View allAll Photos Tagged Capable

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four sub-variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower. The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III, a long service record and continued production after the war proved the lasting worth of the design.

The versatile aircraft underwent constant upgrade programs. For instance, about a third of all VF-1 Valkyries were upgraded with Infrared Search and Track (IRST) systems from 2016 onwards, placed in a streamlined fairing in front of the cockpit. This system allowed for long-range search and track modes, freeing the pilot from the need to give away his position with active radar emissions, and it could also be used for target illumination and guiding precision weapons.

Many Valkyries also received improved radar warning systems, with sensor arrays, depending on the systems, mounted on the wing-tips, on the fins and/or on the LERXs. Improved ECR measures were also added to some machines, typically in conformal fairings on the flanks of the legs/engine pods.

 

The U.N.S. Marine Corps, which evolved from the United States Marine Corps after the national service was transferred to the global U.N. Spacy command in 2008, was a late adopter of the VF-1, because the Valkyries’ as well as the Destroids’ potential for landing operations was underestimated. But especially the VF-1’s versatility and VTOL capabilities made it a perfect candidate as a replacement for the service’s AV-8B Harrier II and AH-1 Cobra fleet in the close air support (CAS) and interdiction role. The first VF-1s were taken into service in January 2010 by SVMF-49 “Vikings” at Miramar Air Base in California/USA, and other units followed soon, immediately joining the battle against the Zentraedi forces.

 

The UNSMC’s VF-1s were almost identical to the standard Valkyries, but they had from the start additional hardpoints for light loads like sensor pods added to their upper legs, on the lower corners of the air intake ducts. These were intended to carry FLIR, laser target designators (for respective guided smart weapons) or ECM pods, while freeing the swiveling underwing hardpoints to offensive ordnance.

 

Insisting on their independent heritage, the UNSMC’s Valkyries were never repainted in the U.N. Spacy’s standard tan and white livery. They either received a unique two tone low visibility gray paint scheme (the fighter units) or retained paint schemes that were typical for their former units, including some all-field green machines or VF-1s in a disruptive wraparound livery in grey, green and black.

Beyond A and J single-seaters (the UNSMC did not receive the premium S variant), a handful of VF-1D two-seaters were upgraded to the UNSMC’s specification and very effectively operated in the FAC (Forward Air Control) role, guiding both long-range artillery as well as attack aircraft against enemy positions.

 

The UNSMC’s VF-1s suffered heavy losses, though – for instance, SVMF-49 was completely wiped out during the so-called “Zentraedi Rain of Death” in April 2011, when the Zentraedi Imperial Grand Fleet, consisting of nearly five million warships, appeared in orbit around the Earth. Commanded by Dolza, Supreme Commander of the Zentraedi, they were ordered to incinerate the planet's surface, which they did. 70% of the Earth was utterly destroyed, according to the staff at Alaska Base. Dolza initially believed this to be total victory, until a massive energy pulse began to form on the Earth's surface. This was the Grand Cannon, a weapon of incredible destructive power that the Zentraedi were unaware of, and it disintegrated a good deal of the armada that was hanging over the Northern Hemisphere. While the Zentraedi were successful in rendering the weapon inoperable before it could fire a second time, the SDF-1 began a counterattack of its own alongside the renegade Imperial-Class Fleet and Seventh Mechanized Space Division, which destroyed the Imperial Grand Fleet. After this event, though, the UNSMC as well as other still independent services like the U.N. Navy were dissolved and the respective units integrated into the all-encompassing U.N. Spacy.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)

 

However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!

 

General characteristics:

All-environment variable fighter and tactical combat Battroid,

used by U.N. Spacy, U.N. Navy, U.N. Space Air Force and U.N.S. Marine Corps

 

Accommodation:

Pilot only in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Empty weight: 13.25 metric tons;

Standard T-O mass: 18.5 metric tons;

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or 225.63 kN in overboost

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip)

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Design Features:

3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

2x Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

4x underwing hard points for a wide variety of ordnance, including…

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs

2x auxiliary hardpoints on the legs for light loads like a FLIR sensor, laser rangefinder/

target designator or ECM pod (typically not used for offensive ordnance)

  

The kit and its assembly:

This fictional VF-1 was born from spontaneous inspiration and the question if the USMC could have adopted the Valkyrie within the Macross time frame and applied its rather special grey/green/black paint scheme from the Nineties that was carried by AH-1s, CH-46s and also some OV-10s.

 

The model is a simple, vintage ARII VF-1 in Fighter mode, in this case a VF-1D two-seater that received the cockpit section and the head unit from a VF-1J Gerwalk model to create a single seater. While the parts are interchangeable, the Gerwalk and the Fighter kit have different molds for the cockpit sections and the canopies, too. This is mostly evident through the lack of a front landing gear well under the Gerwalk's cockpit - I had to "carve" a suitable opening into the bottom of the nose, but that was not a problem.

The kit was otherwiese built OOB, with the landing gear down and (finally, after the scenic flight pictures) with an open canopy for final display among the rest of my VF-1 fleet. However, I added some non-canonical small details like small hardpoints on the upper legs and the FLIR and targeting pods on them, scratched from styrene bits.

 

The ordnance was changed from twelve AMM-1 missiles under the wings to something better suited for attack missions. Finding suitable material became quite a challenge, though. I eventually settled on a pair of large laser-guided smart bombs and two pairs of small air-to-ground missile clusters. The LGBs are streamlined 1:72 2.000 lb general purpose bombs, IIRC from a Hobby Boss F-5E kit, and the launch tubes were scratched from a pair of Bazooka starters from an Academy 1:72 P-51 kit. The ventral standard GU-11 pod was retained and modified to hold a scratched wire display for in-flight pictures at its rear end.

 

Some blade antennae were added around the hull as a standard measure to improve the simple kit’s look. The cockpit was taken OOB, I just added a pilot figure for the scenic shots and the thick canopy was later mounted on a small lift arm in open position.

 

Painting and markings:

Adapting the characteristic USMC three-tone paint scheme for the VF-1 was not easy; I used the symmetric pattern from the AH-1s as starting point for the fuselage and gradually evolved it onto the wings into an asymmetric free-form pattern, making sure that the areas where low-viz roundels and some vital stencils would sit on grey for good contrast and readability. The tones became authentic: USMC Field Green (FS 34095, Humbrol 105), USN Medium Grey (FS 35237, Humbrol 145) and black (using Revell 06 Tar Black, which is a very dark grey and not pure black). For some contrast the wings' leading edges were painted with a sand brown/yellow (Humbrol 94).

 

The landing gear became standard white (Revell 301), the cockpit interior medium grey (Revell 47) with a black ejection seat with brown cushions, and the air intakes as well as the interior of the VG wings dark grey (Revell 77). To set the camouflaged nose radome apart I gave it a slightly different shade of green. The GU-11 pod became bare metal (Revell 91). The LGBs were painted olive drab overall while the AGMs became light grey.

 

Roundels as well as the UNSMC and unit tags were printed at home in black on clear decal sheet. The unit markings came from an Academy OV-10. The modex came from an 1:72 Revell F8F sheet. Stencils becvame eitrher black or white to keep the low-viz look, just a few tiny color highlights bereak the camouflage up. Some of the characteristic vernier thrusters around the hull are also self-made decals.

Finally, after some typical details and position lights were added with clear paint over a silver base, the small VF-1 was sealed with a coat of matt acrylic varnish.

  

A spontaneous interim project - and the UMSC's three-tone paint scheme suits the VF-1 well, which might have been a very suitable aircraft for this service and its mission profiles. I am still a bit uncertain about the camouflage's effectiveness, though - yes, it's disruptive, but the color contrasts are so high that a hiding effect seems very poor, even though I find that the scheme works well over urban terrain? It's fictional, though, and even though there are canonical U.N.S. Marines VF-1s to be found in literature, none I came across so far carried this type of livery.

Kaaba

From Wikipedia, the free encyclopedia

  

Pilgrims circumambulating the Kaaba during the HajjThe Kaaba (Arabic: الكعبة al-Kaʿbah, IPA: [ˈkɑʕbɐ]: "Cube")[1] is a cuboidal building in Mecca, Saudi Arabia, and is the most sacred site in Islam.[2] The building predates Islam, and, according to Islamic tradition, the first building at the site was built by Abraham. The building has a mosque built around it, the Masjid al-Haram. All Muslims around the world face the Kaaba during prayers, no matter where they are.

 

One of the Five Pillars of Islam requires every capable Muslim to perform the Hajj pilgrimage at least once in their lifetime. Multiple parts of the Hajj require pilgrims to walk several times around the Kaaba in a counter-clockwise direction (as viewed from above). This circumambulation, the Tawaf, is also performed by pilgrims during the Umrah (lesser pilgrimage).[2] However, the most dramatic times are during the Hajj, when two million pilgrims simultaneously gather to circle the building on the same day.

 

Contents

1 Location and physical attributes

2 Black Stone

3 History

3.1 Before Islam

3.2 Islamic tradition

3.2.1 At the time of Muhammad

3.3 Since Muhammad's time

4 Cleaning

5 Qibla and prayer

6 Notes

7 References

8 External links

    

Technical drawing of the Kaaba showing dimensions and elements

Left: Conceptual representation of the Kaaba, as built by Abraham; Right: Representation of the Kaaba as it stands todayThe Kaaba is a large masonry structure roughly the shape of a cube. It is made of granite from the hills near Mecca, and stands upon a 25 cm (10 in) marble base, which projects outwards about 35 cm (14 in).[2] It is approximately 13.1 m (43 ft) high, with sides measuring 11.03 m (36.2 ft) by 12.86 m (42.2 ft).[3][4] The four corners of the Kaaba roughly face the four cardinal directions of the compass.[2] In the eastern corner of the Kaaba is the Ruknu l-Aswad "the Black Corner"" or al-Ħajaru l-Aswad "the Black Stone", possibly a meteorite remnant; at the northern corner is the Ruknu l-ˤĪrāqī "the Iraqi corner". The western corner is the Ruknu sh-Shāmī "the Levantine corner" and the southern is Ruknu l-Yamanī "the Yemeni corner".[2][4]

 

The Kaaba is covered by a black silk and gold curtain known as the kiswah, which is replaced yearly.[5][6] About two-thirds of the way up runs a band of gold-embroidered calligraphy with Qur'anic text, including the Islamic declaration of faith, the Shahada.

 

In modern times, entry to the Kaaba's interior is generally not permitted except for certain rare occasions and for a limited number of guests. The entrance is a door set 2 m (7 ft) above the ground on the north-eastern wall of the Kaaba, which acts as the façade.[2] There is a wooden staircase on wheels, usually stored in the mosque between the arch-shaped gate of Banū Shaybah and the well of Zamzam. Inside the Kaaba, there is a marble and limestone floor. The interior walls are clad with marble halfway to the roof; tablets with Qur'anic inscriptions are inset in the marble. The top part of the walls are covered with a green cloth decorated with gold embroidered Qur'anic verses. Caretakers perfume the marble cladding with scented oil, the same oil used to anoint the Black Stone outside.

 

There is also a semi-circular wall opposite, but unconnected to, the north-west wall of the Kaaba known as the hatīm. This is 90 cm (35 in) in height and 1.5 m (4.9 ft) in width, and is composed of white marble. At one time the space lying between the hatīm and the Kaaba belonged to the Kaaba itself, and for this reason it is not entered during the tawaf (ritual circumambulation). Some believe that the graves of Abu Simbel, prophet Ishmael and his mother Hagar[2] are located in this space.

 

Muslims throughout the world face the Kaaba during prayers, which occur five times a day. For most places around the world, coordinates for Mecca suffice. Worshippers in the Sacred Mosque pray in concentric circles around the Kaaba.

 

Black Stone

Main article: Black Stone

The Black Stone is a significant feature of the Kaaba, believed by Muslims to date back to the time of Adam and Eve.[7] Located on the eastern corner of the Kaaba, it is about 30 cm (12 in) in diameter and surrounded by a silver frame. All Hajj pilgrims must attempt to kiss the Stone as Muhammad once did. If they cannot then a flying kiss would be sufficient [8] Because of the large crowds, this is not always possible, and so as pilgrims walk around the Kaaba, they are to point to the Stone on each circuit.[9]

 

History

Before Islam

 

'King Fahad' gate of the Grand Masjid (Masjid al Haram) in Mecca.

'King Fahad' gate of the Grand Masjid at night in Mecca.As little is known of the history of the Kaaba, there are various opinions regarding its formation and significance.

 

The early Arabian population consisted primarily of warring nomadic tribes. When they did converge peacefully, it was usually under the protection of religious practices.[10] Writing in the Encyclopedia of Islam, Wensinck identifies Mecca with a place called Macoraba mentioned by Ptolemy. His text is believed to date from the second century AD, before the rise of Islam,[11] and described it as a foundation in southern Arabia, built around a sanctuary. The area probably did not start becoming an area of religious pilgrimage until around the year AD 500. It was around then that the Quraysh tribe (into which Muhammad was later born) took control of it, and made an agreement with the local Kinana Bedouins for control.[12] The sanctuary itself, located in a barren valley surrounded by mountains, was probably built at the location of the water source today known as the Zamzam Well, an area of considerable religious significance.

 

In her book, Islam: A Short History, Karen Armstrong asserts that the Kaaba was dedicated to Hubal, a Nabatean deity, and contained 360 idols which either represented the days of the year,[13] or were effigies of the Arabian pantheon. Once a year, tribes from all around the Arabian peninsula, be they Christian or pagan, would converge on Mecca to perform the Hajj.

 

Imoti[14] contends that there were multiple such "Kaaba" sanctuaries in Arabia at one time, but this is the only one built of stone. The others also allegedly had counterparts to the Black Stone. There was a "red stone", the deity of the south Arabian city of Ghaiman, and the "white stone" in the Kaaba of al-Abalat (near the city of Tabala, south of Mecca). Grunebaum in Classical Islam points out that the experience of divinity of that time period was often associated with stone fetishes, mountains, special rock formations, or "trees of strange growth."[15] The Kaaba was thought to be at the center of the world with the Gate of Heaven directly above it. The Kaaba marked the location where the sacred world intersected with the profane, and the embedded Black Stone was a further symbol of this as a meteorite that had fallen from the sky and linked heaven and earth.[16] According to the Boston Globe, the Kaaba was a shrine for the Daughters of God (al-Lat, al-Uzza, and Manat) and Hubal.[17]

 

According to Sarwar,[18] about four hundred years before the birth of Muhammad, a man named "Amr bin Lahyo bin Harath bin Amr ul-Qais bin Thalaba bin Azd bin Khalan bin Babalyun bin Saba", who was descended from Qahtan and king of Hijaz (the northwestern section of Saudi Arabia, which encompassed the cities of Mecca and Medina), had placed a Hubal idol onto the roof of the Kaaba, and this idol was one of the chief deities of the ruling Quraysh tribe. The idol was made of red agate, and shaped like a human, but with the right hand broken off and replaced with a golden hand. When the idol was moved inside the Kaaba, it had seven arrows in front of it, which were used for divination.[19]

 

To keep the peace among the perpetually warring tribes, Mecca was declared a sanctuary where no violence was allowed within 20 miles (32 km) of the Kaaba. This combat-free zone allowed Mecca to thrive not only as a place of pilgrimage, but also as a trading center.[20]

 

Patricia Crone disagrees with most academic historians on most issues concerning the history of early Islam, including the history of the Kaaba. In Makkan Trade and the Rise of Islam, Crone writes that she believes that the identification of Macoraba with the Kaaba is false, and that Macoraba was a town in southern Arabia in what was then known as Arabia Felix.[21]

 

Many accounts[which?], including Muslim accounts, and some accounts written by academic historians, stress the power and importance of the pre-Islamic Mecca.[weasel words] They depict it as a city grown rich on the proceeds of the spice trade. Crone believes that this is an exaggeration and that Makkan may only have been an outpost trading with nomads for leather, cloth, and camel butter. Crone argues that if Mecca had been a well-known center of trade, it would have been mentioned by later authors such as Procopius, Nonnosus, and the Syrian church chroniclers writing in Syriac. However, the town is absent from any geographies or histories written in the last three centuries before the rise of Islam.[22]

 

According to The Encyclopaedia Britannica, "before the rise of Islam it was revered as a sacred sanctuary and was a site of pilgrimage."[23] According to the German historian Eduard Glaser, the name "Kaaba" may have been related to the southern Arabian or Ethiopian word "mikrab", signifying a temple.[11] Again, Crone disputes this etymology.

 

Islamic tradition

Part of a series on

Eschatology

Christian eschatology[show]

Bibical texts

 

Picture of the Kaaba taken in 1880According to the Qur'an, the Kaaba was first built by Ibrahim (Abraham) and his son Ismāʿīl (Ishmael).[24] Islamic traditions assert that the Kaaba "reflects" a house in heaven called al-Baytu l-Maʿmur[25] (Arabic: البيت المعمور‎) and that it was first built by the first man, Adam. Ibrahim and Ismail rebuilt the Kaaba on the old foundations. [26]

 

At the time of Muhammad

At the time of Muhammad (CE 570-632), his tribe the Quraysh was in charge of the Kaaba, which was at that time a shrine containing hundreds of idols representing Arabian tribal gods and other religious figures, including Jesus and Mary. Muhammad earned the enmity of his tribe by claiming the shrine for the new religion of Islam that he preached. He wanted the Kaaba to be dedicated to the worship of the one God alone, and all the idols evicted. The Quraysh persecuted and harassed him continuously[27], and he and his followers eventually migrated to Medina in 622.

 

After this pivotal migration, or Hijra, the Muslim community became a political and military force. In 630, Muhammad and his followers returned to Mecca as conquerors, and he destroyed the 360 idols in and around the Kaaba.[28][29] While destroying each idol, Muhammad recited [Qur'an 17:81] which says "Truth has arrived and falsehood has perished for falsehood is by its nature bound to perish."[28][29]

  

A 1315 illustration from the Persian Jami al-Tawarikh, inspired by the story of Muhammad and the Meccan clan elders lifting the Black Stone into place when the Kaaba was rebuilt in the early 600s.[30]The Kaaba was re-dedicated as an Islamic house of worship, and henceforth, the annual pilgrimage was to be a Muslim rite, the Hajj, which visits the Kaaba and other sacred sites around Mecca.[31] Islamic histories also mention a reconstruction of the Kaaba around 600. A story found in Ibn Ishaq's Sirat Rasūl Allāh, one of the biographies of Muhammad (as reconstructed and translated by Guillaume), describes Muhammad settling a quarrel between Meccan clans as to which clan should set the Black Stone cornerstone in place. According to Ishaq's biography, Muhammad's solution was to have all the clan elders raise the cornerstone on a cloak, and then Muhammad set the stone into its final place with his own hands.[30][32][33] Ibn Ishaq says that the timber for the reconstruction of the Kaaba came from a Greek ship that had been wrecked on the Red Sea coast at Shu'ayba, and the work was undertaken by a Coptic carpenter called Baqum.[34]

 

It is also claimed by the Shīʿa that the Kaaba is the birth place of ʿAlī ibn Abī Tālib, the fourth caliph and cousin and son-in-law of the Islamic prophet Muhammad.[31]

 

Since Muhammad's time

The Kaaba has been repaired and reconstructed many times since Muhammad's day.

