense, called nerikō or awasekō, using this method.[17] Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.
DIRECT BURNING
Direct-burning incense also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn away the rest of the incense without continued application of heat or flame from an outside source. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types of direct-burning incense are commonly encountered, though the material itself can take virtually any form, according to expediency or whimsy:
- Coil: Extruded and shaped into a coil without a core. This type of incense is able to burn for an extended period, from hours to days, and is commonly produced and used by Chinese culture
- Cone: Incense in this form burns relatively fast. Incense cones were invented in Japan in the 1800s.
- Cored stick: This form of stick incense has a supporting core of bamboo. Higher quality varieties of this form have fragrant sandalwood cores. The core is coated by a thick layer of incense material that burns away with the core. This type of incense is commonly produced in India and China. When used for worship in Chinese folk religion, cored incensed sticks are sometimes known as "joss sticks".
- Solid stick: This stick incense has no supporting core and is completely made of incense material. Easily broken into pieces, it allows one to determine the specific amount of incense they wish to burn. This is the most commonly produced form of incense in Japan and Tibet.
- Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. They are typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.
- Paper: Paper infused with incense, folded accordion style, lit and blown out. Examples are Carta d'Armenia and Papier d'Arménie.
- Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is highly transportable and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.
The disks of powdered mugwort called 'moxa' sold in Chinese shops and herbalists are used in Traditional Chinese medicine for moxibustion treatment. Moxa tablets are not incenses; the treatment relies on heat rather than fragrance.
REED DIFFUSING
A reed diffuser is a form of incense that uses no heat. It comes in three parts: a bottle/container, scented essential incense oil, and bamboo reeds. The incense oil is placed into the container and bamboo reeds are then put into the same container. This is done to absorb some of the incense oil, as well as to help carry its scent and essence out of the container and into the surrounding air. Reeds typically have tiny tube openings that run the entire length of the stick. Oil is absorbed by the reed sticks and carried along the entire reed. These are do-it-yourself incense sticks that do not burn and look almost identical to typical incense sticks
PRODUCTION
INDIRECT BURNING
The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, are then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition are made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.
DIRECT BURNING
In order to obtain desired combustion qualities, attention has to be paid to certain proportions in direct burning incense mixtures:
- Oil content: Resinous materials such as myrrh and frankincense must not exceed the amount of dry materials in the mixture to such a degree that the incense will not smolder and burn.[citation needed] The higher the oil content relative to the dry mass, the less likely the mixture is to burn effectively.[citation needed] Typically the resinous or oily substances are balanced with "dry" materials such as wood, bark and leaf powders.
- Oxidizer quantity: The amount of chemical oxidizer in gum-bound incense must be carefully proportioned. If too little, the incense will not ignite, and if too much, the incense will burn too quickly and not produce fragrant smoke.
- Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.
- Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.
- Binder: Water-soluble binders such as "makko" have to be used in the right proportion to ensure that the incense mixture does not crumble when dry but also that the binder does not take up too much of the mixture.
Some kinds of direct-burning incense are created from "incense blanks" made of unscented combustible dust immersed into any suitable kind of essential or fragrance oil. These are often sold in America by flea-market and sidewalk vendors who have developed their own styles. Such items are often known as "dipped" or "hand-dipped" incense. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia, then simply scented with essential oils.
Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.
Traditionally, the bamboo cores of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. Through this process, known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and then continuously split in halves until thin sticks of bamboo with square cross sections of less than 3mm This process has been largely been replaced by machines in modern incense production.
In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:
- Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.
- Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are then evenly separated, then dipped into a tray of incense powder, consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the stick while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks that are burned in temples of Chinese folk religion produced in this fashion can have a thickness between 2 and 4 millimeters.
- Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more commonly found due to the higher labor cost of producing powder-coated or paste-rolled sticks.
JOSS STICKS
Joss sticks are the name given to incense sticks used for a variety of purposes associated with ritual and religious devotion in China and India. They are used in Chinese influenced East Asian and Southeast Asian countries, traditionally burned before the threshold of a home or business, before an image of a Chinese popular religion divinity or spirit of place, or in small and humble or large and elaborate shrine found at the main entrance to each and every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door, or open window as an offering to heaven, or devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.
Joss-stick burning is an everyday practice in traditional Chinese religion. There are many different types of joss sticks used for different purposes or on different festive days. Many of them are long and thin and are mostly colored yellow, red, and more rarely, black. Thick joss sticks are used for special ceremonies, such as funerals. Spiral joss sticks are also used on a regular basis, which are found hanging above temple ceilings, with burn times that are exceedingly long. In some states, such as Taiwan, Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon joss sticks are sometimes used. These generate such a massive amount of smoke and heat that they are only ever burned outside.
Chinese incense sticks for use in popular religion are generally without aroma or only the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum.[citation needed] Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Despite the fact that they contain no sandalwood at all, they often include the Chinese character for sandalwood on the label, as a generic term for incense.
Highly scented Chinese incense sticks are only used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, aloeswood, or floral scents used. The Sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, Buddhism in Sri Lanka, Buddhism in Burma and Korean Buddhism do not use incense.
BURNING INCENSE
For indirect-burning incense, pieces of the incense are burned by placing them directly on top of a heat source or on a hot metal plate in a censer or thurible.
In Japan a similar censer called a egōro (柄香炉?) is used by several Buddhist sects. The egōro is usually made of brass with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as Sonae-kō (Religious Burning).
For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. Flames on the incense are then fanned or blown out, with the incense continuing to burn without a flame on its own.
CULTURAL VARIATIONS
CHINESE INCENSE
For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life.
Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.
Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The poet Yu Jianwu (487-551) first recorded them: "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.
It is incorrect to assume that the Chinese only burn incense in the home before the family shrine. In Taoist traditions, incense is inextricably associated with the 'yin' energies of the dead, temples, shrines, and ghosts. Therefore, Taoist Chinese believe burning undedicated incense in the home attracts the dreaded hungry ghosts, who consume the smoke and ruin the fortunes of the family.
However, since Neolithic times, the Chinese have evolved using incense not only for religious ceremonies, but also for personal and environmental aromatherapy.
INDIAN INCENSE
Incense stick, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, is one of the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepal/Tibet and Japanese methods of stick making which don't use a bamboo core. Though the method is also used in the west, particularly in America, it is strongly associated with India.
The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder - an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India which take raw unperfumed sticks hand-rolled by approx 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale.[38] An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 main companies who together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Bangalore.
In the Middle East, incense burning has been along tradition. The word bukhur means incense in Arabic. The well known choice for incense is the famous agarwood which is very popular in Africa, the Gulf and amongst some south Asians, but there are many many more choices. Incense come in a variety of forms such as blocks, pieces, pellets, granules or powdered, which is placed in the oil burner called mabkharah for several minutes to heat either with coal in the traditional way or via power in the modern way, allowing it to release its rich smell. However this takes awhile and the quick alternative is to use incense sticks called Oud in Middle East and Africa, and agarbatti in south Asia - again referring to the agar wood + batti meaning some sort of agar-stick. Occasionally some get confused between bukhur and oud, bukhur is the insence ie agarwood, sandlewood etc and oud being the incense sticks (and not the otherway round sometimes wires get twisted)
JERUSALEM TEMPLE INCENSE
Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus as a mixture of stacte, onycha, galbanum and frankincense.
TIBETAN INCENSE
Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, or sahi jeera.
Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.
JAPANESE INCENSE
In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like Calligraphy, Ikebana, and Scroll Arrangement. However the art of incense appreciation or Koh-do, is generally practiced as a separate art form from the tea ceremony, however usually practiced within a tea room of traditional Zen design.
Agarwood (沈香 Jinkō) and sandalwood (白檀 Byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "Jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation.[citation needed] It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.
Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.
Some terms used in Japanese incense culture include:
- Incense Arts: [香道, Kodo]
- Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.
- Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning
- Charcoal: [木炭] – only the odorless kind is used.
- Incense woods: [ 香木 ] – a naturally fragrant resinous wood.
USAGE
Incense is used for a variety of purposes, including the ceremonies of all the main religions, to overcome bad smells, repel insects, purify or improve the atmosphere, aromatherapy, meditation, and for simple pleasure.
PRACTICAL
Incense fragrances can be of such great strength that they obscure other, less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. Another example of this use, as well as of religious use, is the giant Botafumeiro thurible which swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.
A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single, long handle on one side. It is important to note that the perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.
The regular burning of direct combustion incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve and captivate several of the senses.
Incense made from materials such as citronella can repel mosquitoes and other aggravating, distracting or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.
Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.
Incense is also used often by people who smoke indoors, and do not want the scent to linger.
AestheticMany people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the refined sensory experience. This use is perhaps best exemplified in the kōdō (香道?), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.ReligiousUse of incense in religion is prevalent in many cultures and may have their roots in the practical and aesthetic uses considering that many religions with not much else in common all use incense. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense [to ancestors/gods]), etc.
HEALTH
Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and absorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. The emission rate decreases in the row Indian sandalwood > Japanese aloeswood > Taiwanese aloeswood > smokeless sandalwood.
Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.
A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.
In contrast, a study by several Asian Cancer Research Centers showed: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified the findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."
Although several studies have not shown a link between incense and cancer of the lung, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also had higher rates of a type of cancer called squamous-cell carcinoma, which refers to tumors that arise in the cells lining the internal and external surfaces of the body. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."
In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters ovary cells to be even higher than cigarettes.
Frankincense has been shown to cause antidepressive behavior in mice. It activated the poorly understood ion channels in the brain to alleviate anxiety and depression.