 

Abd-Allah ibn al-Zubayr, an early Muslim who ruled Mecca for many years between the death of ʿAli and the consolidation of Ummayad power, is said to have demolished the old Kaaba and rebuilt it to include the hatīm, a semi-circular wall now outside the Kaaba. He did so on the basis of a tradition (found in several hadith collections[35]) that the hatīm was a remnant of the foundations of the Abrahamic Kaaba, and that Muhammad himself had wished to rebuild so as to include it.

 

This structure was destroyed (or partially destroyed) in 683, during the war between al-Zubayr and Umayyad forces commanded by Al-Hajjaj bin Yousef. Al-Hajjaj used stone-throwing catapults against the Meccans.

 

The Ummayads under ʿAbdu l-Malik ibn Marwan finally reunited all the former Islamic possessions and ended the long civil war. In 693 he had the remnants of al-Zubayr's Kaaba razed, and rebuilt on the foundations set by the Quraysh.[36] The Kaaba returned to the cube shape it had taken during Muhammad's lifetime.

 

During the Hajj of 930, the Qarmatians attacked Mecca, defiled the Zamzam Well with the bodies of pilgrims and stole the Black Stone, removing it to the oasis region of Eastern Arabia known as al-Aḥsāʾ, where it remained until the Abbasids ransomed it back in 952 CE.

 

Apart from repair work, the basic shape and structure of the Kaaba have not changed since then.[37]

 

The Kaaba is depicted on the reverse of 500 Saudi Riyal, and the Iranian 2000 rials banknotes.[38]

 

Cleaning

The building is opened twice a year for a ceremony known as "the cleaning of the Kaaba." This ceremony takes place roughly fifteen days before the start of the month of Ramadan and the same period of time before the start of the annual pilgrimage.

 

The keys to the Kaaba are held by the Banī Shaybat (بني شيبة) tribe. Members of the tribe greet visitors to the inside of the Kaaba on the occasion of the cleaning ceremony. A small number of dignitaries and foreign diplomats are invited to participate in the ceremony.[39] The governor of Mecca leads the honored guests who ritually clean the structure, using simple brooms. Washing of the Kaaba is done with a mixture of Zamzam and Persian rosewater.[40]

 

Qibla and prayer

Main article: Qibla

 

Supplicating pilgrim at Masjid al-HaramThe Qibla is the Muslim name for the direction faced during prayer[Qur'an 2:143–144] While it may appear to some non-Muslims that Muslims worship the Kaaba, it is simply the focal point for prayer. The qibla has changed at least twice.

 

Notes

^ Also known as al-Kaʿbatu l-Mušarrafah (الكعبة المشرًّفة "The Noble Kaʿbah), al-Baytu l-ʿAtīq (البيت العتيق "The Primordial House"), or al-Baytu l-Ḥarām (البيت الحرام "The Sacred House")

^ a b c d e f g Wensinck, A. J; Ka`ba. Encyclopaedia of Islam IV p. 317

^ Peterson, Andrew (1996). Dictionary of Islamic Architecture.. London: Routledge. archnet.org/library/dictionary/.

^ a b Hawting, G.R; Ka`ba. Encyclopaedia of the Qur'an p. 76

^ "'House of God' Kaaba gets new cloth". The Age Company Ltd.. 2003. www.theage.com.au/articles/2003/02/11/1044725746252.html. Retrieved 2006-08-17.

^ "The Kiswa - (Kaaba Covering)". Al-Islaah Publications. members.tripod.com/worldupdates/newupdates10/id43.htm. Retrieved 2006-08-17.

^ SaudiCities - The Saudi Experience. "Makkah - The Holy Mosque:The Black Stone". www.saudicities.com/mmosque.htm. Retrieved August 13 2006.

^ Elliott, Jeri (1992). Your Door to Arabia. ISBN 0-473-01546-3.

^ Mohamed, Mamdouh N. (1996). Hajj to Umrah: From A to Z. Amana Publications. ISBN 0-915957-54-x.

^ Grunebaum, p. 18

^ a b Wensinck, A. J; Ka`ba. Encyclopaedia of Islam IV p. 318 (1927, 1978)

^ Grunebaum, p. 19

^ Karen Armstrong (2000,2002). Islam: A Short History. pp. 11. ISBN 0-8129-6618-x.

^ Imoti, Eiichi. "The Ka'ba-i Zardušt", Orient, XV (1979), The Society for Near Eastern Studies in Japan, pp. 65-69.

^ Grunebaum, p. 24

^ Armstrong, Jerusalem, p. 221

^ "Ask the Globe". Boston Globe. April 23, 1999.

^ Hafiz Ghulam Sarwar. Muhammad the Holy Prophet. pp. 18–19.

^ Brother Andrew. "Hubal, the moon god of the Kaba". bible.ca. www.bible.ca/islam/islam-moon-god-hubal.htm. Retrieved 2007-09-04.

^ Armstrong, Jerusalem: One City, Three Faiths, p. 221-222

^ Crone, Patricia (2004). Makkan Trade and the Rise of Islam. Piscataway, New Jersey: Gorgias. pp. 134-137

^ Crone, Patricia (2004). Makkan Trade and the Rise of Islam. Piscataway, New Jersey: Gorgias. p. 137

^ Britannica 2002 Deluxe Edition CD-ROM, "Ka'bah."

^ "AL-BAQARA (THE COW)". Online Quran Project. al-quran.info/#&&sura=2&aya=127&trans=en-.... Retrieved 2009-04-08.

^ Hajj-e-Baytullah. "Baytullah - The House of Allah". www.ezsoftech.com/hajj/hajj_article1.asp. Retrieved August 13 2006.

^ Azraqi, Akhbar Makkah, vol. 1, pp. 58-66

^ www.mocaz.com/essays/Persecution in Mecca.pdf

^ a b Hamali, Mohamed Hashim (31 My - 6 June 2001). "Islam, iconography and the Taliban". Al-Ahram Weekly Online (536). weekly.ahram.org.eg/2001/536/in7.htm. Retrieved 2008-10-05.

^ a b "Conquest of Makkah". Compendium of Muslim Texts. University of Southern California. www.usc.edu/dept/MSA/fundamentals/pillars/fasting/tajuddi.... Retrieved 2008-10-05.

^ a b University of Southern California. "The Prophet of Islam - His Biography". www.usc.edu/dept/MSA/fundamentals/prophet/profbio.html. Retrieved August 12 2006.

^ a b The Book of History, a History of All Nations From the Earliest Times to the Present. Viscount Bryce (Introduction). The Grolier Society.

^ Guillaume, A. (1955). The Life of Muhammad. Oxford: Oxford University Press. pp. 84-87

^ Saifur Rahman al-Mubarakpuri, translated by Issam Diab (1979). "Muhammad's Birth and Forty Years prior to Prophethood". Ar-Raheeq Al-Makhtum (The Sealed Nectar): Memoirs of the Noble Prophet. www.witness-pioneer.org/vil/Books/SM_tsn/ch1s6.html. Retrieved 2007-05-04.

^ Cyril Glasse, New Encyclopedia of Islam, p. 245. Rowman Altamira, 2001. ISBN 0759101906

^ Sahih Bukhari 1506, 1508;Sahih Muslim 1333

^ Sahih Bukhari 1509; Sahih Muslim 1333

^ Javed Ahmad Ghamidi. The Rituals of Hajj and ‘Umrah, Mizan, Al-Mawrid

^ Central Bank of Iran. Banknotes & Coins: 2000 Rials. – Retrieved on 24 March 2009.

^ enc.slider.com/Enc/Kaaba

^ Islam Online.net - Saudi Arabia Readies for Hajj Emergencies (December 29 2005), Retrieved November 30 2006.

References

Peterson, Andrew (1996). Dictionary of Islamic Architecture London: Routledge.

Hawting, G.R; Ka`ba. Encyclopaedia of the Qur'an

Elliott, Jeri (1992). Your Door to Arabia. ISBN 0-473-01546-3.

Mohamed, Mamdouh N. (1996). Hajj to Umrah: From A to Z. Amana Publications. ISBN 0-915957-54-x.

Wensinck, A. J; Ka`ba. Encyclopaedia of Islam IV

Karen Armstrong (2000,2002). Islam: A Short History. ISBN 0-8129-6618-x.

Crone, Patricia (2004). Meccan Trade and the Rise of Islam. Piscataway, New Jersey: Gorgias.

[1915] The Book of History, a History of All Nations From the Earliest Times to the Present, Viscount Bryce (Introduction), The Grolier Society.

Guillaume, A. (1955). The Life of Muhammad. Oxford: Oxford University Press.

Grunebaum, G. E. von (1970). Classical Islam: A History 600 A.D. - 1258 A.D.. Aldine Publishing Company. ISBN 202-15016-

HOG Capable GZB WAP-7 #30406 accelerating towards ANVT taking charge of 22412 NDLS-NHLN A.C. S.F Express.

The Indian peafowl (Pavo cristatus), also known as the common peafowl, and blue peafowl, is a peafowl species native to the Indian subcontinent. It has been introduced to many other countries. Male peafowl are referred to as peacocks, and female peafowl are referred to as peahens, although both sexes are often referred to colloquially as a "peacock".

 

Indian peafowl display a marked form of sexual dimorphism. The peacock is brightly coloured, with a predominantly blue fan-like crest of spatula-tipped wire-like feathers and is best known for the long train made up of elongated upper-tail covert feathers which bear colourful eyespots. These stiff feathers are raised into a fan and quivered in a display during courtship. Despite the length and size of these covert feathers, peacocks are still capable of flight. Peahens lack the train, have a white face and iridescent green lower neck, and dull brown plumage. The Indian peafowl lives mainly on the ground in open forest or on land under cultivation where they forage for berries, grains but also prey on snakes, lizards, and small rodents. Their loud calls make them easy to detect, and in forest areas often indicate the presence of a predator such as a tiger. They forage on the ground in small groups and usually try to escape on foot through undergrowth and avoid flying, though they fly into tall trees to roost.

 

The function of the peacock's elaborate train has been debated for over a century. In the 19th century, Charles Darwin found it a puzzle, hard to explain through ordinary natural selection. His later explanation, sexual selection, is widely but not universally accepted. In the 20th century, Amotz Zahavi argued that the train was a handicap, and that males were honestly signalling their fitness in proportion to the splendour of their trains. Despite extensive study, opinions remain divided on the mechanisms involved.

 

The bird is celebrated in Hindu and Greek mythology, and is the national bird of India. The Indian peafowl is listed as of Least Concern on the IUCN Red List.

 

Taxonomy and naming

Carl Linnaeus in his work Systema Naturae in 1758 assigned to the Indian peafowl the technical name of Pavo cristatus (means "crested peafowl" in classical Latin).

 

The earliest usage of the word in written English is from around 1300 and spelling variants include pecok, pekok, pecokk, peacocke, peacock, pyckock, poucock, pocok, pokok, pokokke, and poocok among others. The current spelling was established in the late 17th century. Chaucer (1343–1400) used the word to refer to a proud and ostentatious person in his simile "proud a pekok" in Troilus and Criseyde (Book I, line 210).

 

The Sanskrit, later Pali, and modern Hindi term for the animal is maur. It is debated that the nomenclature of the Maurya Empire, whose first emperor Chandragupta Maurya was raised and influenced by peacock farmers was named after the terminology.

 

The Greek word for peacock was taos and was related to the Persian "tavus" (as in Takht-i-Tâvus for the famed Peacock Throne). The Ancient Hebrew word tuki (plural tukkiyim) has been said to have been derived from the Tamil tokei but sometimes traced to the Egyptian tekh. In modern Hebrew the word for peacock is "tavas". In Sanskrit, the peacock is known as Mayura and is associated with the killing of snakes.

 

Description

 

Male neck detail

Peacocks are a larger sized bird with a length from bill to tail of 100 to 115 cm (39 to 45 in) and to the end of a fully grown train as much as 195 to 225 cm (77 to 89 in) and weigh 4–6 kg (8.8–13.2 lb). The females, or peahens, are smaller at around 95 cm (37 in) in length and weigh 2.75–4 kg (6.1–8.8 lb). Indian peafowl are among the largest and heaviest representatives of the Phasianidae. So far as is known, only the wild turkey grows notably heavier. The green peafowl is slightly lighter in body mass despite the male having a longer train on average than the male of the Indian species. Their size, colour and shape of crest make them unmistakable within their native distribution range. The male is metallic blue on the crown, the feathers of the head being short and curled. The fan-shaped crest on the head is made of feathers with bare black shafts and tipped with bluish-green webbing. A white stripe above the eye and a crescent shaped white patch below the eye are formed by bare white skin. The sides of the head have iridescent greenish blue feathers. The back has scaly bronze-green feathers with black and copper markings. The scapular and the wings are buff and barred in black, the primaries are chestnut and the secondaries are black. The tail is dark brown and the "train" is made up of elongated upper tail coverts (more than 200 feathers, the actual tail has only 20 feathers) and nearly all of these feathers end with an elaborate eye-spot. A few of the outer feathers lack the spot and end in a crescent shaped black tip. The underside is dark glossy green shading into blackish under the tail. The thighs are buff coloured. The male has a spur on the leg above the hind toe.

 

The adult peahen has a rufous-brown head with a crest as in the male but the tips are chestnut edged with green. The upper body is brownish with pale mottling. The primaries, secondaries and tail are dark brown. The lower neck is metallic green and the breast feathers are dark brown glossed with green. The remaining underparts are whitish. Downy young are pale buff with a dark brown mark on the nape that connects with the eyes. Young males look like the females but the wings are chestnut coloured.

 

The most common calls are a loud pia-ow or may-awe. The frequency of calling increases before the Monsoon season and may be delivered in alarm or when disturbed by loud noises. In forests, their calls often indicate the presence of a predators such as the tiger. They also make many other calls such as a rapid series of ka-aan..ka-aan or a rapid kok-kok. They often emit an explosive low-pitched honk! when agitated.

 

Mutations and hybrids

This leucistic mutation is commonly mistaken for an albino.

There are several colour mutations of Indian peafowl. These very rarely occur in the wild, but selective breeding has made them common in captivity. The black-shouldered or Japanned mutation was initially considered as a subspecies of the Indian peafowl (P. c. nigripennis) (or even a separate species (P. nigripennis)) and was a topic of some interest during Darwin's time. Others had doubts about its taxonomic status, but the English naturalist and biologist Charles Darwin (1809–1882) presented firm evidence for it being a variety under domestication, which treatment is now well established and accepted. It being a colour variation rather than a wild species was important for Darwin to prove, as otherwise it could undermine his theory of slow modification by natural selection in the wild. It is, however, only a case of genetic variation within the population. In this mutation, the adult male is melanistic with black wings. Young birds with the nigripennis mutation are creamy white with fulvous-tipped wings. The gene produces melanism in the male and in the peahen it produces a dilution of colour with creamy white and brown markings. Other forms include the pied and white mutations, all of which are the result of allelic variation at specific loci.

 

Crosses between a male green peafowl (Pavo muticus) and a female Indian peafowl (P. cristatus) produce a stable hybrid called a "Spalding", named after Mrs. Keith Spalding, a bird fancier in California. There can be problems if birds of unknown pedigree are released into the wild, as the viability of such hybrids and their offspring is often reduced (see Haldane's rule and outbreeding depression).

 

Distribution and habitat

The Indian peafowl is a resident breeder across the Indian subcontinent and inhabits the drier lowland areas of Sri Lanka. In the Indian subcontinent, it is found mainly below an elevation of 1,800 m (5,900 ft) and in rare cases seen at about 2,000 m (6,600 ft). It is found in moist and dry-deciduous forests, but can adapt to live in cultivated regions and around human habitations and is usually found where water is available. In many parts of northern India, they are protected by religious practices and will forage around villages and towns for scraps. Some have suggested that the peacock was introduced into Europe by Alexander the Great, while others say the bird had reached Athens by 450 BCE and may have been introduced even earlier. It has since been introduced in many other parts of the world and has become feral in some areas.

 

The Indian peafowl has been introduced to the United States, the United Kingdom, United Arab Emirates, France, Mexico, Honduras, Costa Rica, Colombia, Guyana, Suriname, Brazil, Uruguay, Argentina, South Africa, Spain, Portugal, Greece, Italy, Madagascar, Mauritius, Réunion, Indonesia, Papua New Guinea, Australia, New Zealand, Croatia and the island of Lokrum.

 

Genome sequencing

The first whole-genome sequencing of Indian peafowl identified a total of 15,970 protein-coding sequences, along with 213 tRNAs, 236 snoRNAs, and 540 miRNAs. The peacock genome was found to have less repetitive DNA (8.62%) than that of the chicken genome (9.45%). PSMC analysis suggested that the peacock suffered at least two bottlenecks (around four million years ago and again 450,000 years ago), which resulted in a severe reduction in its effective population size.

 

Behaviour and ecology

Peafowl are best known for the male's extravagant display feathers which, despite actually growing from their back, are thought of as a tail. The "train" is in reality made up of the enormously elongated upper tail coverts. The tail itself is brown and short as in the peahen. The colours result not from any green or blue pigments but from the micro-structure of the feathers and the resulting optical phenomena. The long train feathers (and tarsal spurs) of the male develop only after the second year of life. Fully developed trains are found in birds older than four years. In northern India, these begin to develop each February and are moulted at the end of August. The moult of the flight feathers may be spread out across the year.

 

Peafowl forage on the ground in small groups, known as musters, that usually have a cock and 3 to 5 hens. After the breeding season, the flocks tend to be made up only of females and young. They are found in the open early in the mornings and tend to stay in cover during the heat of the day. They are fond of dust-bathing and at dusk, groups walk in single file to a favourite waterhole to drink. When disturbed, they usually escape by running and rarely take to flight.

 

Peafowl produce loud calls especially in the breeding season. They may call at night when alarmed and neighbouring birds may call in a relay like series. Nearly seven different call variants have been identified in the peacocks apart from six alarm calls that are commonly produced by both sexes.

 

Peafowl roost in groups during the night on tall trees but may sometimes make use of rocks, buildings or pylons. In the Gir forest, they chose tall trees in steep river banks. Birds arrive at dusk and call frequently before taking their position on the roost trees. Due to this habit of congregating at the roost, many population studies are made at these sites. The population structure is not well understood. In a study in northern India (Jodhpur), the number of males was 170–210 for 100 females but a study involving evening counts at the roost site in southern India (Injar) suggested a ratio of 47 males for 100 females.