WIKIPEDIA
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
The F-105 Thunderchief, which would become a legend in the history of the Vietnam War, started out very modestly as a proposal for a large, supersonic replacement for the RF-84F Thunderflash tactical reconnaissance fighter in 1951. Later this was expanded by Republic’s famous chief designer, Alexander Kartveli, to a nuclear-capable, high-speed, low-altitude penetration tactical fighter-bomber which could also replace the F-84 Thunderstreak.
The USAF liked the idea, as the F-84 had shown itself to be at a disadvantage against Chinese and Soviet-flown MiG-15s over Korea, and ordered 200 of the new design before it was even finalized. This order was reduced to only 37 aircraft with the end of the Korean War, but nonetheless the first YF-105A Thunderchief flew in October 1955. Although it was equipped with an interim J57 engine and had drag problems, it still achieved supersonic speed. When the design was further refined as the YF-105B, with the J75 engine and area ruling, it went over Mach 2. This was in spite of the fact that the design had mushroomed in size from Kartveli’s initial idea to one of the largest and heaviest fighter ever to serve with the USAF: fully loaded, the F-105 was heavier than a B-17 bomber. The USAF ordered 1800 F-105s, though this would be reduced to 830 examples.
Almost immediately, the F-105 began to be plagued with problems. Some of the trouble could be traced to the normal teething problems of any new aircraft, but for awhile it seemed the Thunderchief was too hot to handle, with a catastrophically high accident rate. This led to the aircraft getting the nickname of “Thud,” supposedly for the sound it made when hitting the ground, along with other not-so-affectionate monikers such as “Ultra Hog” and “Squat Bomber.” Despite its immense size and bad reputation, however, the F-105 was superb at high speeds, especially at low level, was difficult to stall, and its cockpit was commended for its ergonomic layout. Earlier “narrow-nose” F-105Bs were replaced by wider-nosed, radar-equipped F-105Ds, the mainline version of the Thunderchief, while two-seat F-105Fs were built as conversion trainers.
Had it not been for the Vietnam War, however, the F-105 might have gone down in history as simply another mildly successful 1950s era design. Deployed to Vietnam at the beginning of the American involvement there in 1964, the Thunderchief was soon heading to North Vietnam to attack targets there in the opening rounds of Operation Rolling Thunder; this was in spite of the fact that the F-105 was designed primarily as a low-level (and, as its pilots insisted, one-way) tactical nuclear bomber. Instead, F-105s were heading north festooned with conventional bombs.
As Rolling Thunder gradually expanded to all of North Vietnam, now-camouflaged Thuds “going Downtown” became iconic, fighting their way through the densest concentration of antiaircraft fire in history, along with SAMs and MiG fighters. The F-105 now gained a reputation for something else: toughness, a Republic hallmark. Nor were they defenseless: unlike the USAF’s primary fighter, the F-4 Phantom II, the F-105 retained an internal 20mm gatling cannon, and MiG-17s which engaged F-105s was far from a foregone conclusion, as 27 MiGs were shot down by F-105s for the loss of about 20. If nothing else, Thud pilots no longer burdened with bombs could simply elect to head home at Mach 2 and two thousand feet, outdistancing any MiG defenders.
If the Thud had any weakness, it was its hydraulic system, which was found to be extremely vulnerable to damage. However, it was likely more due to poor tactics and the restrictive Rules of Engagement, which sent F-105s into battle on predictable routes, unable to return fire on SAM sites until missiles were launched at them, and their F-4 escorts hamstrung by being forced to wait until MiGs were on attack runs before the MiGs could be engaged. The tropical climate also took a toll on man and machine, with the end result that 382 F-105s were lost over Vietnam, nearly half of all Thuds ever produced and the highest loss rate of any USAF aircraft.
The combination of a high loss rate and the fact that the F-105 really was not designed to be used in the fashion it was over Vietnam led to the type’s gradual withdrawal after 1968 in favor of more F-4s and a USAF version of the USN’s A-7 Corsair II. An improved all-weather bombing system, Thunderstick II, was given to a few of the F-105D survivors, but this was not used operationally.
The Thud soldiered on another decade in Air National Guard and Reserve units until February 1984, when the type was finally retired in favor of the F-16, and its spiritual successor, the A-10 Thunderbolt II.
One of the most famous F-105s, "Memphis Belle II" (60-0504) comes with quite the pedigree. Delivered to the 36th TFW at Bitburg, West Germany in 1964, it was transferred to the 355th TFW at Takhli, Thailand in 1967. It was assigned to Major Buddy Jones, who decided to honor the famous B-17 of World War II, and named 60-0504 "Memphis Belle II," complete with Petty Girl pinups. Jones might have been trying to get some good luck on his side: after all, the first "Memphis Belle" made it home.