 

Sexual selection

The colours of the peacock and the contrast with the much duller peahen were a puzzle to early thinkers. Charles Darwin wrote to Asa Gray that the "sight of a feather in a peacock's tail, whenever I gaze at it, makes me sick!" as he failed to see an adaptive advantage for the extravagant tail which seemed only to be an encumbrance. Darwin developed a second principle of sexual selection to resolve the problem, though in the prevailing intellectual trends of Victorian Britain, the theory failed to gain widespread attention.

 

The American artist Abbott Handerson Thayer tried to show, from his own imagination, the value of the eyespots as disruptive camouflage in a 1907 painting. He used the painting in his 1909 book Concealing-Coloration in the Animal Kingdom, denying the possibility of sexual selection and arguing that essentially all forms of animal colouration had evolved as camouflage. He was roundly criticised in a lengthy paper by Theodore Roosevelt, who wrote that Thayer had only managed to paint the peacock's plumage as camouflage by sleight of hand, "with the blue sky showing through the leaves in just sufficient quantity here and there to warrant the author-artists explaining that the wonderful blue hues of the peacock's neck are obliterative because they make it fade into the sky."

 

In the 1970s a possible resolution to the apparent contradiction between natural selection and sexual selection was proposed. Amotz Zahavi argued that peacocks honestly signalled the handicap of having a large and costly train. However, the mechanism may be less straightforward than it seems – the cost could arise from depression of the immune system by the hormones that enhance feather development.

  

Male courting female

The ornate train is believed to be the result of sexual selection by the females. Males use their ornate trains in a courtship display: they raise the feathers into a fan and quiver them. However, recent studies have failed to find a relation between the number of displayed eyespots and mating success. Marion Petrie tested whether or not these displays signaled a male's genetic quality by studying a feral population of peafowl in Whipsnade Wildlife Park in southern England. She showed that the number of eyespots in the train predicted a male's mating success, and this success could be manipulated by cutting the eyespots off some of the male's ornate feathers.

 

Although the removal of eyespots makes males less successful in mating, eyespot removal substantially changes the appearance of male peafowls. It is likely that females mistake these males for sub-adults, or perceive that the males are physically damaged. Moreover, in a feral peafowl population, there is little variation in the number of eyespots in adult males. It is rare for adult males to lose a significant number of eyespots. Therefore, females' selection might depend on other sexual traits of males' trains. The quality of train is an honest signal of the condition of males; peahens do select males on the basis of their plumage. A recent study on a natural population of Indian peafowls in the Shivalik area of India has proposed a "high maintenance handicap" theory. It states that only the fittest males can afford the time and energy to maintain a long tail. Therefore, the long train is an indicator of good body condition, which results in greater mating success. While train length seems to correlate positively with MHC diversity in males, females do not appear to use train length to choose males. A study in Japan also suggests that peahens do not choose peacocks based on their ornamental plumage, including train length, number of eyespots and train symmetry. Another study in France brings up two possible explanations for the conflicting results that exist. The first explanation is that there might be a genetic variation of the trait of interest under different geographical areas due to a founder effect and/or a genetic drift. The second explanation suggests that "the cost of trait expression may vary with environmental conditions," so that a trait that is indicative of a particular quality may not work in another environment.

 

Fisher's runaway model proposes positive feedback between female preference for elaborate trains and the elaborate train itself. This model assumes that the male train is a relatively recent evolutionary adaptation. However, a molecular phylogeny study on peacock-pheasants shows the opposite; the most recently evolved species is actually the least ornamented one. This finding suggests a chase-away sexual selection, in which "females evolve resistance to male ploys". A study in Japan goes on to conclude that the "peacocks' train is an obsolete signal for which female preference has already been lost or weakened".

 

However, some disagreement has arisen in recent years concerning whether or not female peafowl do indeed select males with more ornamented trains. In contrast to Petrie's findings, a seven-year Japanese study of free-ranging peafowl came to the conclusion that female peafowl do not select mates solely on the basis of their trains. Mariko Takahashi found no evidence that peahens expressed any preference for peacocks with more elaborate trains (such as trains having more ocelli), a more symmetrical arrangement, or a greater length. Takahashi determined that the peacock's train was not the universal target of female mate choice, showed little variance across male populations, and, based on physiological data collected from this group of peafowl, do not correlate to male physical conditions. Adeline Loyau and her colleagues responded to Takahashi's study by voicing concern that alternative explanations for these results had been overlooked, and that these might be essential for the understanding of the complexity of mate choice. They concluded that female choice might indeed vary in different ecological conditions.

 

A 2013 study that tracked the eye movements of peahens responding to male displays found that they looked in the direction of the upper train of feathers only when at long distances and that they looked only at the lower feathers when males displayed close to them. The rattling of the tail and the shaking of the wings helped in keeping the attention of females.

 

Breeding

Peacocks are polygamous, and the breeding season is spread out but appears to be dependent on the rains. Peafowls usually reach sexual maturity at the age of 2 to 3 years old. Several males may congregate at a lek site and these males are often closely related. Males at leks appear to maintain small territories next to each other and they allow females to visit them and make no attempt to guard harems. Females do not appear to favour specific males. The males display in courtship by raising the upper-tail coverts into an arched fan. The wings are held half open and drooped and it periodically vibrates the long feathers, producing a ruffling sound. The cock faces the hen initially and struts and prances around and sometimes turns around to display the tail. Males may also freeze over food to invite a female in a form of courtship feeding. Males may display even in the absence of females. When a male is displaying, females do not appear to show any interest and usually continue their foraging.

 

The peak season in southern India is April to May, January to March in Sri Lanka and June in northern India. The nest is a shallow scrape in the ground lined with leaves, sticks and other debris. Nests are sometimes placed on buildings and, in earlier times, have been recorded using the disused nest platforms of the white-rumped vultures. The clutch consists of 4–8 fawn to buff white eggs which are incubated only by the female. The eggs take about 28 days to hatch. The chicks are nidifugous and follow the mother around after hatching. Downy young may sometimes climb on their mothers' back and the female may carry them in flight to a safe tree branch. An unusual instance of a male incubating a clutch of eggs has been reported.

 

Feeding

Peafowl are omnivorous and eat seeds, insects (including termites), worms, fruits, small mammals, frogs, and reptiles (such as lizards). They feed on small snakes but keep their distance from larger ones. In the Gir forest of Gujarat, a large percentage of their food is made up of the fallen berries of Zizyphus. They also feed on tree and flower buds, petals, grain, and grass and bamboo shoots. Around cultivated areas, peafowl feed on a wide range of crops such as groundnut, tomato, paddy, chili and even bananas. Around human habitations, they feed on a variety of food scraps and even human excreta. In the countryside, it is particularly partial to crops and garden plants.

 

Mortality factors

Large animals such as leopards, dholes, golden jackals, and tigers can ambush adult peafowls. However, only leopards regularly prey upon peafowls as adult peafowls are difficult to catch since they can usually escape ground predators by flying into trees. They are also sometimes hunted by large birds of prey such as the changeable hawk-eagle and rock eagle-owl. Chicks are somewhat more prone to predation than adult birds. Adults living near human habitations are sometimes hunted by domestic dogs or by humans in some areas (southern Tamil Nadu) for folk remedies involving the use of "peacock oil".

 

Foraging in groups provides some safety as there are more eyes to look out for predators. They also roost on high tree tops to avoid terrestrial predators, especially leopards.

 

In captivity, birds have been known to live for 23 years but it is estimated that they live for only about 15 years in the wild.

 

Conservation and status

Indian peafowl are widely distributed in the wild across South Asia and protected both culturally in many areas and by law in India. Conservative estimates of the population put them at more than 100,000. Illegal poaching for meat, however, continues and declines have been noted in parts of India. Peafowl breed readily in captivity and as free-ranging ornamental fowl. Zoos, parks, bird-fanciers and dealers across the world maintain breeding populations that do not need to be augmented by the capture of wild birds.

 

Poaching of peacocks for their meat and feathers and accidental poisoning by feeding on pesticide treated seeds are known threats to wild birds. Methods to identify if feathers have been plucked or have been shed naturally have been developed, as Indian law allows only the collection of feathers that have been shed.

 

In parts of India, the birds can be a nuisance to agriculture as they damage crops. Its adverse effects on crops, however, seem to be offset by the beneficial role it plays by consuming prodigious quantities of pests such as grasshoppers. They can also be a problem in gardens and homes where they damage plants, attack their reflections (thereby breaking glass and mirrors), perch and scratch cars or leave their droppings. Many cities where they have been introduced and gone feral have peafowl management programmes. These include educating citizens on how to prevent the birds from causing damage while treating the birds humanely.

 

In culture

Prominent in many cultures, the peacock has been used in numerous iconic representations, including being designated the national bird of India in 1963. The peacock, known as mayura in Sanskrit, has enjoyed a fabled place in India since and is frequently depicted in temple art, mythology, poetry, folk music and traditions. A Sanskrit derivation of mayura is from the root mi for kill and said to mean "killer of snakes". It is also likely that the Sanskrit term is a borrowing from Proto-Dravidian *mayVr (whence the Tamil word for peacock மயில் (mayil)) or a regional Wanderwort. Many Hindu deities are associated with the bird, Krishna is often depicted with a feather in his headband, while worshippers of Shiva associate the bird as the steed of the God of war, Kartikeya (also known as Skanda or Murugan). A story in the Uttara Ramayana describes the head of the Devas, Indra, who unable to defeat Ravana, sheltered under the wing of peacock and later blessed it with a "thousand eyes" and fearlessness from serpents. Another story has Indra who after being cursed with a thousand ulcers was transformed into a peacock with a thousand eyes and this curse was removed by Vishnu.

 

In Buddhist philosophy, the peacock represents wisdom. Peacock feathers are used in many rituals and ornamentation. Peacock motifs are widespread in Indian temple architecture, old coinage, textiles and continue to be used in many modern items of art and utility. A folk belief found in many parts of India is that the peacock does not copulate with the peahen but that she is impregnated by other means. The stories vary and include the idea that the peacock looks at its ugly feet and cries whereupon the tears are fed on by the peahen causing it to be orally impregnated while other variants incorporate sperm transfer from beak to beak. Similar ideas have also been ascribed to Indian crow species. In Greek mythology the origin of the peacock's plumage is explained in the tale of Hera and Argus. The main figure of the Yazidi religion Yezidism, Melek Taus, is most commonly depicted as a peacock. Peacock motifs are widely used even today such as in the logos of the US NBC and the PTV television networks and the Sri Lankan Airlines.

 

These birds were often kept in menageries and as ornaments in large gardens and estates. In medieval times, knights in Europe took a "Vow of the Peacock" and decorated their helmets with its plumes. In several Robin Hood stories, the titular archer uses arrows fletched with peacock feathers. Feathers were buried with Viking warriors and the flesh of the bird was said to cure snake venom and many other maladies. Numerous uses in Ayurveda have been documented. Peafowl were said to keep an area free of snakes. In 1526, the legal issue as to whether peacocks were wild or domestic fowl was thought sufficiently important for Cardinal Wolsey to summon all the English judges to give their opinion, which was that they are domestic fowl.

 

In Anglo-Indian usage of the 1850s, to peacock meant making visits to ladies and gentlemen in the morning. In the 1890s, the term "peacocking" in Australia referred to the practice of buying up the best pieces of land ("picking the eyes") so as to render the surrounding lands valueless. The English word "peacock" has come to be used to describe a man who is very proud or gives a lot of attention to his clothing.

 

Main article: Di Goldene Pave

A golden peacock (in Yiddish, Di Goldene Pave) is considered by some as a symbol of Ashkenazi Jewish culture, and is the subject of several folktales and songs in Yiddish. Peacocks are frequently used in European heraldry. Heraldic peacocks are most often depicted as facing the viewer and with their tails displayed. In this pose, the peacock is referred to as being "in his pride". Peacock tails, in isolation from the rest of the bird, are rare in British heraldry, but see frequent use in German systems.

 

The American television network NBC uses a stylized peacock as a legacy of its early introduction of color television, alluding to the brilliant color of a peacock, and continues to promote the bird as a trademark of its broadcasting and streaming services.

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

Operated by the Islamic Revolutionary Guards Corps, Iran's small Bell AH-1J fleet has seen a fair share of indigenous modernization in recent years. In 1971, Iran purchased 202 examples of an improved AH-1J, named "AH-1J International", from the United States. This improved Cobra featured an uprated P&WC T400-WV-402 engine and a stronger drivetrain, so that it would have a better performance under “hot & high” conditions. Recoil damping gear was fitted to the 20 mm M197 gun turret, and the gunner was given a stabilized sight and a stabilized seat, too. Of the AH-1Js delivered to the Shah's Imperial Iranian Army Aviation, 62 were TOW-capable.

Iranian AH-1Js participated in the Iran–Iraq War—which saw the most intensive use of helicopters in any conventional war. Iranian AH-1Js (particularly the TOW-capable ones) were "exceptionally effective" in anti-armor warfare, inflicting heavy losses on Iraqi armored and vehicle formations. In operations over the barren terrain in Khuzestan and later in southern Iraq, beside the standard tactics, Iranian pilots developed special, effective tactics, often in the same manner as the Soviets did with their Mi-24s. Due to the post-Revolution weapons sanctions, Iranians had to make do with what was at hand: lacking other guided ordnance they equipped the AH-1Js with AGM-65 Maverick missiles and used them with some success in several operations. About half of the AH-1Js were lost during the conflict to combat, accidents, and simple wear and tear –the rest of the fleet was kept operational and busy during the following years.

 

However, time and use took their toll on the Iranian Cobras, for which no replacement could be found. In 2001, Brigadier General Ahmad Kazemi, the then-commander in chief of the IRGC Air Force (from 2009, it became known as the IRGC Aerospace Force, or IRGCASF), requested Ali Khamenei, leader of the Islamic Republic, to permit the IRGC to procure two former army AH-1J Cobra helicopters that had been restored by the Iranian Helicopters Support and Renewal Company (IHSRC, called ‘Panha’ in Iran). They belonged to the Iranian Army Aviation Force (IRIAA, as it was then known), which lacked the funds to pay for the necessary restoration and renewal of parts and fuselage sections.

The first of these refurbished AH-1Js was a TOW Cobra capable of using the Iranian-made clone of the BGM-71A TOW anti-tank missile, the “Towfan”, while the second helicopter was a Non-TOW version capable of using only the 2¾-inch Hydra unguided rockets. They entered IRGCAF service at Fat'h helicopter base, Karaj, to the west of Tehran, in 2001. This marked the start of an ongoing but slow modernization program for the remaining Iranian Cobra fleet.

 

IHSRC also worked on the restoration of two more battle-damaged AH-1J TOW Cobras, in a project known as “Panha-2091”. The front sections of their fuselages had been destroyed by cannon rounds from Iraqi tanks during the Iran-Iraq war and the extensive restoration work required manufacture of new fuselage panels and structural parts. Panha engineers also co-operated with their colleagues from IAMI (Iranian Aircraft Manufacturing Industries, also known as HESA in Iran) and designed a new canopy for the helicopters equipped with a flat, bulletproof windshield instead of the former oval, non-bulletproof version. Under a project named HESA-2091, both helicopters were thoroughly modernized and equipped with multifunction displays and a new weapon control system with a head-up display for the pilot. Internal avionics were revamped with the addition of a GPS system in the nose, and a warning radar with four antennae providing 360 degrees coverage was integrated, too. Design and production of the new digital systems and their components was carried out by the Iranian Electronics Industries Company (IEI) with the assistance of Isfahan University of Technology and a Chinese-connected company, Safa Electronic Component Industries. Installation was performed by IAMI in Shahin-Shahr.

 

These two helicopters were ultimately named ‘Tiztak-2091’ and became prototypes for a larger modernization project for 102 remaining AH-1J Cobra attack helicopters for the Iranian Army Aviation Force. However, in total, the cost of this bold conversion projects exceeded the whole IRIAA budget for 2001, and this resulted in the cancellation of the wider modernization program just a year later. Step forward the IRGC which procured the two Tiztak-2091 prototypes alongside four more former IRIAA AH-1J Non-TOW Cobra helicopters from the Iranian Defence Ministry. These were revamped and delivered to frontline units between 2003 and 2005. However, further conversions have only be done sparingly since then, due to the lack of funds and material.

Despite these limitations, the IAAF immediately began working on upgrade projects to further increase combat capability of the small but busy fleet of Cobra helicopters. The Tiztak helicopters had been equipped with new targeting/surveillance turrets instead of their M-65 Telescopic Sight Units under a IAMI project named Towfan-2 back in 2012. The first helicopters were equipped with the Oqab EO/IR targeting turret produced by IOI (Iranian Optics Industries) in 2012, while others received an RU-290 thermal camera, a product of Rayan Roshd-Afzar.

 

After the formation of the Army Aviation Force of the Islamic Revolutionary Guard Corps (IRGCAA) on February 23, 2016, the IRGCASF helicopter base at Fat’h was transferred to the IRGCGF (IRGC Ground Force), of which the IRGCAA was now a part. IRGCAA today operates more than 80 helicopters including nine Bell AH-1J International Cobras, with three examples modernized by Iranian Aircraft Manufacturing Industries (IAMI). IRGCAA had also been trying to equip its small fleet of AH-1Js with a new air-to-surface missile and an anti-tank missile, the Qaem-114 (outwardly almost identical to the American AGM-119 Hellfire), but this did not proceed beyond prototype stage.

 

Despite the active Iranian AH-1J fleet’s relatively small size after 2001, the Cobras were extremely active during counter-terrorism and counter-insurgency operations in the southeast and northwest of Iran. Both the IAAF and now the IRGCAA had always had two fire support teams, each formed with two to three AH-1Js in Orumiyeh and Zahedan, to be used against the PKK/PJAK and Jaish ul-Adl terrorist groups. The fire-support team at the IRGCGF Hamzeh Garrison in the northwest of Iran had two Bell 214A utility helicopters for SAR operations to accompany the Cobras while the team in Zahedan International Airport had two to three Mi-171Sh helicopters; usually, one armed with B8M1 rocket pods as a heavy fire support gunship.

The most notable use of the AH-1Js in combat by the IRGC took place in spring and summer 2008 when two AH-1Js stationed in Zahedan were extensively used in close-air-support missions during a counter-terrorism operation by IRGC Ground Forces against the Jondollah group (later to be rebranded as Jaish ul-Adl after being listed as a terrorist organization by the US State Department). After the arrest and execution of its leader, Abdolmalek Reigi by Iran, the group stopped its activities in 2009. It resumed again a few years later resulting in the launch of new anti-terror operations involving the AH-1Js in 2013, which continued periodically until 2020.