If so, it worked: "Memphis Belle II" survived three years of combat over Southeast Asia, and became not only one of the few F-105s to score an aerial kill, it did so twice: first on 28 April 1967, and then two days later on 30 April, with Maj. Harry Higgins and Capt. Thomas Lesan, respectively.
In 1970, 60-0504 came home and was relegated to first the 127th TFS (Kansas ANG) and then the 121st TFS (DC ANG). In 1981, it was retired to the AMARG boneyard, but 0504's remarkable war record led to it being saved for the National Museum of the USAF. It was restored to its former glory and now sits in the Southeast Asia gallery as one of the best preserved F-105s left in the world.
60-0504 is displayed in standard USAF Southeast Asia camouflage, complete with pinups; like on many Thuds, the name is carried on the intake side. The two small medals on the nose are a Presidential Unit Citation and Distinguished Unit Citation, both awarded to the 355th TFW for its Vietnam service. Two small MiG kill stars can be seen above the medals. The M61A1 20mm cannon is displayed behind a clear plate, while "Belle II" is shown loaded with six Mk 82 500-pound bombs, two with "Daisy Cutter" fuse extenders underneath the aircraft, and two more on wing stations. (This combat load almost always indicated a mission to southern North Vietnam, Laos, or South Vietnam; if the aircraft was going to "Pak Six" and Hanoi, one or two ALQ-87 ECM pods were a necessity.) Various other F-105 armament is shown as well, including a Mk 117 750-pound bomb and Mk 83 1000-pound bomb.
Seeing "Memphis Belle II" in May 2017 was special to me: Dad had built a model of this aircraft for the Malmstrom AFB Museum (www.flickr.com/photos/31469080@N07/25173601884/in/photoli...) and I wanted to see the real thing. Dad always wanted to see it as well, but he passed away in 2013 before we had a chance to get back to the NMUSAF. To see "Belle II" was a treat 40 years in the making.
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.
Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.
The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.
The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.
Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.
General characteristics:
All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.
Accommodation:
Single pilot in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Empty weight: 13.25 metric tons
Standard take-off mass: 18.5 metric tons
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);
4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm
4x underwing hardpoints for a wide variety of ordnance
The kit and its assembly:
The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.
However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?
I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...
The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.
Painting and markings:
As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.
The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.
The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.
Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.
No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.
Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.
Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.
Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.
Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.
Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.
Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.
HISTORY
The word incense comes from Latin incendere meaning "to burn".
Combustible bouquets were used by the ancient Egyptians, who employed incense in both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, giving evidence for the prominence of incense and related compounds in Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.
The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.
Incense burners have been found in the Indus Civilization (3300–1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the formulation to encompass aromatic roots and other indigenous flora. This was the first usage of subterranean plant parts in incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians.
At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented use of incense comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, and sandalwood) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song dynasty with numerous buildings erected specifically for incense ceremonies.
Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th-century Ashikaga shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whoever might take his head in battle). It wasn't until the Muromachi period during the 15th and 16th century that incense appreciation (kōdō) spread to the upper and middle classes of Japanese society.
COMPOSITION
A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.
Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, such as clergy and physicians.
COMBUSTIBLE BASE
The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:
Fuel and oxidizer mixtures: Charcoal or wood powder provides the fuel for combustion while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are added to the base prior to shaping, as in the case of powdered incense materials, or after, as in the case of essential oils. The formula for charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.
Natural plant-based binders: Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together. Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. These include:
Makko (incense powder) made from the bark of various trees in the genus Persea (such as Persea thunbergii)
Xiangnan pi (made from the bark of trees of genus Phoebe such as Phoebe nanmu or Persea zuihoensis.
Jigit: a resin based binder used in India
Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.
Typical compositions burn at a temperature between 220 °C and 260 °C.
TYPES
Incense is available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types. Preference for one form or another varies with culture, tradition, and personal taste. The two differ in their composition due to the former's requirement for even, stable, and sustained burning.
INDIRECT-BURNING
Indirect-burning incense, also called "non-combustible incense", is an aromatic material or combination of materials, such as resins, that does not contain combustible material and so requires a separate heat source. Finer forms tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually, having less surface area. Heat is traditionally provided by charcoal or glowing embers. In the West, the best known incense materials of this type are the resins frankincense and myrrh, likely due to their numerous mentions in the Bible. Frankincense means "pure incense", though in common usage refers specifically to the resin of the boswellia tree.
Whole: The incense material is burned directly in raw form on top of coal embers.
Powdered or granulated: Incense broken into smaller pieces burns quickly and provides brief but intense odor.
Paste: Powdered or granulated incense material is mixed with a sticky incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type, and Japan has a history of kneaded incense, called nerikō or awasekō, made using this method. Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.