  

General characteristics:

Crew: 2

Length: 53 ft 5 in (16.28 m) with both rotors turning

45 ft 9 in (14 m) for fuselage only

Width: 10 ft 9 in (3.28 m) for stub wings only

Height: 13 ft 5 in (4.09 m)

Main rotor diameter: 43 ft 11 in (13.39 m)

Main rotor area: 1,514.97 sq ft (140.745 m²)

Empty weight: 2,802 kg (6,177 lb)

Max takeoff weight: 4,530 kg (9,987 lb)

 

Powerplant:

2× P&W Canada T400-CP-400 (PT6T-3 Twin-Pac) turboshaft engines, coupled to produce 1,530 shp

(1,140 kW; de-rated from 1,800 shp (1,342 kW) for drivetrain limitations)

 

Performance:

Maximum speed: 236 km/h (147 mph, 127 kn)

Range: 600 km (370 mi, 320 nmi)

Service ceiling: 10,500 ft (3,200 m)

Rate of climb: 1,090 ft/min (5.5 m/s)

 

Armament:

1× 20 mm (0.787 in) M197 3-barreled Gatling cannon in M97 chin turret with 750 rounds

4× hardpoints under the sub wings for 2.75” (70 mm) Mk 40 or Hydra 70 rockets in 7 or 19 rounds

pods; up to 16 5” (127 mm) Zuni rockets in 4-round LAU-10D/A launchers, up to eight Toophan

ATGM in a dual or quad launcher on each wing, AIM-9 Sidewinder or Misagh-2 anti-aircraft

missiles (1 mounted on each hardpoint)

  

The kit and its assembly:

This is the counterpart to another modified Fujimi AH-1 model, actually a kit bashing of the AH-1S and the AH-1J model to produce something that comes close to the real IAMI HESA-2091 helicopter, an upgraded/re-built AH-1J International of the Iranian Army Air Force. The “leftover” parts were used to create an (Indonesian) AH-1G – even though the HESA-2091 was the “core project”.

 

To create this Iranian variant, the AH-1J was taken as the basis and the nose as well as the flat-window canopy from the AH-1S were transplanted. While the nose with the TOW sensor turret was just an optional part that fits naturally on the fuselage (even though not without some PSR), the clear parts was more challenging, because the flat canopy is shorter than the original. In this case I had to fill some triangular gaps between the hood and the engine section, and this was done with 1.5 mm styrene sheet wedges and some more PSR to blend the parts that were not meant to be combined into each other.

The cockpit was taken OOB, together with the pilot figures that come with the kit. I also retained the original all-metal main rotor because the Iranian Cobras AFAIK were never upgraded with composite material blades?

 

To set the HESA-2091 further apart from the original AH-1J I changed the sensor turret in the nose and scratched a ball-shaped fairing that resembles the indigenous RU-290 thermal camera – it’s actually the ball joint from a classic clear Matchbox kit display, with a base scratched from 0.5mm styrene sheet. The “ball” turned out to be a bit too large, but the overall look is O.K., since I wanted a non-TOW AH-1J. For a “different-than-a-stock-AH-1J” look A small radome for a missile guidance antenna was added to the nose above the sensor turret, too. Another personal addition are the small end plates on the stabilizers – inspired by similar installations on Bell’s early twin-engine AH-1s, even though these later disappeared and were technically replaced by a ventral fin extension and a longer fuselage; the Iranian AH-1Js retained the short, original fuselage of the single-engine Cobra variants, though. The end plates were cut from leftover rotor blades from the scrap box, IIRC they belong to a Matchbox Dauphin 2.

 

Being part of the historical Zahedan fire support team I gave the Cobra an armament consisting of a nineteen round 70mm Hydra unguided missile pods (OOB), a pair of AGM-65 Maverick missiles (an ordnance actually deployed by Iranian Cobras), together with their respective launch rails, and I added launch tubes for indigenous Misagh-2 anti-aircraft missiles (which are actually MANPADS) to the stub wings’ tips as a self-defense measure. These were scratched from 2mm styrene rods.

  

Painting and markings:

Finding a suitable paint scheme was not easy. A conservative choice would have been an early mid-stone/earth scheme or a tri-color scheme consisting of sand, earth and dark green. However, while doing WWW research I came across some more exotic and contemporary specimen, carrying a kind of leopard-esque mottle scheme or even a “high resolution” fractal/digital cammo consisting of three shades of beige/brown/grey – even though I am not certain if the latter was a “real” camouflage for operational helicopters or just a “show and shine” propaganda livery?

 

Re-creating the latter from scratch would have been prohibitively complex, because the pixelized mottles were really fine, maybe just 2” wide each in real life. But I used this scheme as an inspiration for a simplified variant, also kept in three shades of brown, even though the result was a kind of compromise due to the limited material options to create it.

The base became an overall coat with Tamiya XF-57 (Buff), plus very light grey (RAL 7035; Humbrol 196) undersides. A light black ink washing was applied, and panels were post-shaded to create a more vivid surface.

Then came the pixelized mottles in two contrast colors: first came a layer in RAL 1015 (Hellelfenbein/Light Ivory) and then a second in RAL 8011 (Nussbraun/Nut Brown) in a 1:1 ratio, slightly overlapping and letting the Buff base shine through. These mottles were not painted but rather created with square bits from generic decal stripe material in various widths from TL Modellbau. While not as sophisticated as the original camouflage, effect and look are quite similar, and add to the unique look of this HESA-2091(-ish) model. And even though I was sceptical, esp. because of the reddish Nussbraun, the blurring effect of the scheme is surprisingly good – esp. when you put the model in front of a dry mountain background! I’ll keep the concept in the back of my head for further what-if models. All those single pixels were a lot of work, but the result looks really good.

 

Another detail from many real late Iranian Cobras was taken over, too: a black tail rotor drive shaft cover that extends up onto the fin’s leading edge – probably a measure to hide exhaust soot stains on the tail boom? A black anti-glare panel was added in front of the windscreen, too, and the rotor blades became medium grey (Humbrol 165, Medium Sea Grey) except for the main rotor blades’ undersides, which became black. The cockpit interior was uniformly painted in a very dark grey (Revell 06, Anthracite) and the pilots received khaki jumpsuits and modern grey and olive drab “bone domes”.

 

The decals were puzzled together from various sources. The Iranian roundels came from a Begemot MiG-29 sheet, registration numbers and fin flashes from an Iranian F-5. The IAAF abbreviation was created with single black 4 mm letters.

Graphite was used to weather the model, esp. the area on top of the tail boom, and the model was finally sealed with matt acrylic varnish overall.

  

An exotic model – the Iranian home-brew HESA-2091 looks familiar, but it’s a unique combination of classic Cobra elements. More spectacular is the pixelated paint scheme, and the attempt to generate it with the help of square decal bits worked (and looks) better than expected! This might also work well in grey as a winter camouflage? Hmmm….

The Republic Aviation F-105 was a supersonic fighter-bomber capable of Mach-2 speeds. The aircraft was initially an internal Republic project designed to replace the RF-84F Thunderflash. The U.S. Air Force awarded Republic with a contract for 199 aircraft in September of 1952, but later downgraded the order in size. Near the end of 1953, the entire program was canceled by the Air Force due to a number of delays and uncertainties regarding the aircraft. In 1954, it placed another order, and the YF-105A prototype first flew in October of 1955. The first production F-105B was accepted by the Air Force in May of 1957.

 

In June 1957 Republic Aviation requested that the F-105 be named Thunderchief, continuing the sequence of the company's Thunder-named aircraft such as the P-47 Thunderbolt, F-84 Thunderjet, and F-84F Thunderstreak.

 

The F-105 was the largest single-seat, single-engine combat aircraft in history, weighing in at about 50,000 pounds. One of its nicknames was "Thud". The Mach-2 capable F-105 also conducted most of the strike bombing missions during the early years of the Vietnam War. Over 20,000 Thunderchief sorties were flown during the war, with 382 F-105 aircraft lost.

 

Six airshows by the USAF Thunderbirds demonstration team were flown in 1964 using the F-105. Following this brief use of the F-105, the Thunderbirds transitioned back to the F-100 Super Sabre.

 

The last F-105 ended service in February, 1984. Today, about ninety F-105 Thunderchiefs have survived and are on display at various locations around the United States like this one at the Pearl Harbor Aviation Museum in Honolulu, Hawaii. Others are also on display in the United Kingdom, Germany, France and Mexico.

 

-- Technical Information (or Nerdy Stuff) --

‧ Camera - Nikon D7200 (handheld)

‧ Lens – Nikkor 18-300mm Zoom

‧ ISO – 1250

‧ Aperture – f/3.5

‧ Exposure – 1/800 second

‧ Focal Length – 18mm

 

The original RAW file was processed with Adobe Camera Raw and final adjustments were made with Photoshop CS6.

 

"For I know the plans I have for you,” declares the LORD, “plans to prosper you and not to harm you, plans to give you hope and a future." ~Jeremiah 29:11

 

The best way to view my photostream is through Flickriver with the following link: www.flickriver.com/photos/photojourney57/

An original mockup for the Class 325 postal units from around 1994, I once encountered this before at the National Railway Museum in York, but apparently it's here at the Nene Valley Railway now.

 

The Class 325's are yet another one of those Greek tragedies of the British railway scene. These specially built, 100mph units were very capable machines, but sadly the powers that be quickly pulled the rug out from under them, and what would have been the primary motive power for mail traffic across the UK's electric railway network is now only just starting to make a comeback.

 

The origins of the Class 325 go back to the early 1990's. At the time British Rail's parcels and mail arm, Rail Express Systems, was in the process of phasing out the traditional Travelling Post Office as computer sorting removed the need for sorting by-hand aboard the trains. At the same time RES desired a fleet of units that would be much more flexible, efficient and cost effective than the ageing fleet of Class 86 electrics, Class 47 diesels and MkI based coaching stock of the 1960's that it was using presently.

 

Previously, Royal Mail had trialed reusing former London commuter EMU's and re-purposing them as parcels units. Initially, Class 307's built in the 1950's were used on services out of London Liverpool Street, these being designated Class 300. However, these units weren't particularly reliable, and their age meant that they were only a few years away from being life-expired. In 1994, Rail Express Systems placed an order for a set of 100mph electric multiple units to be built on the underpinnings of the Class 319 dual-voltage Thameslink units used in London. Originally, this class was designated Class 350, but was eventually changed to Class 325.

 

Construction of these units was done by ABB at their Derby works between 1995 and 1996, with 16 of these trains eventually built. The construction of the Class 325's coincided with a major refurbishment of the mail-on-rail system, with new distribution centres and sorting offices constructed at major railway locations, this project being dubbed Railnet. For the Class 325's, these included Railnet terminals at Shieldmuir near Glasgow (to serve the lowlands of Scotland), Warrington (to serve North West England), Low Fell near Newcastle, and Willesden in North London. Additional Railnet terminals off the Class 325's network included Tonbridge, Bristol Parkway, Doncaster and Stafford. Willesden Railnet terminal is by far the largest, a 7 platform station under a huge barrel roof which is essentially another London terminus just with no passengers, built at a cost of £30m.

 

The Class 325's eventually began operations after a short period of trials in 1995. The units are fitted with large round oleo buffers, and have no gangways between carriages. Each set is made up of four cars, with roller doors in place of sliding ones and no windows. Each car has two roller shutter sliding doors on each side and is designed to hold up to 12 tonnes. They have a pantograph to pick up power from the 25 kV AC overhead lines, and also a shoe to pick up power off the 750 V DC third rail. They cannot work in multiple with any other multiple unit stock, but are fitted with drop-head buck-eye coupling and can therefore be hauled by locomotives. The units were built in such a way that they could easily be converted for passenger use if no longer required for mail services, and cab fronts designed to look similar to the then recently built Networker Class 165/166 and 365/465 commuter units.

 

Based at Crewe International Electric Maintenance Depot, the Class 325's effects on the mail services up the West and East Coast Mainlines were profound, with turnaround times and flexibility when it came to shunting being among its many advantages. They were also much more reliable than Class 86's or 47's, and could easily be put to work on the 3rd Rail Southern Region without the need for diesels or locomotive changes.

 

However, their tenure on mail services was seriously short lived, as in 2003, Royal Mail decided to cease the Mail Train contract with freight operator EWS after 166 years of operation. The last mail services under the original Victorian contract ended on January 9th, 2004, and the Class 325's, along with the hundreds of carriages of stock and locomotives, entered storage at various locations across the network, while the millions of pounds of infrastructure and the Railnet buildings fell silent after less than 10 years of operation.

 

The Class 325's were thankfully not out of action for long though, as at Christmas 2004, in light of heavy demand and congestion on the roads in bad weather, Royal Mail reluctantly awarded GBRf the contract to run a limited number of Class 325's on services between London and Glasgow over the winter period. GBRf however were not cleared to use the Class 325's on their own, and thus instead chose to drag the units using Class 86's and 87's. After a traction reshuffle the Class 325s resumed service with their power cars and without locomotive haulage.

 

Eventually, GBRf lost the contract in 2010 to EWS's successor, DB Schenker, who now operate both Royal Mail services but the continued maintenance of the Class 325 stock. On an average weekday there are 15 diagrammed services out of Willesden Railnet, 5 to and from Warrington, 3 to Shieldmuir and 3 to Low Fell. Today, 15 out of the original 16 units remain in service, 325010 being scrapped in 2012 after years of neglect in storage.

 

Sadly, like many pieces of the Mail Train puzzle, so many were wasted after less than 10 years of operation, infrastructure built to last for 100 years demolished after no time at all. At least the Class 325's have found their way back into work, doing a job that makes eminent sense over the road haulage alternative Royal Mail hoped would be the better option over the mail train. Instead the Class 325's are proof as to why mail-by-rail is the superior option, no traffic jams, no slippery roads, no 60mph speed limiter on the lorries, just 100mph haulage of your valuables and parcels up and down the country all the way!

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.

 

Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.

 

The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.

 

The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.

Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.

  

General characteristics:

All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.

 

Accommodation:

Single pilot in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Empty weight: 13.25 metric tons

Standard take-off mass: 18.5 metric tons

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm

4x underwing hardpoints for a wide variety of ordnance

  

The kit and its assembly:

The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.

However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?

 

I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...

The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.

  

Painting and markings:

As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.

The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.

 

The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.

 

Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.

No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.

 

Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.

 

Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.

  

Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.

 

The red fox is one of the most widespread carnivores in the world, capable of thriving in extreme environments which include the Arctic’s frozen tundra and the scorching deserts of the Middle East. In the United Kingdom, red fox populations are estimated to be between 350,000 and 400,000 individuals, occupying farmlands, woodlands, and cities.

 

The red fox’s ability to survive in such varied conditions comes from its versatile hunting strategies. Unlike many predators that rely on a single method, foxes use different techniques depending on their environment. In rural areas, they hunt in fields and woodlands, using cover to ambush small mammals and birds. In colder regions like the Arctic, foxes scavenge from larger predators, such as wolves and polar bears, taking advantage of leftover kills.

 

In urban environments, foxes display an impressive ability to hunt small rodents and insects while also scavenging human food. In this respect, few wild predators have adapted as effectively to urban life as the red fox.

 

The red fox also has a well-earned reputation for being cunning and resourceful, particularly when it comes to raiding chicken coops. Farmers have struggled for centuries to keep foxes away from their livestock, yet foxes continue to find ways in. They can dig under fences, climb over barriers, or squeeze through small gaps to reach their prey. If a coop is poorly secured, a fox will exploit weak points, using its sharp claws to pry open doors or slip through narrow spaces. Foxes can also learn to lift simple latches, both through trial and error and simple observation.

 

Foxes have also been observed to plan and execute their attacks strategically. A fox may spend days watching a farm, learning the farmer’s routines and identifying the best time to strike. They typically hunt at night, using the cover of darkness to remain undetected. If a farmer reinforces a coop, a fox may simply find another weak spot or dig a tunnel beneath the enclosure, proving its persistence and problem-solving skills.

 

Once inside, foxes are known to kill multiple chickens at once, even if they only take one away. This behaviour, known as "surplus killing," is not mindless slaughter but rather an instinct to store extra food for later. Foxes often bury uneaten prey nearby, returning when food becomes scarce.

 

I encountered this beautiful prowling through a local meadow during the golden hours just before sunset. While I will never know for sure why she was smirking, I can easily imagine it had to do with an unwitting chicken or a vole.

 

MARINE CORPS BASE HAWAII (July 10, 2018) U.S. Marines with Combat Assault Company, 3rd Marine Regiment, stage AAV-P7/A1 assault amphibious vehicles at Pyramid Rock Beach prior to embarking onto the Royal Australian Navy landing helicopter dock shop HMAS Adelaide (L01) as part of Rim of the Pacific (RIMPAC) exercise on Marine Corps Base Hawaii. RIMPAC provides high-value training for task-organized, highly capable Marine Air-Ground Task Force and enhances the critical crisis response capability of U.S. Marines in the Pacific. Twenty-five nations, 46 ships, five submarines, about 200 aircraft and 25,000 personnel are participating in RIMPAC from June 27 to Aug. 2 in and around the Hawaiian Islands and Southern California. The world's largest international maritime exercise, RIMPAC provides a unique training opportunity while fostering and sustaining cooperative relationships among participants critical to ensuring the safety of sea lanes and security on the world's oceans. RIMPAC 2018 is the 26th exercise in the series that began in 1971. (U.S. Marine Corps photo by Sgt. Zachary Orr)

The Typhoon FGR.Mk 4 is a highly capable and extremely agile fourth-generation multi-role combat aircraft, capable of being deployed for the full spectrum of air operations, including air policing, peace support and high-intensity conflict. Initially deployed in the air-to-air role as the Typhoon F.Mk 2, the aircraft now has a potent, precision multi-role capability as the FGR4. The pilot performs many essential functions through the aircraft’s hands on throttle and stick (HOTAS) interface which, combined with an advanced cockpit and the Helmet Equipment Assembly (HEA), renders Typhoon superbly equipped for all aspects of air operations.

 

Although Typhoon has flown precision attack missions in all its combat deployments to date, its most essential role remains the provision of quick reaction alert (QRA) for UK and Falkland Islands airspace. Detachments have also reinforced NATO air defence in the Baltic and Black Sea regions.

 

With its multi-role capability and variety of weapons, the Typhoon FGR4 is capable of engaging numerous target types. In the air-to-air role it employs the infraredguided Advanced Short Range Air-to-Air Missile (ASRAAM) and radar-guided, beyond visual range Advanced Medium Range Air-to-Air Missile (AMRAAM). These weapons, used in conjunction with the jet’s ECR-90 Captor radar and PIRATE electro-optical targeting system, combine with the Typhoon’s superior performance and manoeuvrability to make it a formidable platform.

 

For ground-attack and close air support (CAS) missions, Typhoon is compatible with the GPS/laser-guided Enhanced Paveway II and Paveway IV weapons, usually in conjunction with the Litening III targeting pod. Its regular configuration for the armed reconnaissance and CAS roles includes Litening III, Paveway IV and the internal 27mm gun.

 

Paveway IV offers cockpit-programmable impact angle, impact direction and fuse delay features for precisely tailored target effects. The 27mm gun is ideally suited to providing warning shots or for accurate attacks against targets including light vehicles and personnel.

ENA Ofnir Strategic bomber

The ENA Ofnir is a Mach 3 long-range strategic bomber, operated by the Imperial Lego Air Force. It’s a modified Gerifalte bomber, with a larger wing, 4 engines, longer range and bomb-load. The Imperial Lego Air Force needed a new high speed, long-range Strategic Bomber capable of carrying twenty four conventional 2000kg bombs internally as well as being able to perform a certain number of tactical bombing missions, like low altitude strike and precision bombing with guided bombs.

 

Please watch this and many other fantastic creations here: www.flickr.com/photos/einon/

 

Since a new bomber would require at least two years to develop and build, the ENA (Empresa Nacional de Armamento) factory modified the already operational Gerifalte bomber for the new role. The result is a highly capable bomber; capable of both high and low altitude high speed bombing missions to avoid detection or interception. The bomber can also operate almost all the guided bombs and missiles used by the Lego Empire, as well as termo-nuclear stealth cruise missiles and it can also be air-refuelled. There is a 3-man crew seated on tandem in a very large cockpit, the pilot, bombardier/missile operator and the gunner/electronic warfare officer. All aircraft are equipped with numerous electronic systems including a comprehensive electronic countermeasures (ECM) suite as well as systems for “Wild Weasel” missions (anti-radar missions). Radar Absorbing materials were also added to reduce radar signature as well as many electronic radar blocker systems. Although not fully stealth, the Ofnir is extremely difficult to detect even for the most recent and advanced radars.

 

The Imperial Naval Aviation also operates a slightly modified version; the Ofnir is highly effective when used for ocean surveillance as well as anti-ship missions and can assist carrier-based aircrafts in both anti-ship and mine-laying operations.The Ofnir has demonstrated its flexibility in every mission in which it has participated, for example the colossal Lego Invasion of Antártida. The long-range bomber performed many “Interdictor” and “Wild Weasel” missions as well as tactical bombing missions. During the Invasion, the Ofnirs struck targets ranging from wide-area troop concentrations, through fixed installations to leadership bunkers, and the sheer power of its attacks totally destroyed the morale of the Antilegos Armed forces. The Ofnir has been the backbone of the manned strategic bomber force for the Lego Empire for the last 10 years and it will remain on that role for many more years, according to pilots.

 

Gerifalte bomber: www.flickr.com/photos/einon/7233435766/in/set-72157628204...

 

Since the Ofnir is a highly modified Gerifalte, the bomber keeps the rear 20mm defensive gun turret (which is aimed and fired by the gunner/electronic warfare officer located on the cockpit) and the two forward firing 37mm guns (which are useful during low altitude missions). The use of defensive gun turrets, capable of firing both explosive shells and flares against incoming missiles or fighters is a fashion, still in use in the Imperial Navy Aviation (essentially a last resort defensive mechanism).Two large hard-points under the wings can also carry extra bombs, external fuel tanks or guided missiles like the D.D.N. anti-ship missile; two other smaller hard-points are also sometimes carried (mainly for Air-to-air missiles or electronic warfare systems).

 

Please watch this and many other fantastic creations here: www.flickr.com/photos/einon/

 

Hope you like it!

 

Please comment!

 

Eínon

"The Badger gives the Oktober Guard a small but capable IFV - lightweight enough to be amphibious and airmobile, but armed and armored well enough to stick around in a firefight and turn the tide against infantry and soft skinned vehicles with its 30 mm autocannon and coaxial machine gun. It also carries what appears to be a tube launched antitank missile, but until this has been confirmed, it remains possible that this is a SAM for self defense against low flying aircraft. A larger heavier IFV design would provide better firepower, survivability, and troop capacity, but the Badger can be dropped by parachute - an essential benefit for a special forces fighting vehicle."

 

Ever since I started my fledgling Oktober Guard faction, I've wanted to build them a BMP or BMD of some kind - a light tracked, amphibious IFV. For this kind of vehicle I usually prefer a manned turret, but making the turret on this one remote allowed me to keep it small and compact which is a characteristic feature of the various BMPs. This one has space for two crew members and space in the back for five dismounts.

 

I'm still figuring out how I feel about this camo scheme, but with three small vehicles in matching livery, I do have a new faction, and that's always fun and exciting!

 

TOPJACK is a modular Jack Up barge with 250 tonne lift

capability complete with 36m legs. Capable for supporting a wide

range of disciplines including port construction, safe investigation

and piling operations.

  

Ravestein Container Pontoon B.V.

 

TYPE RCP-250 – MODULAR SELF ELEVATING PLATFORM

 

Specification Jacking System

 

 Type : Hydraulic cylinders

 Jacking Capacity (4x) : 250 Ton at 250 bar

 Locking : By means of hydraulic activated rotating locks Hydraulic Power Unit

 Type : Electric Hydraulic driven powerpack

 Controls : Remote control (incl. second cable control box)

 Capacity HPU : 2x 55 kW

 Location : In deck container, with small store Generator

 Type : Silenced packed Caterpillar or equal, self supporting

 Capacity : 220 kVa - On top of deck Container Classification:

 German Lloyds : GL 100A5 K(20) Self Elevating Unit, Coastal Water (or equal)

 

Options (not included)

 

 Positioning winches / Deck Crane / RCP Boarding System

 Swim end units / Spud Cans

 Additional Tanks and piping systems

 Backhoe Configuration

 

Contact

David Ravestein / Aernout Goedbloed

Ravestein Container Pontoon B.V.

Waalbandijk 26; 6669 MB Dodewaard (Holland)

Tel +31 (0)488 - 41 18 01

Fax +31 (0)488 - 41 26 47

E-mail info@rcpbv.com

Website www.rcpbv.com

 

Local Notice to Mariners

 

Number: 10/25. Date: 13th May 2025

Exmouth Outfall - Marine Operations - ABCO Divers

Notice is hereby given that ABCO Divers intend to commence work on the Exmouth Outfall Diffuser Pit Excavations and Install on the earliest date of 17th May 2025 on behalf of South West Water Ltd. The works are programmed to be completed by July 2025.

Jack Up Barge “Top Jack 1” in Teignmouth Port, will be towed from Teignmouth as early as Saturday to the outfall site to the east of Exmouth, which is off Straight Point.

Position:

50°36'14.43" N

003°21'30.90" W

The support vessels “Jenny D” and “Celtic Avenger” will be assisting the project throughout the operation. Works will involve excavations from the Jack Up Barge, diving activities and lifting operations to support the install of the outfall diffusers.

All marine users are asked to observe a 500m exclusion zone around the Jack Up Barge.

Vessels

“Topjack 1” – 250t Jack Up Barge – 17m x 24m

“Jenny D” – 21.6m LOA, 9.04m Beam – Multicat and Tug Vessel - IMO 9570905, MMSI 235075339

“Celtic Avenger” – 14m Crew Transfer and Survey Vessel – MMSI 232055392

The combat-proven F-16 has proven itself as the world’s most capable 4th Generation multi-role fighter, serving as the workhorse of the fighter fleet for 28 customers around the world.

 

The F-16A, a single-seat model, first flew in December 1976. The first operational F-16A was delivered in January 1979 to the 388th Tactical Fighter Wing at Hill Air Force Base, Utah.

 

All F-16s delivered since November 1981 have built-in structural and wiring provisions and systems architecture that permit expansion of the multirole flexibility to perform precision strike, night attack, and beyond-visual-range interception missions. This improvement program led to the F-16C and F-16D aircraft, which are the single- and two-place counterparts to the F-16A/B, and incorporate the latest cockpit control and display technology. All active units and many Air National Guard and Air Force Reserve units have converted to the F-16C/D.

 

U.S. Air Force F-16 multirole fighters were deployed to the Persian Gulf in 1991 in support of Operation Desert Storm; where more sorties were flown than with any other aircraft. These fighters were used to attack airfields, military production facilities, Scud missiles sites and a variety of other targets.

 

During Operation Allied Force, U.S. Air Force F-16 multirole fighters flew a variety of missions to include; suppression of enemy air defense, offensive counter air, defensive counter air, close air support and forward air controller missions. Mission results were outstanding as these fighters destroyed radar sites, vehicles, tanks, MiGs and buildings.

 

Since Sept. 11, 2001, the F-16 has been a major component of the combat forces committed to the war on terrorism flying thousands of sorties in support of operations Noble Eagle (Homeland Defense), Enduring Freedom in Afghanistan and Iraqi Freedom.

 

The F-16s are an integral part of the Pacific Air Forces power projection based at Osan Air Base Korea and Eielson Air Force Base, Alaska.

 

-- Technical Information (or Nerdy Stuff) --

‧ Camera - Nikon D7200 (handheld)

‧ Lens – Nikkor 18-300mm Zoom

‧ ISO – 1250

‧ Aperture – f/7.1

‧ Exposure – 1/200 second

‧ Focal Length – 18mm

 

The original RAW file was processed with Adobe Camera Raw and final adjustments were made with Photoshop CS6.

 

"For I know the plans I have for you,” declares the LORD, “plans to prosper you and not to harm you, plans to give you hope and a future." ~Jeremiah 29:11

 

The best way to view my photostream is through Flickriver with the following link: www.flickriver.com/photos/photojourney57/

Mad Max: Fury Road Cosplay

Article copied in full from The Garage magazine dated 8th July 2020, with thanks.......

 

For six years, he was a man with a mission: to recreate Talisman, a Fowler B6 Big Lion Road Locomotive, the ‘King of the Road’ of its era, capable of hauling loads in excess of 100 tonnes.

 

Now Alex’s journey to re-create Talisman has been captured in a mini-series of films to be shared on Facebook and YouTube in June called “How to Build a Steam Engine with Morris Lubricants”.

 

Shrewsbury-based Morris Lubricants, one of Europe’s top independent oil blenders and the company’s brand ambassador Guy Martin supported the mammoth task taken on by Alex, 39, who lives at Bouth, near Ulverston in the Lake District, and his small team of enthusiasts.

 

Only five Fowler B6 Locos were ever made, of which Talisman was one, and the last time one of these steam engines was built was in 1931. Included in the loads Talisman hauled around the country were huge Lancashire boilers.

 

“I had always wanted a Fowler road loco, but it had been impossible to find the exact one that I wanted, so my wife said: ‘Why don’t you make one?’,” explained Alex, who has been fascinated by steam engines since childhood.

 

He grew up idolising Fred Dibnah, the late steeplejack and television personality who had a passion for steam and mechanical engineering. It was fitting that Fred’s sons, Jack ad Roger, were part of the Talisman project team.

 

The story began when Alex bought the company name of John Fowler & Co (Leeds) Ltd, leading manufacturers of steam engines throughout the 1800s and 1900s, who built the original Talisman. The firm supplied its engines to the famous road haulage company Norman E Box, Manchester.

 

Having acquired the original drawings of Talisman, Alex got the project off the ground with funding from Morris Lubricants, who supported him throughout.

 

The ambitious project was given a massive boost in 2017 when Alex tracked down and bought a collection of the original Talisman parts from the family of a late collector in the New Forest.

 

“The paper trail revealed that the original Talisman had been involved in an accident and broke its crank while owned by Pickfords,” explained Alex. “It’s fantastic that we were able to buy these parts, which are a direct connection to the original Talisman.

 

“In terms of the project, it probably didn’t save us much time because we still had to clean the parts and make good what was worn out. But it was a massive boost and also quite intimidating to have had an original part to work to.”

 

Because the new engine has some original parts, the DVLA agreed to let Alex register it as Talisman after his painstaking detective work.

 

Following investment of around £250,000 and years of hard work and challenges recreating the vast majority of Talisman from scratch, Alex unveiled the impressive finished product at Shrewsbury Steam Rally last August to rave reviews and TV coverage.

 

“The new Talisman exactly matches the original engine, but we have used modern technology to build it, such as laser cutting and 3D moulding,” he explained. “The next generation is not going to be building steam engines; they will be restoring i-pads.

 

“Give it another 100 years and people are going to be talking about the Talisman as we talk about Stevenson and Brunel. I am a greater believer in Great Britain and keeping the traditional skills alive. We have built something that is going to be here for years and generations to come.”

 

The new engine weighs 20 tonnes, has back wheels seven feet high, has a nominal 10 horse engine (not to be confused with brake horse power), the equivalent of a very large, modern lorry, a top speed of 20mph on the road and a boiler pressure of 200 PSI. Unusually for locomotives of the time, it is fully sprung.

 

Future plans include demonstrating the steam engine’s capabilities by pulling a 100-tonne load, just like the original Talisman and a promotional tour in association with Morris Lubricants.

 

“We are proud to be associated with Morris Lubricants, a British company with such history and style and their support comes from the heart,” said Alex. “It’s a perfect match and the company genuinely believes this was a great thing to do.

 

“Because the owners are steam enthusiasts, the company was quick to provide extra funding when I found the original Talisman parts. The support from Morris has been fantastic because they have been in business for 150 years and produce high quality products, including oil for steam engines.”

 

Guy Martin enjoyed contributing to the Talisman build and was very enthusiastic about project. “When I saw the engine for the first time, I thought it was cracking,” he said. “Then I thought who younger than me or Alex is doing this type of thing.

 

“If we don’t do it, the next generation will be resurrecting spectrums rather than buggering around with steam engines.”

 

Morris Lubricants’ executive chairman Andrew Goddard said: “It was a massive undertaking to recreate what in the steam world is a legendary engine but, knowing Alex and the high standard of his work, I was in no doubt that Talisman would be spot on.

 

“As a company with a heritage in steam, we are very proud to be associated with this venture and have some exciting plans to promote Talisman when the Coronavirus pandemic has cleared.”

 

Members of the Goddard family are keen steam enthusiasts themselves, owning two Burrell traction engines and a Sentinel steam waggon. Andrew’s brother, Edward, is Shrewsbury Steam Rally chairman and their parents, David and Diana, are directors of Morris Lubricants.

 

Morris Lubricants has been manufacturing lubricants in Shrewsbury since 1869 and is new recognised as one of Europe’s leading oil blenders and marketers, with a reputation for quality and service.

iPhone6

 

23rd October 1976. It is forty years since I went to see Patti Smith at the Hammersmith Odeon. I went with two friends from Weston-super-Mare, Mike Llewellyn and Jane Jackman. The 1963 Citroen 2cv Van that I had at the time was only capable 50 mph and only had proper seating for two so we decided to travel up to London by train. We spent the afternoon checking out record shops. I found this live Patti Smith bootleg "Turn It Up" in market, I can't recall exactly which one.

 

I was already a committed Patti Smith fan. I had bought the first album "Horses" on American import in December 1975 from the old Virgin Records and Tapes in Haymarket Walk, Bristol. I still reckon that the opening lines on that album, "Jesus died for somebody's sins but not mine" are amongst the greatest opening lines of all time.

 

The UK punk movement was starting to get quite a bit of media overage by October 1976. This was still before the Sex Pistols vs. Bill Grundy spectacle but if you went by what you read in the NME you would have expected the streets to be swarming with punks. They were not, and the audience inside the Hammersmith Odeon looked pretty much like any other rock gig crowd. We did however get to hear New Rose by The Damned packed over the PA while we waited for the support act to play. It had been released on Stiff Records the day before.

 

The support was The Stranglers. I remember not being particularly impressed and finding them a bit dull at the time but a few months later I did buy their debut album. Patti Smith though was great. Very intense and energetic. She was joined onstage at one point by reggae artist Tapper Zukie who was also on tour at the time. I don't pretend to remember much about the setlist apart from Gloria, but it included songs from both Horses and the newly released Radio Ethiopia and I think as well the Velvet's number We're Gonna Have a Real Good Time Together.

 

After the gig we made our way to Pimlico where we crashed at the flat of Pete Flanagan, also Weston-super-Mare and a friend of Mike's. I knew him casually. He had been a year below me in school. A nice guy. That was the last time I ever saw him.

 

Mike and I did quite a few gigs bak then, including the Runaways and Graham Parker and the Rumour at Cardiff University a couple of weeks earlier. We did use the 2cv Van to get to that one. It wasn't quite so far to go at an average of about 40 mph. Mike gout very aught up in the whole punk thing and things got a bit out of hand. We lost touch and sometime during the 1980s I heard that he had died. A great shame. He was a gentle soul who just loved music. I remember listening to LPs on his Rigonda Stereo. Rigondas were made in the Soviet Union and sold very cheaply in the west to earn had currency. THey looked a bit naff but sounded great. I bought my opt of the MC5's Back in the USA off Mike.

 

Jane also dived into punk culture big time. She moved to London and changed her name to Jane Suck and beams a freelance journalist. She came back to Weston a couple of times and I bumped into her in Maximillian's Wine Bar. She was really excited about the whole punk think. She told of her first meeting with Johnny Rotten. "I'm the female equivalent of Iggy Pop" she had told him. "Don't tell me that you are the female equivalent of anyone" he had replied. She had become friends with T.V. Smith and Gaye Advert. Tim Smith is the real thing she had told me, the true future of punk and a great writer and a really great person. She is credited on the back of their debut album for owing up with the album title "Crossing the Red Sea". Jane gets a paragraph in Jon Savage's book on the punk years "England's Dreaming". Her journalism career did not last long. She had already been involved in an altercation with Suzi Quatro mid interview. She had a short fuse and the music papers stopped giving her assignments. I gave her a lift back to her parent's house and never saw her again.

 

Earlier this year I went to see T.V. Smith at Katie Fitzgerald's and asked hime if he knew what had happened to her. He had not seen her about fifteen years but yes, she had survived the punk era. I was glad to hear that. And Jane was right about Tim T.V. Smith, he is a really nice person and a great performer.

 

Anyway, I still have that bootleg album and the ticket from the Hammersmith Odeon gig still lives inside the sleeve, along with another one from her gig at the Birmingham arming Academy in 2004.

 

Art + Electricity = Rock and Roll

   

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.

 

Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.

 

This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.

For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).

 

The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.

To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.

 

The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.

However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.

  

General characteristics:

Crew: 2 pilots and 2 crew

Length: 12,06 m (39 ft 2 1/2 in)

Height: 4 m (13 ft 1 in)

Main rotor diameter: 12,10 m (39 ft 7 1/2 in)

Main rotor area: 38.54 m² (414.8 sq ft)

Empty weight: 3,128 kg (6,896 lb)

Max takeoff weight: 4,300 kg (9,480 lb)

 

Powerplant:

2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each

 

Performance:

Maximum speed: 330 km/h (210 mph, 180 kn)

Cruise speed: 240 km/h (150 mph, 130 kn)

Range: 658 km (409 mi, 355 nmi)

Service ceiling: 5,486 m (17,999 ft)

 

Armament:

None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7

mm) caliber precision rifle in each side door

  

The kit and its assembly:

Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.