DIRECT-BURNING
Direct-burning incense, also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn the rest of the incense without further application of external heat or flame. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types are commonly encountered, though direct-burning incense can take nearly any form, whether for expedience or whimsy.
Coil: Extruded and shaped into a coil without a core, coil incense can burn for an extended period, from hours to days, and is commonly produced and used in Chinese cultures.
Cone: Incense in this form burns relatively quickly. Incense cones were invented in Japan in the 1800s.
Cored stick: A supporting core of bamboo is coated with a thick layer of incense material that burns away with the core. Higher-quality variations have fragrant sandalwood cores. This type of incense is commonly produced in India and China. When used in Chinese folk religion, these are sometimes known as "joss sticks".
Dhoop or solid stick: With no bamboo core, dhoop incense is easily broken for portion control. This is the most commonly produced form of incense in Japan and Tibet.
Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. Powder incense is typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.
Paper: Paper infused with incense, folded accordion style, is lit and blown out. Examples include Carta d'Armenia and Papier d'Arménie.
Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is easily transported and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.
Moxa tablets, which are disks of powdered mugwort used in Traditional Chinese medicine for moxibustion, are not incenses; the treatment is by heat rather than fragrance.
Incense sticks may be termed joss sticks, especially in parts of East Asia, South Asia and Southeast Asia. Among ethnic Chinese and Chinese-influenced communities these are traditionally burned at temples, before the threshold of a home or business, before an image of a religious divinity or local spirit, or in shrines, large and small, found at the main entrance of every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door or open window as an offering to heaven, or the devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.
PRODUCTION
The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, is then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition is made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.
Certain proportions are necessary for direct-burning incense:
Oil content: an excess of oils may prevent incense from smoldering effectively. Resinous materials such as myrrh and frankincense are typically balanced with "dry" materials such as wood, bark and leaf powders.
Oxidizer quantity: Too little oxidizer in gum-bound incense may prevent the incense from igniting, while too much will cause the incense to burn too quickly, without producing fragrant smoke.
Binder: Water-soluble binders such as "makko" ensure that the incense mixture does not crumble when dry, dilute the mixture.
Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.
Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.
"Dipped" or "hand-dipped" direct-burning incense is created by dipping "incense blanks" made of unscented combustible dust into any suitable kind of essential or fragrance oil. These are often sold in the United States by flea-market and sidewalk vendors who have developed their own styles. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia.
Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.
Traditionally, the bamboo core of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. In a process known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and split in halves until the thin sticks of bamboo have square cross sections of less than 3mm. This process has been largely replaced by machines in modern incense production.
In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:
Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.
Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are evenly separated, then dipped into a tray of incense powder consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the sticks while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks produced in this fashion and burned in temples of Chinese folk religion can have a thickness between 2 and 4 millimeters.
Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more common due to the higher labor cost of producing powder-coated or paste-rolled sticks.
BURNING INCENSE
Indirect-burning incense burned directly on top of a heat source or on a hot metal plate in a censer or thurible.
In Japan a similar censer called a egōro (柄香炉) is used by several Buddhist sects. The egōro is usually made of brass, with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as sonae-kō (religious burning).
For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. The flame is then fanned or blown out, leaving the incense to smolder.
CULTURAL VARIATIONS
ARABIAN
In most Arab countries, incense is burned in the form of scented chips or blocks called bakhoor (Arabic: بخور [bɑˈxuːɾ, bʊ-]. Incense is used on special occasions like weddings or on Fridays or generally to perfume the house. The bakhoor is usually burned in a mabkhara, a traditional incense burner (censer) similar to the Somali Dabqaad. It is customary in many Arab countries to pass bakhoor among the guests in the majlis ('congregation'). This is done as a gesture of hospitality.
CHINESE
For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life. Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.
Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The first known record is by poet Yu Jianwu (487-551): "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.
Incense-stick burning is an everyday practice in traditional Chinese religion. There are many different types of stick used for different purposes or on different festive days. Many of them are long and thin. Sticks are mostly coloured yellow, red, or more rarely, black. Thick sticks are used for special ceremonies, such as funerals. Spiral incense, with exceedingly long burn times, is often hung from temple ceilings. In some states, such as Taiwan,
Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon incense sticks are sometimes used. These generate so much smoke and heat that they are only burned outside.
Chinese incense sticks for use in popular religion are generally odorless or only use the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum. Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Though they contain no sandalwood, they often include the Chinese character for sandalwood on the label, as a generic term for incense.
Highly scented Chinese incense sticks are used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, agarwood, or floral scents used. The sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, or City of Ten Thousand Buddhas do not use incense.
INDIAN
Incense sticks, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, are the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepali/Tibetan and Japanese methods of stick making without bamboo cores. Though the method is also used in the west, it is strongly associated with India.
The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder – an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India that take raw unperfumed sticks hand-rolled by approximately 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale. An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 large companies that together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Mysore.
JEWISH TEMPLE IN JERUSALEM
KETORET
Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus to be a mixture of stacte, onycha, galbanum and frankincense.
TIBETAN
Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, and sahi jeera.
Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.
JAPANESE
In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like calligraphy, ikebana, and scroll arrangement. The art of incense appreciation, or koh-do, is generally practiced as a separate art form from the tea ceremony, and usually within a tea room of traditional Zen design.
Agarwood (沈香 Jinkō) and sandalwood (白檀 byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation. It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.
Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.
Some terms used in Japanese incense culture include:
Incense arts: [香道, kodo]
Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.
Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning
Charcoal: [木炭] – only the odorless kind is used.
Incense woods: [ 香木 ] – a naturally fragrant resinous wood.
USAGE
PRACTICAL
Incense fragrances can be of such great strength that they obscure other less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. An example, as well as of religious use, is the giant Botafumeiro thurible that swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.
A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single long handle on one side. The perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.
The regular burning of direct-burning incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve multiple senses.
Incense made from materials such as citronella can repel mosquitoes and other irritating, distracting, or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.
Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.
Incense is also used often by people who smoke indoors and do not want the smell to linger.
AESTHETIC
Many people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the aroma. An example is the kōdō (香道), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.
RELIGIOUS
Religious use of incense is prevalent in many cultures and may have roots in the practical and aesthetic uses, considering that many of these religions have little else in common. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense), etc.
Aphrodisiac Incense has been used as an aphrodisiac in some cultures. Both ancient Greek and ancient Egyptian mythology suggest the usage of incense by goddesses and nymphs. Incense is thought to heighten sexual desires and sexual attraction.
Time-keeper Incense clocks are used to time social, medical and religious practices in parts of eastern Asia. They are primarily used in Buddhism as a timer of mediation and prayer. Different types of incense burn at different rates; therefore, different incense are used for different practices. The duration of burning ranges from minutes to months.
Healing stone cleanser Incense is claimed to cleanse and restore energy in healing stones. The technique used is called “smudging” and is done by holding a healing stone over the smoke of burning incense for 20 to 30 seconds. Some people believe that this process not only restores energy but eliminates negative energy.
HEALTH RISK FROM INCENSE SMOKE
Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and adsorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. In a comparison, Indian sandalwood was found to have the highest emission rate, followed by Japanese aloeswood, then Taiwanese aloeswood, while Chinese smokeless sandalwood had the least.
Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.
A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.
In contrast, epidemiologists at the Hong Kong Anti-Cancer Society, Aichi Cancer Center in Nagoya, and several other centers found: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified their findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."
Although several studies have not shown a link between incense and lung cancer, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also were 80% more likely to develop squamous-cell carcinomas. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."
In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters' ovarian cells to be even higher than cigarettes.
Incensole acetate, a component of Frankincense, has been shown to have anxiolytic-like and antidepressive-like effects in mice, mediated by activation of poorly-understood TRPV3 ion channels in the brain.
WIKIPEDIA
Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.
Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.
Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.
HISTORY
The word incense comes from Latin incendere meaning "to burn".
Combustible bouquets were used by the ancient Egyptians, who employed incense in both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, giving evidence for the prominence of incense and related compounds in Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.
The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.
Incense burners have been found in the Indus Civilization (3300–1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the formulation to encompass aromatic roots and other indigenous flora. This was the first usage of subterranean plant parts in incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians.
At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented use of incense comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, and sandalwood) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song dynasty with numerous buildings erected specifically for incense ceremonies.
Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th-century Ashikaga shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whoever might take his head in battle). It wasn't until the Muromachi period during the 15th and 16th century that incense appreciation (kōdō) spread to the upper and middle classes of Japanese society.
COMPOSITION
A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.
Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, such as clergy and physicians.
COMBUSTIBLE BASE
The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:
Fuel and oxidizer mixtures: Charcoal or wood powder provides the fuel for combustion while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are added to the base prior to shaping, as in the case of powdered incense materials, or after, as in the case of essential oils. The formula for charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.
Natural plant-based binders: Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together. Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. These include:
Makko (incense powder) made from the bark of various trees in the genus Persea (such as Persea thunbergii)
Xiangnan pi (made from the bark of trees of genus Phoebe such as Phoebe nanmu or Persea zuihoensis.
Jigit: a resin based binder used in India
Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.
Typical compositions burn at a temperature between 220 °C and 260 °C.
TYPES
Incense is available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types. Preference for one form or another varies with culture, tradition, and personal taste. The two differ in their composition due to the former's requirement for even, stable, and sustained burning.
INDIRECT-BURNING
Indirect-burning incense, also called "non-combustible incense", is an aromatic material or combination of materials, such as resins, that does not contain combustible material and so requires a separate heat source. Finer forms tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually, having less surface area. Heat is traditionally provided by charcoal or glowing embers. In the West, the best known incense materials of this type are the resins frankincense and myrrh, likely due to their numerous mentions in the Bible. Frankincense means "pure incense", though in common usage refers specifically to the resin of the boswellia tree.