 

As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!

 

However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.

A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.

 

The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...

 

The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.

  

Painting and markings:

It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".

 

No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.

  

Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.

After exiting the HazMat Capable tunnel, a U.S. Army tanker makes it's way back onto the open highway in the truck lanes with the regular traffic.

 

1:64 Diecast Promotions

Kenworth W900 w/ 5,000 Gallon Fuel Tanker

1:64 Greenlight Motor World Honda Civic Si

 

See the notes for more info:

For more info about the dioramas, check out the FAQ: 1stPix FAQ

OLYMPUS E-600

At the beginning of the Vietnam War, there was little interest in a dedicated counterinsurgency (COIN) aircraft. The USAF was too committed to an all-jet, nuclear-capable force, while the US Army was satisfied with its helicopter fleet; the Navy concentrated on its carriers, and while the Marines were mildly interested, they lacked funding.

 

Vietnam was to change that. Horrendous losses among US Army UH-1s was to lead to a rethinking of helicopter doctrine, and pointed up the lack of a dedicated COIN aircraft. The USAF found itself depending on World War II-era A-26K Invaders, former US Navy A-1 Skyraiders, and converted trainers like the T-28 Trojan. The USAF also found itself in the market for a better forward air control (FAC) aircraft, due to the high loss rate of its O-1 Birddogs and O-2 Skymasters. Finally, the US Navy needed something to better cover its Mobile River Force units in the Mekong Delta, which could not always depend on USAF air support. In 1963, all three services issued a requirement for a new light design capable of performing as both a COIN and FAC aircraft. North American's NA-300 was selected in 1964 and designated OV-10A Bronco.

 

The OV-10 design drew heavily on independent research done at the China Lake research establishment, which in turn was inspired by the World War II P-38 Lightning fighter. The P-38 used a central "gondola" fuselage to concentrate all of its firepower along the centerline, which made for better accuracy; the OV-10 would do the same. As in the P-38, the engines were contained in twin booms that stretched back to the tail. The Bronco's four machine gun armament was placed in sponsons on either side of the fuselage, while ordnance was carried beneath the sponsons. To satisfy the USAF's requirements for a FAC aircraft, the two-man crew flew underneath a large, spacious canopy that gave them superb visibility. Because the Marines wanted an aircraft that could carry a Recon team, the fuselage was extended and, if the rear seat was removed, five paratroopers could be squeezed into the back, or two stretchers.

 

When the OV-10 arrived in Vietnam in 1968, there was a fear that the Bronco would be the jack of all trades and master of none. In fact, it proved to be excellent in all of its roles. As a FAC, it was a huge improvement over the slower O-1 and O-2; as a COIN aircraft, it was also a good aircraft, though it could not carry the same amount of ordnance as an A-1. The Navy equipped one squadron with OV-10As as VAL-4--nicknamed the "Black Ponies" for their dark green camouflage--and these were used extensively over the Mekong Delta. There were problems with the design: the airframe was actually too heavy for the engines, which left it underpowered, and ditching was invariably fatal for the pilot, as his seat tended to hurl forward into the instrument panel. Nonetheless, the Bronco turned in a sterling performance in Southeast Asia.

 

Though the Navy transferred its surviving Black Ponies to the Marines after the end of American involvement in Vietnam, the USAF and Marines would keep theirs for the next 20 years. For the 1970s and 1980s, the OV-10 replaced all other FAC designs in USAF service, aside from a handful of OA-37B Dragonfly squadrons. The Marines also kept their OV-10s and further refined the design by adding all-weather capability in the long-nosed OV-10D variant.

 

By the First Gulf War in 1991, the OV-10 was starting to show its age. The USAF began retiring its fleet even before Desert Storm; the Bronco was considered to be too slow to survive a modern air defense environment. Though the Marines used some of their OV-10Ds, the loss of two aircraft also led the USMC to retire their Broncos after war's end. Both services chose jets as replacements--the USAF with modified OA-10A Thunderbolt IIs, and the Marines with two-seat all-weather F/A-18Ds.

 

OV-10s were also a mild export success, going to seven other countries, mainly in the COIN role. Most have since been retired in favor of newer designs, though the Philippines still has a large and active OV-10 force. The type enjoyed a brief renaissance in 2015 when two former Marine OV-10Ds were taken up by the USAF for use against ISIS forces in Iraq, to see if the design was still viable. Though the OV-10s performed well, the USAF is not likely to put it back into production. 360 were built, and at least 25 are on display in museums aside from the aircraft that are still operational.

 

Dad took this picture of this rather anonymous OV-10A in 1980, at the Sembach airshow; this aircraft was assigned to the base's 601st Tactical Air Control Wing. By 1980, the USAF Bronco fleet had switched to Europe One camouflage, which suited the aircraft better over the forests of Europe (or Korea) more than the overall gray of the Vietnam era. It also provided commonality with the A-10s forward based at Sembach.

 

As usual, we got there a bit early, which gave Dad some unimpeded shots of the 601st OV-10s. Note the ladder: the crew opened the canopy up once the airshow formally started, and let kids sit in the aircraft, where we could play with the stick and the instruments a little. Dad later got a picture of me in the cockpit of this aircraft, holding on for dear life as the kid behind me tried to slam the stick into my knees. Needless to say, this sort of thing would never be allowed at airshows today.

Cappadocia is famous for its hot air balloon rides over picturesque landscapes. These balloons are monstrous in size, each capable of carrying a bus load (~50) of people!

 

Hot-air balloon site,

Cappadocia, Türkiye

 

**************************************

 

For the past couple of years, I have struggled with exactly what I am doing on Flickr. I travel a fair amount and I shoot a lot of photos. A tiny fraction of them might qualify as fine art or maybe worthy of printing. But most of these photos are of a documentary nature.

 

In the past, I have been publishing these photos on flickr, whether they were test shots from a specific lens or a camera, or photos from some place I visited. Then I thought I should perhaps not publish so many “run of the mill” photos, but instead, I should focus on a much smaller volume of images I would be of very high quality or photos that were really unusual or interesting.

 

But as a practical matter, I haven’t had the time sort through thousands of images and identify my “masterpieces”. I don’t even know if I have any! In the meantime, my photos are piling up. A lot of these photos, even if somewhat garden-variety, at least capture what I saw on my travels. There may be some value in publishing these, after all. If someone else is planning a trip to Turkiye or Tanzania or wherever, maybe they might find it interesting to browse through my images to get a feel for the place.

 

So I have decided to not hold back, but simply upload anything that looks halfway decent. By not publishing on Flickr, I have also distanced myself from my contacts. So by being back on Flickr, I get a chance to stay in touch with my contacts. So enjoy the images if you get a chance to see them, but please do NOT feel compelled to comment on any of these.

  

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Société Nationale des Chemins de Fer Luxembourgeois (Luxembourg National Railway Company, abbreviated CFL) is the national railway company of Luxembourg. The Luxembourg rail system comprises (only) 275 route-kilometres (170 miles), of which 140 kilometres (87 mi) is double track and 135 kilometres (84 mi) single track. Of the total track length of 617 kilometres (383 mi), 576 kilometres (358 mi) are electrified at 25 kV, 50 Hz AC.

 

Luxembourg borders Belgium, France and Germany. Correspondingly, there are cross-border services into these countries. Some are wholly run by CFL, whereas others are run by SNCF, NMBS/SNCB and DB. CFL passenger trains cover most of the network and are operated by EMUs and electric locomotives, typically with push-pull stock. Despite a high degree of electrification, the CFL also had a fleet of diesel locomotives for hauling freight trains and for general shunting purposes. CFL.

The CFLs first electric locomotive, introduced in 1958, was the Class 3600, the so-called “fer à repasser” (= “electric iron”), a group of twenty electric locomotives that were built to the design of the French BB 12000 class. These were primarily intended for freight trains but also capable of pulling light passenger trains with up to 120 km/h (75 mph). The Class 3600 was originally designed to be capable of pulling 750 ton trains along a grade of 10 ‰, but in service it proved more than capable, frequently pulling 1100 tons and then even 1400 ton trains without problems.

 

However, for fast and heavier passenger trains, especially those that crossed the borders to Northern France with the same 25 kV, 50 Hz alternating current system as Luxembourg as well as to Germany with its 15 kV, 16.7 Hz electrification, the CFL ordered twelve additional dual system locomotive. They were more powerful and faster than the Class 3600 and became the new Class 3800 – roughly comparable with the German E 310/BR 181 dual system locomotives that were operated in the same region. The Class 3800 machines were designed and built between 1959 and 1961 in the Netherlands by Werkspoor in Utrecht, with technical support from the German Siemens-Schuckert-Werke (SSW) for the electric systems. They were heavily influenced by the contemporary Co′Co′ multipurpose Series 1200 electric locomotives for the Netherlands Spoorwegen (NS), originally designed by Baldwin and sporting typical American styling with a brawny silhouette, stepped “Cab unit” style nose sections and doors at the locomotives’ front ends to allow direct access to a coupled wagon from the driver cabins.

Even though they were based on the NS Series 1200, the CFL Class 3800 units used a shortened main frame and newly developed bogies with a Bo′Bo’ arrangement. All in all, the Class 3800 was more than 20 tons lighter than its Dutch six-axle sibling and only shared a superficial similarity – under the hood, the locomotive was technically totally different from the NS’ Series 1200 (which was designed for the Dutch 1.5 kV DC system).

 

The locomotives drew their energy from the 15 kV / 16 2/3 Hz or 25 kV / 50 Hz catenary via two diamond pantographs with contact strips of different lengths for the different areas of application. The 3-core transformers were oil-cooled, to which the control unit with its 28 running steps was connected. The acceleration was designed to function in delayed mode, where the engineer chose the running step, and the control unit would initiate the chosen setting independently. For emergency operation manual control by hand crank was possible, too. The voltage reached the main transformer via an air-operated main switch. On the secondary side, the traction motors were controlled via thyristors using stepless phase angle control, a modern technology at the time, as were the comparatively light mixed current motors. Mechanical switching mechanisms were therefore no longer required, and the vehicle control technology also worked with modern electronics. To ensure a good frictional connection between rail and wheel, the power converters always regulated a slightly lower tractive force on the preceding wheel sets of each bogie. If, however, one or more wheelsets slipped, the drive control reduced the tractive effort for a short time.

 

The CFL Class 3800’s four traction motors collective output was 3,700 kW (5,000 hp). This gave the Class 3800 a tractive effort of 275 kN (62,000 lbf) and a theoretical top speed of 150 km/h (93 mph), even though this was in practice limited to 140 km/h (87 mph). A time-division multiplex push-pull and double-traction control system was installed, too, so that two of these locomotives could together handle heavier freight trains and exploit the locomotives’ good traction. All locomotives featured an indirect air brake, with automatically stronger braking action at high speeds; for shunting/switching service an additional direct brake was present, too. All units featured a separately excited rheostatic/regenerative brake, which was coupled to the air brake. The heat generated by the electric brakes was dissipated via roof exhausts, supported by a pair of cooling fans.

 

The safety equipment in the driver's cab featured a mechanical or electronic deadman's device, punctiform automatic train controls, and train radio equipment with GSM-R communication. For operations in Germany the units received a third front light and separate red taillights, as well as an “Indusi” inductive system for data transfer between the track and locomotive by magnets mounted beside the rails and on the locomotive. Later in their career, automatic door locking at 0 km/h was retrofitted, which had become a compulsory requirement for all locomotives in passenger service.

 

After a thorough test phase of the pre-production locomotives 3801 and 3802 in 1960, the first Class 3800 serial units went into service in 1961 and were, due to the characteristic design of their driver’s cabins and their bulky shape, quickly nicknamed “Bouledogue” (Bulldog). The initial two locomotives were delivered in a pale blue-grey livery, but they were soon repainted in the CFL’s standard burgundy/yellow corporate paint scheme, and all following Class 3800 locomotives from 3803 on were directly delivered in this guise.

 

Initially, the service spectrum of the Bouledogues comprised primarily fast passenger trains on the CFL’s domestic main routes to the North and to the East, with additional border-crossing express trains, including prestigious TEE connections, to Germany (e. g. to Trier and Cologne) and France (Paris via Reims). The 3800s supplemented the CFL’s fast Series 1600 diesel locomotives on these important international destinations once they had been fully electrified. Occasionally, they were also used for freight trains in the industrial Esch-sur-Alzette region and for fast freight trains on the electrified main routes, as well as for regional passenger traffic on push-pull trains. Heavier freight trains remained the working field of the CFL Class 3600, even though occasional ore trains were handled by Class 3800 locomotives in double traction, too.

 

Even though Werkspoor hoped for more CFL orders for this dual-system type, the twelve Series 3800 locomotives remained the sole specimen. Potential buyers like Belgium or the Netherlands also did not show much interest – even though the SNCB ordered several multi-system locomotives, including eight indigenous Class 16 locomotives, equipped to run in France, Netherlands and Germany, or the six Class 18 four-system machines derived from the French SNCF CC 40100 express passenger locomotives.

 

During the Nineties the CFL started to use more and more EMUs on the domestic passenger routes, so that the Class 3800s gradually took over more and more freight train duties, relieving the older Series 3600s and replacing diesel-powered locomotives (esp. the Class 1800) on electrified routes. Border-crossing passenger train services were furthermore limited to trains to Germany since long-distance passenger train services in France switched to the TGV train system with its separate high-speed lines. Freight trains to France were still frequent Class 3800 duties, though, and occasionally coal trains were pulled directly to the industrial Ruhr Area region in Western Germany.

 

After the Millennium the Class 3800s gradually lost their duties to the new CFL Class 4000 multi-system locomotives, a variant of the Bombardier TRAXX locos found working across Europe. On 31 December 2006 the last Class 3800 (3809) was retired. Their versatility, robustness and performance have, however, allowed some of these locomotives to exceed 45 years of service. Bouledogue “3803” reached more than 9,2 million kilometers (5.7 million miles), a remarkable performance.

Only two 3800s had to be written off during the type’s career: 3804 suffered a major transformer damage and was destroyed by the ensuing fire near Troisvierges in Northern Luxembourg and 3810 was involved in a freight train derailment south of Differdange, where it was damaged beyond repair and had to be broken up on site. A single Class 3800 locomotive (3811) survived the retirement and has been kept as a static exhibition piece at the CFL Dépot at Luxembourg, the rest was scrapped.

  

General characteristics:

Gauge: 1,435 mm (4 ft 8½ in) standard gauge

UIC axle arrangement: Bo´Bo´

Overall length: 16.49 m (54 ft 1 in)

Pivot distance: 7,9 m (25 ft 10 in)

Bogie distance: 3,4 m (11 ft 1½ in)

Wheel diameter (when new): 1.250 mm (4 ft 1½ in)

Service weight: 83 t

 

Engine:

Four traction motors with a collective output of 3,700 kW (5,000 hp)

 

Performance:

Maximum speed: 150 km/h (93 mph), limited to 140 km/h (87 mph) in service

Torque: 275 kN starting tractive effort

164 kN continuous traction effort

  

The model and its assembly:

My second attempt to create a functional H0 scale what-if locomotive – and after I “only” did a color variant with some cosmetic changes on the basis of a Märklin V160/BR 216 diesel locomotive, I wanted something more special and challenging. However, kitbashing model locomotives with a metal chassis that includes a functional motor, respective drivetrain/gearing and electronics is not as easy as gluing some plastic parts together. And finding “matching” donor parts for such a stunt is also not as easy as it may seem. But what would life be without attempts to widen its boundaries?

 

This time I wanted an electric locomotive. Inspiration (and occasion) somewhat struck when I stumbled upon a running/functional chassis of a Märklin E 10/BR 110 (#3039), just without light and naturally missing the whole upper hull. Due to its incompleteness, I got it for a reasonable price, though. With this basis I started to watch out for eventual (and affordable) donor parts for a new superstructure, and remembered the collectible, non-powered all-plastic locomotive models from Atlas/IXO.

 

The good thing about the Märklin 3039 chassis was that it was just a solid and flat piece of metal without integrated outer hull elements, headstock or side skirts, so that a new hull could (theoretically) be simply tailored to fit over this motorized platform. Finding something with the exact length would be impossible, so I settled upon an Atlas H0 scale Nederlands Spoorwegen Series 1200 locomotive model, which is markedly longer than the German BR 110, due to its six axles vs. the E 10/BR 110’s four. Another selling point: the NS 1200’s body is virtually blank in its middle section, ideal for shortening it to match the different chassis. Detail of the Atlas plastic models is also quite good, so there was the potential for something quite convincing.

 

Work started with the disassembly of the static Atlas NS Class 1200 model. It's all-styrene, just with a metal plate as a chassis. Against my expectations the model's hull was only held on the chassis by two tiny screws under the "noses", so that I did not have to use force to separate it. The body's walls were also relatively thin, good for the upcoming modifications. The model also featured two nice driver's stations, which could be removed easily, too. Unfortunately; they had to go to make enough room for the electronics of the Märklin 3039 all-metal chassis.

 

Dry-fitting the chassis under the Class 1200 hull revealed that the stunt would basically work - the chassis turned out to be only marginally too wide. I just had to grind a little of the chassis' front edges away to reduce pressure on the styrene body, and I had to bend the end sections of the chassis’ stabilizing side walls.

To make the Class 1200 hull fit over the shorter BR 110 chassis a section of about 3 cm had to be taken out of the body’s middle section. The Class 1200 lent itself to this measure because the body is rather bare and uniform along its mid-section, so that re-combining two shortened halves should not pose too many problems.

 

To make the hull sit properly on the chassis I added styrene profiles inside of it - easy to glue them into place, thanks to the material. At this time, the original fixed pantographs and some wiring on the roof had gone, brake hoses on the nose were removed to make space for the BR 110 couplers, and the clear windows were removed after a little fight (they were glued into their places, but thankfully each side has three separate parts instead of just one that would easily break). PSR on the seam between the hull halves followed, plus some grey primer to check the surface quality.

 

Even though the new body now had a proper position on the metal chassis, a solution had to be found to securely hold it in place. My solution: an adapter for a screw in the chassis’ underside, scratched. I found a small area next to the central direction switch where I could place a screw and a respective receiver that could attached to the body’s roof. A 3 mm hole was drilled into the chassis’ floor and a long Spax screw with a small diameter was mated with a hollow square styrene profile, roughly trimmed down in length to almost reach the roof internally. Then a big lump of 2C putty was put into the hull, and the styrene adapter pressed into it, so that it would held well in place. Fiddly, but it worked!