Whole: The incense material is burned directly in raw form on top of coal embers.
Powdered or granulated: Incense broken into smaller pieces burns quickly and provides brief but intense odor.
Paste: Powdered or granulated incense material is mixed with a sticky incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type, and Japan has a history of kneaded incense, called nerikō or awasekō, made using this method. Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.
DIRECT-BURNING
Direct-burning incense, also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn the rest of the incense without further application of external heat or flame. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types are commonly encountered, though direct-burning incense can take nearly any form, whether for expedience or whimsy.
Coil: Extruded and shaped into a coil without a core, coil incense can burn for an extended period, from hours to days, and is commonly produced and used in Chinese cultures.
Cone: Incense in this form burns relatively quickly. Incense cones were invented in Japan in the 1800s.
Cored stick: A supporting core of bamboo is coated with a thick layer of incense material that burns away with the core. Higher-quality variations have fragrant sandalwood cores. This type of incense is commonly produced in India and China. When used in Chinese folk religion, these are sometimes known as "joss sticks".
Dhoop or solid stick: With no bamboo core, dhoop incense is easily broken for portion control. This is the most commonly produced form of incense in Japan and Tibet.
Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. Powder incense is typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.
Paper: Paper infused with incense, folded accordion style, is lit and blown out. Examples include Carta d'Armenia and Papier d'Arménie.
Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is easily transported and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.
Moxa tablets, which are disks of powdered mugwort used in Traditional Chinese medicine for moxibustion, are not incenses; the treatment is by heat rather than fragrance.
Incense sticks may be termed joss sticks, especially in parts of East Asia, South Asia and Southeast Asia. Among ethnic Chinese and Chinese-influenced communities these are traditionally burned at temples, before the threshold of a home or business, before an image of a religious divinity or local spirit, or in shrines, large and small, found at the main entrance of every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door or open window as an offering to heaven, or the devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.
PRODUCTION
The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, is then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition is made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.
Certain proportions are necessary for direct-burning incense:
Oil content: an excess of oils may prevent incense from smoldering effectively. Resinous materials such as myrrh and frankincense are typically balanced with "dry" materials such as wood, bark and leaf powders.
Oxidizer quantity: Too little oxidizer in gum-bound incense may prevent the incense from igniting, while too much will cause the incense to burn too quickly, without producing fragrant smoke.
Binder: Water-soluble binders such as "makko" ensure that the incense mixture does not crumble when dry, dilute the mixture.
Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.
Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.
"Dipped" or "hand-dipped" direct-burning incense is created by dipping "incense blanks" made of unscented combustible dust into any suitable kind of essential or fragrance oil. These are often sold in the United States by flea-market and sidewalk vendors who have developed their own styles. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia.
Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.
Traditionally, the bamboo core of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. In a process known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and split in halves until the thin sticks of bamboo have square cross sections of less than 3mm. This process has been largely replaced by machines in modern incense production.
In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:
Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.
Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are evenly separated, then dipped into a tray of incense powder consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the sticks while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks produced in this fashion and burned in temples of Chinese folk religion can have a thickness between 2 and 4 millimeters.
Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more common due to the higher labor cost of producing powder-coated or paste-rolled sticks.
BURNING INCENSE
Indirect-burning incense burned directly on top of a heat source or on a hot metal plate in a censer or thurible.
In Japan a similar censer called a egōro (柄香炉) is used by several Buddhist sects. The egōro is usually made of brass, with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as sonae-kō (religious burning).
For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. The flame is then fanned or blown out, leaving the incense to smolder.
CULTURAL VARIATIONS
ARABIAN
In most Arab countries, incense is burned in the form of scented chips or blocks called bakhoor (Arabic: بخور [bɑˈxuːɾ, bʊ-]. Incense is used on special occasions like weddings or on Fridays or generally to perfume the house. The bakhoor is usually burned in a mabkhara, a traditional incense burner (censer) similar to the Somali Dabqaad. It is customary in many Arab countries to pass bakhoor among the guests in the majlis ('congregation'). This is done as a gesture of hospitality.
CHINESE
For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life. Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.
Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The first known record is by poet Yu Jianwu (487-551): "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.
Incense-stick burning is an everyday practice in traditional Chinese religion. There are many different types of stick used for different purposes or on different festive days. Many of them are long and thin. Sticks are mostly coloured yellow, red, or more rarely, black. Thick sticks are used for special ceremonies, such as funerals. Spiral incense, with exceedingly long burn times, is often hung from temple ceilings. In some states, such as Taiwan,
Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon incense sticks are sometimes used. These generate so much smoke and heat that they are only burned outside.