 

Unfortunately, the pantographs of the Atlas/IXO model were static and not flexible at all. One was displayed raised while the other one was retracted. Due to the raised pantograph’s stiffness the model might lose contact to or even damage the model railroad catenary, even when not pulling power through it – not a satisfactory condition. Since the chassis could be powered either from below or through the pantographs (the Märklin 3039 chassis offers an analogue switch underneath to change between power sources) I decided to pimp my build further and improve looks and functionality. I organized a pair of aftermarket diamond pantographs, made from metal, fully functional and held in place on the model’s roof with (very short and) small screws from the inside.

I was not certain if the screws were conductive, and I had to somehow connect them with the switch in the chassis. I eventually soldered thin wire to the pantographs’ bases, led them through additional small holes in the roof inside and soldered them to the switch input, with an insulating screw joint in-between to allow a later detachment/disassembly without damage to the body. There might have been more elegant solutions, but my limited resources and skills did not allow more. It works, though, and I am happy with it, since the cables won’t be visible from the outside. This layout allows to draw power through them, I just had to create a flexible and detachable connection internally. Some plugs, wire and soldering created a solution – rough (electronics is not my strength!), but it worked! Another investment of money, time and effort into this project, but I think that the new pantographs significantly improve the overall look and the functionality of this model.

 

Internally, the missing light bulbs were retrofitted with OEM parts. A late external addition were PE brass ladders for the shunting platforms and under the doors for the driver’s cabins. They were rather delicate, but the model would not see much handling or railroading action, anyway, and the improve the overall impression IMHO a lot. On the roof, some details like cooling fans and tailored conduits (from the Atlas Series 1200) were added, they partly obscure the seam all around the body.

 

Unfortunately, due to the necessary space for the chassis, its motor and the electronics, the driver stations’ interiors could not be re-mounted – but this is not too obvious, despite the clear windows.

  

Painting and markings:

Finding a suitable operator took some time – I wanted a European company, and the livery had to be rather simple and easy to create with my limited means at hand, so that a presentable finish could be achieved. Belgium was one candidate, but I eventually settled on the small country of Luxembourg after I saw the CFL’s Class 3600s in their all-over wine-red livery with discreet yellow cheatlines.

 

The overall basic red was, after a coat with grey primer, applied with a rattle can, and I guesstimated the tone with RAL 3005 (Weinrot), based on various pictures of CFL locomotives in different states of maintenance and weathering. Apparently, the fresh paint was pretty bright, while old paint gained a rather brownish/maroon hue. For some contrast, the roof was painted in dark grey (Humbrol 67; RAL 7024), based on the CFL’s Class 3600 design, and the pantographs’ bases were painted and dry-brushed with this tone, too, for a coherent look. The chassis with its bogies and wheels remained basically black, but it was turned matt, and the originally bare metal wheel discs were painted, too. The visible lower areas were thoroughly treated with dry-brushed red-brown and dark grey, simulating rust and dust while emphasizing many delicate details on the bogies at the same time.

The hull was slightly treated with dry-brushed/cloudy wine red, so that the red would look a bit weathered and not so uniform. The grey roof was treated similarly.

 

The yellow cheatlines were created with yellow (RAL 1003) decal stripes from TL Modellbau in 5 and 2mm width. Generic H0 scale sheets from the same company provided the yellow CFL logos and the serial numbers on the flanks, so that the colors matched well. Stencils and some other small markings were procured from Andreas Nothaft (Modellbahndecals.de).

 

After securing the decals with some acrylic varnish the model was weathered with watercolors and some dry-brushing, simulating brownish-grey dust and dirt from the overhead contact line that frequently collects on the roof and is then washed down by rain. Finally, the whole body was sealed with matt acrylic varnish from the rattle can – even though it turned out to be rather glossy. But it does not look wrong, so I stuck with this flaw.

 

Among the last steps was the re-mounting of the clear windows (which had OOB thin silver trim, which was retained) and head- and taillights were created with ClearFix and white and red clear window color.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some Background:

The Lockheed F-94 Starfire was a first-generation jet aircraft of the United States Air Force. It was developed from the twin-seat Lockheed T-33 Shooting Star in the late 1940s as an all-weather, day/night interceptor, replacing the propeller-driven North American F-82 Twin Mustang in this role. The system was designed to overtake the F-80 in terms of performance, but more so to intercept the new high-level Soviet bombers capable of nuclear attacks on America and her Allies - in particular, the new Tupelov Tu-4. The F-94 was furthermore the first operational USAF fighter equipped with an afterburner and was the first jet-powered all-weather fighter to enter combat during the Korean War in January 1953.

 

The initial production model, the F-94A, entered operational service in May 1950. Its armament consisted of four 0.50 in (12.7 mm) M3 Browning machine guns mounted in the fuselage with the muzzles exiting under the radome for the APG-33 radar, a derivative from the AN/APG-3, which directed the Convair B-36's tail guns and had a range of up to 20 miles (32 km). Two 165 US Gallon (1,204 litre) drop tanks, as carried by the F-80 and T-33, were carried on the wingtips. Alternatively, these could be replaced by a pair of 1,000 lb (454 kg) bombs under the wings, giving the aircraft a secondary fighter bomber capability. 109 were produced.

 

The subsequent F-94B, which entered service in January 1951, was outwardly virtually identical to the F-94A. Its Allison J33 turbojet had a number of modifications made, though, which made it a very reliable engine. The pilot was provided with a roomier cockpit and the canopy received a bow frame in the center between the two crew members. A new Instrument Landing System (ILS) was fitted, too, which made operations at night and/or in bad weather much safer. However, this new variant’s punch with just four machine guns remained weak, and, to improve the load of fire, wing-mounted pods with two additional pairs of 0.5” machine guns were introduced – but these hardly improved the interceptor’s effectiveness. 356 of the F-94B were nevertheless built.

 

The following F-94C was extensively modified and initially designated F-97, but it was ultimately decided just to treat it as a new version of the F-94. USAF interest was lukewarm since aircraft technology had already developed at a fast pace – supersonic performance had already become standard. Lockheed funded development themselves, converting two F-94B airframes to YF-94C prototypes for evaluation with a completely new, much thinner wing, a swept tail surface and a more powerful Pratt & Whitney J48. This was a license-built version of the afterburning Rolls-Royce Tay, which produced a dry thrust of 6,350 pounds-force (28.2 kN) and approximately 8,750 pounds-force (38.9 kN) with afterburning. Instead of machine guns, the proposed new variant was exclusively armed with unguided air-to-air missiles.

Tests were positive and eventually the F-94C was adopted for USAF service, since it was the best interim solution for an all-weather fighter at that time. It still had to rely on Ground Control Interception Radar (GCI) sites to vector the interceptor to intruding aircraft, though.

 

The F-94C's introduction and the availability of the more effective Northrop F-89C/D Scorpion and the North American F-86D Sabre interceptors led to a quick relegation of the earlier F-94 variants from mid-1954 onwards to second line units and to Air National Guards. By 1955 most of them had already been phased out of USAF service, and some of these relatively young surplus machines were subsequently exported or handed over to friendly nations, too. When sent to the ANG, the F-94As were modified by Lockheed to F-94B standards and then returned to the ANG as B models. They primarily replaced outdated F-80C Shooting Stars and F-51D/H Mustangs.

 

At that time the USAF was looking for a tactical reconnaissance aircraft, a more effective successor for the RF-80A which had shown its worth and weaknesses during the Korea War. For instance, the plane could not fly at low altitude long enough to perform suitable visual reconnaissance, and its camera equipment was still based on WWII standards. Lockheed saw the opportunity to fill this operational gap with conversions of existing F-94A/B airframes, which had, in most cases, only had clocked few flying hours, primarily at high altitudes where Soviet bombers were expected to lurk, and still a lot of airframe life to offer. This led to another private venture, the RF-94B, auspiciously christened “Stargazer”.

 

The RF-94B was based on the F-94B interceptor with its J33 engine and the original unswept tail. The F-94B’s wings were retained but received a different leading-edge profile to better cope with operations at low altitude. The interceptor’s nose with the radome and the machine guns underneath was replaced by a new all-metal nose cone, which was more than 3 feet longer than the former radar nose, with windows for several sets of cameras; the wedge-shaped nose cone quickly earned the aircraft the unofficial nickname “Crocodile”.

One camera was looking ahead into flight direction and could be mounted at different angled downward (but not moved during flight), followed by two oblique cameras, looking to the left and the right, and a vertical camera as well as a long-range camera focussed on the horizon, which was behind a round window at port side. An additional, spacious compartment in front of the landing gear well held an innovative Tri-Metrogen horizon-to-horizon view system that consisted of three synchronized cameras. Coupled with a computerized control system based on light, speed, and altitude, it adjusted camera settings to produce pictures with greater delineation.

All cameras could be triggered individually by pilot or a dedicated observer/camera systems operator in the 2nd seat. Talking into a wire recorder, the crew could describe ground movements that might not have appeared in still pictures. A vertical view finder with a periscopic presentation on the cockpit panel was added for the pilot to enhance visual reconnaissance and target identification directly under the aircraft. Using magnesium flares carried under its wings in flash-ejector cartridges, the RF-94B was furthermore able to fly night missions.

The RF-94B was supposed to operate unarmed, but it could still carry a pair of 1.000 lb bombs under its wings or, thanks to added plumbings, an extra pair of drop tanks for ferry flights. The F-94A/B’s machine gun pods as well as the F-94C’s unguided missile launchers could be mounted to the wings, too, making it a viable attack aircraft in a secondary role.

 

The USAF was highly interested in this update proposal for the outdated interceptors (almost 500 F-94A/Bs had been built) and ordered 100 RF-94B conversions with an option for 100 more – just when a severe (and superior) competitor entered the stage after a lot of development troubles: Republic’s RF-84F Thunderflash reconnaissance version. The first YRF-84F had already been completed in February 1952 and it had an overall slightly better performance than the RF-94B. However, it offered more internal space for reconnaissance systems and was able to carry up to fifteen cameras with the support of many automatized systems, so that it was a single seater. Being largely identical to the F-84F and sharing its technical and logistical infrastructures, the USAF decided on short notice to change its procurement decision and rather adopt the more modern and promising Thunderflash as its standard tactical reconnaissance aircraft. The RF-94B conversion order was reduced to the initial 100 aircraft, and to avoid operational complexity these aircraft were exclusively delivered to Air National Guardss that had experience with the F-94A/B to replace their obsolete RF-80As.

 

Gradual replacement lasted until 1958, and while the RF-94B’s performance was overall better than the RF-80A’s, it was still disappointing and not the expected tactical intelligence gathering leap forward. The airframe did not cope well with constant low-level operations, and the aircraft’s marginal speed and handling did not ensure its survivability. However, unlike the RF-84F, which suffered from frequent engine problems, the Stargazers’ J33 made them highly reliable platforms – even though the complex Tri-Metrogen device turned out to be capricious, so that it was soon replaced with up to three standard cameras.

 

For better handling and less drag esp. at low altitude, the F-94B’s large Fletcher type wingtip tanks were frequently replaced with smaller ones with about half capacity. It also became common practice to operate the RF-94Bs with only a crew of one, and from 1960 on the RF-94B was, thanks to its second seat, more and more used as a trainer before pilots mounted more potent reconnaissance aircraft like the RF-101 Voodoo, which eventually replaced the RF-94B in ANG service. The last RF-94B was phased out in 1968, and, unlike the RF-84F, it was not operated by any foreign air force.

  

General characteristics:

Crew: 2 (but frequently operated by a single pilot)

Length: 43 ft 4 3/4 in (13.25 m)

Wingspan (with tip tanks): 40 ft 9 1/2 in (12.45 m)

Height: 12 ft. 2 (3.73 m)

Wing area: 234' 8" sq ft (29.11 m²)

Empty weight: 10,064 lb (4,570 kg)

Loaded weight: 15,330 lb (6,960 kg)

Max. takeoff weight: 24,184 lb (10,970 kg)

 

Powerplant:

1× Allison J33-A-33 turbojet, rated at 4,600 lbf (20.4 kN) continuous thrust,

5,400 lbf (24 kN) with water injection and 6,000 lbf (26.6 kN) thrust with afterburner

 

Performance:

Maximum speed: 630 mph (1,014 km/h) at height and in level flight

Range: 930 mi (813 nmi, 1,500 km) in combat configuration with two drop tanks

Ferry range: 1,457 mi (1,275 nmi, 2,345 km)

Service ceiling: 42,750 ft (14,000 m)

Rate of climb: 6,858 ft/min (34.9 m/s)

Wing loading: 57.4 lb/ft² (384 kg/m²)

Thrust/weight: 0.48

 

Armament:

No internal guns; 2x 165 US Gallon (1,204 liter) drop tanks on the wing tips and…

2x underwing hardpoints for two additional 165 US Gallon (1,204 liter) ferry tanks

or bombs of up to 1.000 lb (454 kg) caliber each, plus…

2x optional (rarely fitted) pods on the wings’ leading edges with either a pair of 0.5" (12.7 mm)

machine guns or twelve 2.75” (70 mm) Mk 4/Mk 40 Folding-Fin Aerial Rockets each

  

The kit and its assembly:

This project was originally earmarked as a submission for the 2021 “Reconnaissance & Surveillance” group build at whatifmodellers.com, in the form of a Heller F-94B with a new nose section. The inspiration behind this build was the real-world EF-94C (s/n 50-963): a solitary conversion with a bulbous camera nose. However, the EF-94C was not a reconnaissance aircraft but rather a chase plane/camera ship for the Air Research and Development Command, hence its unusual designation with the suffix “E”, standing for “Exempt” instead of the more appropriate “R” for a dedicated recce aircraft. There also was another EF-94C, but this was a totally different kind of aircraft: an ejection seat testbed.

 

I had a surplus Heller F-94B kit in The Stash™ and it was built almost completely OOB and did – except for some sinkholes and standard PSR work – not pose any problem. In fact, the old Heller Starfire model is IMHO a pretty good representation of the aircraft. O.K., its age might show, but almost anything you could ask for at 1:72 scale is there, including a decent, detailed cockpit.

 

The biggest change was the new camera nose, and it was scratched from an unlikely donor part: it consists of a Matchbox B-17G tail gunner station, slimmed down by the gunner station glazing's width at the seam in the middle, and this "sandwich" was furthermore turned upside down. Getting the transitional sections right took lots of PSR, though, and I added some styrene profiles to integrate the new nose into the rest of the hull. It was unintentional, but the new nose profile reminds a lot of a RF-101 recce Voodoo, and there's, with the straight wings, a very F-89ish look to the aircraft now? There's also something F2H-2ish about the outlines?

 

The large original wing tip tanks were cut off and replaced with smaller alternatives from a Hasegawa A-37. Because it was easy to realize on this kit I lowered the flaps, together with open ventral air brakes. The cockpit was taken OOB, I just modified the work station on the rear seat and replaced the rubber sight protector for the WSO with two screens for a camera operator. Finally, the one-piece cockpit glazing was cut into two parts to present the model with an open canopy.

  

Painting and markings:

This was a tough decision: either an NMF finish (the natural first choice), an overall light grey anti-corrosive coat of paint, both with relatively colorful unit markings, or camouflage. The USAF’s earlier RF-80As carried a unique scheme in olive drab/neutral grey with a medium waterline, but that would look rather vintage on the F-94. I decided that some tactical camouflage would make most sense on this kind of aircraft and eventually settled for the USAF’s SEA scheme with reduced tactical markings, which – after some field tests and improvisations in Vietnam – became standardized and was officially introduced to USAF aircraft around 1965 as well as to ANG units.

 

Even though I had already built a camouflaged F-94 some time ago (a Hellenic aircraft in worn SEA colors), I settled for this route. The basic colors (FS 30219, 34227, 34279 and 36622) all came from Humbrol (118, 117, 116 and 28, respectively), and for the pattern I adapted the paint scheme of the USAF’s probably only T-33 in SEA colors: a trainer based on Iceland during the Seventies and available as a markings option in one of the Special Hobby 1:32 T-33 kits. The low waterline received a wavy shape, inspired by an early ANG RF-101 in SEA camouflage I came across in a book. The new SEA scheme was apparently applied with a lot of enthusiasm and properness when it was brand new, but this quickly vaned. As an extra, the wing tip tanks received black anti-glare sections on their inner faces and a black anti-glare panel was added in front of the windscreen - a decal from a T-33 aftermarket sheet. Beyond a black ink wash the model received some subtle panel post-shading, but rather to emphasize surface details than for serious weathering.

 

The cockpit became very dark grey (Revell 06) while the landing gear wells were kept in zinc chromate green primer (Humbrol 80, Grass Green), with bright red (Humbrol 60, Matt Red) cover interiors and struts and wheels in aluminum (Humbrol 56). The interior of the flaps and the ventral air brakes became red, too.

 

The decals/markings came from a Special Hobby 1:72 F-86H; there’s a dedicated ANG boxing of the kit that comes with an optional camouflaged aircraft of the NY ANG, the least unit to operate the “Sabre Hog” during the Seventies. Since this 138th TFS formerly operated the F-94A/B, it was a perfect option for the RF-94B! I just used a different Bu. No. code on the fin, taken from a PrintScale A/T-37 set, and most stencils were perocured from the scrap box.

After a final light treatment with graphite around the afterburner for a more metallic shine of the iron metallic (Revell 97) underneath, the kit was sealed with a coat of matt acrylic varnish (Italeri).

  

A camouflaged F-94 is an unusual sight, but it works very well. The new/longer nose considerably changes the aircraft's profile, and even though the change is massive, the "Crocodile" looks surprisingly plausible, if not believable! And, despite the long nose, the aircraft looks pretty sleek, especially in the air.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Lockheed XFV (sometimes erroneously referred to as the "Salmon", even though this was actually the name of one of its test pilots and not an official designation) was an American experimental tailsitter prototype aircraft built by Lockheed in the early 1950s to demonstrate the operation of a vertical takeoff and landing (VTOL) fighter for protecting convoys.

 

The Lockheed XFV originated as a result of a proposal issued by the U.S. Navy in 1948 for an aircraft capable of vertical takeoff and landing (VTOL) aboard platforms mounted on the afterdecks of conventional ships. Both Convair and Lockheed competed for the contract, but in 1950 the requirement was revised with a call for a research aircraft capable of eventually evolving into a VTOL ship-based convoy escort fighter. On 19 April 1951, two prototypes were ordered from Lockheed under the designation XFO-1 (company designation was Model 081-40-01). Soon after the contract was awarded, the project designation changed to XFV-1 when the Navy's code for Lockheed was changed from O to V.

 

The XFV was powered by a 5,332 hp (3,976 kW) Allison YT40-A-6 turboprop engine, composed of two Allison T38 power sections driving three-bladed contra-rotating propellers via a common gearbox. The aircraft had no landing gear, just small castoring wheels at the tips of the tail surfaces which were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. The wings were diamond-shaped and relatively thin, with straight and sharp leading edges – somewhat foretelling the design of Lockheed’s Mach-2-capable F-104 Starfighter.