Chinese incense sticks for use in popular religion are generally odorless or only use the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum. Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Though they contain no sandalwood, they often include the Chinese character for sandalwood on the label, as a generic term for incense.
Highly scented Chinese incense sticks are used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, agarwood, or floral scents used. The sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, or City of Ten Thousand Buddhas do not use incense.
INDIAN
Incense sticks, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, are the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepali/Tibetan and Japanese methods of stick making without bamboo cores. Though the method is also used in the west, it is strongly associated with India.
The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder – an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India that take raw unperfumed sticks hand-rolled by approximately 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale. An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 large companies that together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Mysore.
JEWISH TEMPLE IN JERUSALEM
KETORET
Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus to be a mixture of stacte, onycha, galbanum and frankincense.
TIBETAN
Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, and sahi jeera.
Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.
JAPANESE
In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like calligraphy, ikebana, and scroll arrangement. The art of incense appreciation, or koh-do, is generally practiced as a separate art form from the tea ceremony, and usually within a tea room of traditional Zen design.
Agarwood (沈香 Jinkō) and sandalwood (白檀 byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation. It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.
Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.
Some terms used in Japanese incense culture include:
Incense arts: [香道, kodo]
Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.
Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning
Charcoal: [木炭] – only the odorless kind is used.
Incense woods: [ 香木 ] – a naturally fragrant resinous wood.
USAGE
PRACTICAL
Incense fragrances can be of such great strength that they obscure other less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. An example, as well as of religious use, is the giant Botafumeiro thurible that swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.
A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single long handle on one side. The perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.
The regular burning of direct-burning incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve multiple senses.
Incense made from materials such as citronella can repel mosquitoes and other irritating, distracting, or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.
Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.
Incense is also used often by people who smoke indoors and do not want the smell to linger.
AESTHETIC
Many people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the aroma. An example is the kōdō (香道), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.
RELIGIOUS
Religious use of incense is prevalent in many cultures and may have roots in the practical and aesthetic uses, considering that many of these religions have little else in common. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense), etc.
Aphrodisiac Incense has been used as an aphrodisiac in some cultures. Both ancient Greek and ancient Egyptian mythology suggest the usage of incense by goddesses and nymphs. Incense is thought to heighten sexual desires and sexual attraction.
Time-keeper Incense clocks are used to time social, medical and religious practices in parts of eastern Asia. They are primarily used in Buddhism as a timer of mediation and prayer. Different types of incense burn at different rates; therefore, different incense are used for different practices. The duration of burning ranges from minutes to months.
Healing stone cleanser Incense is claimed to cleanse and restore energy in healing stones. The technique used is called “smudging” and is done by holding a healing stone over the smoke of burning incense for 20 to 30 seconds. Some people believe that this process not only restores energy but eliminates negative energy.
HEALTH RISK FROM INCENSE SMOKE
Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and adsorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. In a comparison, Indian sandalwood was found to have the highest emission rate, followed by Japanese aloeswood, then Taiwanese aloeswood, while Chinese smokeless sandalwood had the least.
Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.
A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.
In contrast, epidemiologists at the Hong Kong Anti-Cancer Society, Aichi Cancer Center in Nagoya, and several other centers found: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified their findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."
Although several studies have not shown a link between incense and lung cancer, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also were 80% more likely to develop squamous-cell carcinomas. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."
In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters' ovarian cells to be even higher than cigarettes.
Incensole acetate, a component of Frankincense, has been shown to have anxiolytic-like and antidepressive-like effects in mice, mediated by activation of poorly-understood TRPV3 ion channels in the brain.
WIKIPEDIA
Land Rover has a long history of delivering capable and premium offroad vehicles. The Range Rover has set the benchmark for premium offroad (now known as SUV) vehicle types. And, the original Land Rover (recently known as 'Defender') has set the benchmark for capable offroad attributes since its inception in 1948.
One thing the Defender isn't is comfortable, stylish, safe or pretty much anything you would use to describe a newly engineered car. Problem is, Land Rover has not been able to identify and produce a replacement vehicle design.
A few years ago Land Rover produced a series of concepts, under the title DC 100 (Defender Concept 100) looking at a modern interpretation of the core Land Rover values: offroad capability & robustness.
The version shown here was a followup concept, based on the three door DC 100 design.
The production version of this vehicle had been due in 2016/17, but at this stage there is no confirmation regarding the vehicle or the production date.
What we are left with are some interesting concepts glimpsing the thoughts of one of the original offroad capable product companies.
More info can be found at the following wikipedia link:
en.wikipedia.org/wiki/Land_Rover_DC100
This Lego miniland-scale Land Rover DC 100 Concept - has been created for Flickr LUGNuts' 105th Build Challenge, titled - 'The Great Outdoors!' - a challenge for any vehicle designed for outdoor adventuring.