 

To begin flight testing, a temporary non-retractable undercarriage with long braced V-legs was attached to the fuselage, and fixed tail wheels attached to the lower pair of fins. In this form, the aircraft was trucked to Edwards AFB in November 1953 for ground testing and taxiing trials. During one of these tests, at a time when the aft section of the large spinner had not yet been fitted, Lockheed chief test pilot Herman "Fish" Salmon managed to taxi the aircraft past the liftoff speed, and the aircraft made a brief hop on 22 December 1953. The official first flight took place on 16 June 1954.

Full VTOL testing at Edwards AFB was delayed pending the availability of the 7,100 shp Allison T54, which was earmarked to replace the T40 and power eventual serial production aircraft. But the T54 faced severe development delays, esp. its gearbox. Another problem that arose with the new engine was that the propeller blade tips would reach supersonic speed and therefore compressibility problems.

After the brief unintentional hop, the prototype aircraft made a total of 32 flights. The XFV-1 was able to make a few transitions in flight from the conventional to the vertical flight mode and back, and had briefly held in hover at altitude, but the T40 output was simply not enough to ensure proper and secure VTOL operations. Performance remained limited by the confines of the flight test regime. Another issue that arose through the advancements of jet engine designs was the realization that the XFV's top speed would be eclipsed by contemporary fighters. Additionally, the purely manual handling of the aircraft esp. during landing was very demanding - the XFV could only be controlled by highly experienced pilots.

 

Both Navy and the Marines Corps were still interested in the concept, though, so that, in early 1955, the decision was made to build a limited pre-production series of the aircraft, the FV-2, for operational field tests and evaluation. The FV-2 was the proposed production version (Model 181-43-02), primarily conceived and optimized as a night/all-weather interceptor for point defense, and officially baptized “Solstice”. The FV-2 was powered by the T54-A-16 turboprop, which had eventually overcome its teething troubles and offered a combined power output equivalent of 7,500 shp (5,600 kW) from the propellers and the twin-engines’ residual thrust. Outwardly the different engine was recognizable through two separate circular exhausts which were introduced instead of the XFV’s single shallow ventral opening. The gearbox had been beefed up, too, with additional oil coolers in small ventral fairings behind the contraprops and the propeller blades were aerodynamically improved to better cope with the higher power output and rotation speed. Additionally, an automatic pitch control system was introduced to alleviate the pilot from the delicate control burdens during hover and flight mode transition.

 

Compared with the XFV, the FV-2 incorporated 150 lb (68 kg) of cockpit armor, along with a 1.5 in (38 mm) bullet-proof windscreen. A Sperry Corporation AN/APS-19 type radar was added in the fixed forward part of the nose spinner under an opaque perspex radome. The AN/APS-19 was primarily a target detection radar with only a limited tracking capability, and it had been introduced with the McDonnell F2H-2N. The radar had a theoretical maximum detection range of 60 km, but in real life air targets could only be detected at much shorter distances. At long ranges the radar was mainly used for navigation and to detect land masses or large ships.

Like the older AN/APS-6, the AN/APS-19 operated in a "Spiral Scan" search pattern. In a spiral scan the radar dish spins rapidly, scanning the area in front of the aircraft following a spiral path. As a result, however targets were not updated on every pass as the radar was pointing at a different angle on each pass. This also made the radar prone to ground clutter effects, which created "pulses" on the radar display. The AN/APS-19 was able to lock onto and track targets within a narrow cone, out to a maximum range of about 1 mile (1.5 km), but to do so the radar had to cease scanning.

 

The FV-2’s standard armament consisted of four Mk. 11 20 mm cannon fitted in pairs in the two detachable wingtip pods, with 250 rounds each, which fired outside of the wide propeller disc. Alternatively, forty-eight 2¾ in (70 mm) folding-fin rockets could be fitted in similar pods, which could be fired in salvoes against both air and ground targets. Instead of offensive armament, 200 US gal. (165 imp. gal./750 l) auxiliary tanks for ferry flights could be mounted onto the wing tips.

 

Until June 1956 a total of eleven FV-2s were built and delivered. With US Navy Air Development Squadron 8 (also known as VX-8) at NAS Atlantic City, a dedicated evaluation and maintenance unit for the FV-2 and the operations of VTOL aircraft in general was formed. VX-2 operated closely with its sister unit VX-3 (located at the same base) and operated the FV-2s alongside contemporary types like the Grumman F9F-8 Cougar, which at that time went through carrier-qualification aboard the USS Midway. The Cougars were soon joined by the new, supersonic F-8U-1 Crusaders, which arrived in December 1956. The advent of this supersonic navy jet type rendered the FV-2’s archaic technology and its performance more and more questionable, even though the VTOL concept’s potential and the institutions’ interest in it kept the test unit alive.

 

The FV-2s were in the following years put through a series of thorough field tests and frequently deployed to land bases all across the USA and abroad. Additionally, operational tests were also conducted on board of various ship types, ranging from carriers with wide flight decks to modified merchant ships with improvised landing platforms. The FV-2s also took part in US Navy and USMC maneuvers, and when not deployed elsewhere the training with new pilots at NAS Atlantic City continued.

 

During these tests, the demanding handling characteristics of the tailsitter concept in general and the FV-2 in specific were frequently confirmed. Once in flight, however, the FV-2 handled well and was a serious and agile dogfighter – but jet aircraft could easily avoid and outrun it.

Other operational problems soon became apparent, too: while the idea of a VTOL aircraft that was independent from runways or flight bases was highly attractive, the FV-2’s tailsitter concept required a complex and bulky maintenance infrastructure, with many ladders, working platforms and cranes. On the ground, the FV-2 could not move on its own and had to be pushed or towed. However, due to the aircraft’s high center of gravity it had to be handled with great care – two FV-2s were seriously damaged after they toppled over, one at NAS Atlantic City on the ground (it could be repaired and brought back into service), the other aboard a ship at heavy sea, where the aircraft totally got out of control on deck and fell into the sea as a total loss.

To make matters even worse, fundamental operational tasks like refueling, re-arming the aircraft between sorties or even just boarding it were a complicated and slow task, so that the aircraft’s theoretical conceptual benefits were countered by its cumbersome handling.

 

FV-2 operations furthermore revealed, despite the considerably increased power output of the T54 twin engine that more than compensated for the aircraft’s raised weight, only a marginal improvement of the aircraft’s performance; the FV-2 had simply reached the limits of propeller-driven aircraft. Just the rate of climb was markedly improved, and the extra power made the FV-2’s handling safer than the XFV’s, even though this advancement was only relative because the aircraft’s hazardous handling during transition and landing as well as other conceptual problems prevailed and could not be overcome. The FV-2’s range was also very limited, esp. when it did not carry the fuel tanks on the wing tips, so that the aircraft’s potential service spectrum remained very limited.

 

Six of the eleven FV-2s that were produced were lost in various accidents within only three years, five pilots were killed. The T54 engine remained unreliable, and the propeller control system which used 25 vacuum tubes was far from reliable, too. Due to the many problems, the FV-2s were grounded in 1959, and when VX-8 was disestablished on 1 March 1960, the whole project was cancelled and all remaining aircraft except for one airframe were scrapped. As of today, Bu.No. 53-3537 resides disassembled in storage at the National Museum of the United States Navy in the former Breech Mechanism Shop of the old Naval Gun Factory on the grounds of the Washington Navy Yard in Washington, D.C., United States, where it waits for restoration and eventual public presentation.

 

As a historic side note, the FV-2’s detachable wing tip gun pods had a longer and more successful service life: they were the basis for the Mk.4 HIPEG (High Performance External Gun) gun pods. This weapon system’s main purpose became strafing ground targets, and it received a different attachment system for underwing hardpoints and a bigger ammunition supply (750 RPG instead of just 250 on the FV-2). Approximately 1.200 Mk. 4 twin gun pods were manufactured by Hughes Tool Company, later Hughes Helicopter, in Culver City, California. While the system was tested and certified for use on the A-4, the A-6, the A-7, the F-4, and the OV-10, it only saw extended use on the A-4, the F-4, and the OV-10, esp. in Vietnam where the Mk. 4 pod was used extensively for close air support missions.

  

General characteristics:

Crew: 1

Length/Height: 36 ft 10.25 in (11.23 m)

Wingspan: 30 ft 10.1 in (9.4 m)

Wing area: 246 sq ft (22.85 m²)

Empty weight: 12,388 lb (5,624 kg)

Gross weight: 17,533 lb (7,960 kg)

Max. takeoff weight: 18,159 lb (8,244 kg)

 

Powerplant:

1× Allison T54-A-16 turboprop with 7,500 shp (5,600 kW) output equivalent,

driving a 6 blade contra-rotating propeller

 

Performance:

Maximum speed: 585 mph (941 km/h, 509 kn

Cruise speed: 410 mph (660 km/h, 360 kn)

Range: 500 mi (800 km, 430 nmi) with internal fuel

800 mi (1,300 km, 700 nmi) with ferry wing tip tanks

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 12,750 ft/min (75.0 m/s)

Wing loading: 73.7 lb/sq ft (360 kg/m²)

 

Armament:

4× 20 mm (.79 in) Mk. 11 machine cannon with a total of 1.000 rounds, or

48× 2.75 in (70 mm) rockets in wingtip pods, or

a pair of 200 US gal. (165 imp. gal./750 l) auxiliary tanks on the wing tips

  

The kit and its assembly:

Another submission to the “Fifties” group build at whatifmodellers-com, and a really nice what-if aircraft that perfectly fits into the time frame. I had this Pegasus kit in The Stash™ for quite a while and the plan to build an operational USN or USMC aircraft from it in the typical all-dark-blue livery from the early Fifties, and the group build was a good occasion to realize it.

 

The Pegasus kit was released in 1992, the only other option to build the XFV in 1:72 is a Valom kit which, as a bonus, features the aircraft’s fixed landing gear that was used during flight trials. The Pegasus offering is technically simple and robust, but it is nothing for those who are faint at heart. The warning that the kit requires an experienced builder is not to be underestimated, because the IP kit from the UK comes with white metal parts and no visual instructions, just a verbal description of the building steps. The IP parts (including the canopy, which is one piece, quite thick but also clear) and the decals look good, though.

 

The IP parts feature flash and uneven seam lines, sprue attachment points are quite thick. The grey IP material had on my specimen different grades of hard-/brittleness, the white metal parts (some of the propeller blades) were bent and had to be re-aligned. No IP parts would fit well (there are no locator pins or other physical aids), the cockpit tub was a mess to assemble and fit into the fuselage. PSR on any seam all around the hull. But even though this sound horrible, the kit goes together relatively easy – thanks to its simplicity.

 

I made some mods and upgrades, though. One of them was an internal axis construction made from styrene tubes that allow the two propeller discs to move separately (OOB, you just stack and glue the discs onto each other into a rigid nose cone), while the propeller tip with its radome remained fixed – just as in real life. However, due to the parts’ size and resistance against each other, the props could not move as freely as originally intended.

Separate parts for the air intakes as well as the wings and tail surfaces could be mounted with less problems than expected, even though - again – PSR was necessary to hide the seams.

  

Painting and markings:

As already mentioned, the livery would be rather conservative, because I wanted the aircraft to carry the uniform USN scheme in all-over FS 35042 with white markings, which was dropped in 1955, though. The XFV or a potential serial production derivative would just fit into this time frame, and might have carried the classic all-blue livery for a couple of years more, especially when operated by an evaluation unit. Its unit, VX-8, is totally fictional, though.

 

The cockpit interior was painted in Humbrol 80 (simulating bright zinc chromate primer), and to have some contrasts I added small red highlights on the fin pod tips and the gun pods' anti-flutter winglets. For some more variety the radome became earth brown with some good weathering, simulating an opaque perspex hood, and I added white (actually a very light gray) checkerboard markings on the "propeller rings", a bit inspired by the spinner markings on German WWII fighters. Subtle, but it looks good and breaks the otherwise very simple livery.

Some post-panel-shading with a lighter blue was done all over the hull, the exhaust area and the gun ports were painted with iron (Revell 91) and treated with graphite for a more metallic shine.

Silver decal stripe material was used to create the CoroGuard leading edges and the fine lines at the flaps on wings and fins - much easier than trying to solve this with paint and brush...

 

The decals were puzzled together from various dark blue USN aircraft, including a F8F, F9F and F4U sheet. The "XH" code was created with single 1cm hwite letters, the different font is not obvious, thanks to the letter combination.

Finally, the model was sealed with semi-gloss acrylic varnish (still shiny, but not too bright), the radome and the exhaust area were painted with matt varnsh, though.

  

A cool result, despite the rather dubious kit base. The Pegasus kit is seriously something for experienced builders, but the result looks convincing. The blue USN livery suits the XFV/FV-2 very well, it looks much more elegant than in the original NMF - even though it would, in real life, probably have received the new Gull Gray/White scheme (introduced in late 1955, IIRC, my FV-2 might have been one of the last aircraft to be painted blue). However, the blue scheme IMHO points out the aircraft's highly aerodynamic teardrop shape, esp. the flight pics make the aircraft almost look elegant!

The Ye-7R aircraft were prototypes of the MiG-21R combat-capable reconnaissance aircraft derived from the MiG-21PFS (Fishbed-D/F). These new aircraft were officially known as the MiG-21R (originally called Model 03 to confuse outsiders but officially known as Model 94R; NATO “Fishbed-H”). The first production unit rolled out in early 1966 and continued until 1971. Small changes were made throughout the production run. Early units had the R11F2S-300 turbojet, which was replaced in later aircraft by the R13-300 power plant.

 

The MiG-21R (“Fishbed-H”) could carry centre-line pods or wingtip antennas. PHOTINT (Photographic Intelligence) and ELINT (Electronic Intelligence) pods could be mounted on the centre-line pylon. The three different pods included a Type D daylight PHOTINT pod, a Type N night-time PHOTINT pod, Type R general-purpose ELINT pod or a Type T pod housing a TV system. Export versions of the MiG-21R (“Fishbed-H”) were known as the Model 94RA and usually delivered with the Type D (daylight) and Type R (ELINT) pods. Also, small ECM pods are fitted to the wingtips.

 

In this image, a MiG-21R (Fishbed-H) with the 111o Escuadrone, 11o Regimento de Caza of the Cuban Revolutionary Air and Air Defence Force (DAAFAR) a Type D (daylight) pod and flies through a Caribbean rainstorm on a recce mission. DAAFAR received 12 MiG-21R (Fishbed-H) in 1968 and flew with the Soviet Union in power-projection missions in Africa, especially in Angola and Ethiopia.

A Stanley 735B at the Techno Classica in Essen.

 

Steam locomotives, steam engines capable of propelling themselves along either road or rails, developed around one hundred years earlier than internal combustion engine cars although their weight restricted them to agricultural and heavy haulage work on roads. The light car developed contemporaneously with both steam and internal combustion engines, as both engineering and road building matured. As the steam car could use the vast experience of steam engines already developed with the steam railway locomotive, it initially had the advantage. In 1900 the steam car was broadly superior and even managed to hold absolute land speed records. By 1920 the internal combustion engine had progressed to such a point that the steam car was an anachronism.

 

Few steam cars have been built since the 1920s, although the technology is not implausible and projects intermittently occur to recreate a "modern" steam car with modern levels of convenience, performance and efficiency.

 

The greatest technical challenges to the steam car have focused on its boiler. This represents much of the total mass of the drivetrain, making the car heavier (an internal-combustion-engined car requires no boiler), and requires careful attention from the driver - although even the cars of 1900 had considerable automation to manage this. The single largest restriction is the need to supply feedwater to the boiler. This must either be carried and frequently replenished, or the car must also be fitted with a condenser, a further weight and inconvenience.

 

The steam car does have advantages, although most of these are now less important than in its heyday. The engine (excluding the boiler) is smaller and lighter than an internal combustion engine. It is also better suited to the speed and torque characteristics of the axle, thus avoiding the need for the heavy and complex transmission required for an internal combustion engine. The car is also quieter, even without a silencer.

 

Steam cars dropped-off in popularity following the adoption of the electric starter, which eliminated the need for risky hand cranking to start gasoline-powered cars. The introduction of assembly-line mass production by Henry Ford, which hugely reduced the cost of owning a conventional automobile, was also a strong factor in the steam car's demise as the Model T was both cheap and reliable. Additionally during the 'heyday' of steam cars the internal combustion engine made steady gains in efficiency, matching and then surpassing the efficiency of a steam engine when the weight of a boiler is factored in.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Lockheed XFV (sometimes erroneously referred to as the "Salmon", even though this was actually the name of one of its test pilots and not an official designation) was an American experimental tailsitter prototype aircraft built by Lockheed in the early 1950s to demonstrate the operation of a vertical takeoff and landing (VTOL) fighter for protecting convoys.

 

The Lockheed XFV originated as a result of a proposal issued by the U.S. Navy in 1948 for an aircraft capable of vertical takeoff and landing (VTOL) aboard platforms mounted on the afterdecks of conventional ships. Both Convair and Lockheed competed for the contract, but in 1950 the requirement was revised with a call for a research aircraft capable of eventually evolving into a VTOL ship-based convoy escort fighter. On 19 April 1951, two prototypes were ordered from Lockheed under the designation XFO-1 (company designation was Model 081-40-01). Soon after the contract was awarded, the project designation changed to XFV-1 when the Navy's code for Lockheed was changed from O to V.

 

The XFV was powered by a 5,332 hp (3,976 kW) Allison YT40-A-6 turboprop engine, composed of two Allison T38 power sections driving three-bladed contra-rotating propellers via a common gearbox. The aircraft had no landing gear, just small castoring wheels at the tips of the tail surfaces which were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. The wings were diamond-shaped and relatively thin, with straight and sharp leading edges – somewhat foretelling the design of Lockheed’s Mach-2-capable F-104 Starfighter.

 

To begin flight testing, a temporary non-retractable undercarriage with long braced V-legs was attached to the fuselage, and fixed tail wheels attached to the lower pair of fins. In this form, the aircraft was trucked to Edwards AFB in November 1953 for ground testing and taxiing trials. During one of these tests, at a time when the aft section of the large spinner had not yet been fitted, Lockheed chief test pilot Herman "Fish" Salmon managed to taxi the aircraft past the liftoff speed, and the aircraft made a brief hop on 22 December 1953. The official first flight took place on 16 June 1954.

Full VTOL testing at Edwards AFB was delayed pending the availability of the 7,100 shp Allison T54, which was earmarked to replace the T40 and power eventual serial production aircraft. But the T54 faced severe development delays, esp. its gearbox. Another problem that arose with the new engine was that the propeller blade tips would reach supersonic speed and therefore compressibility problems.

After the brief unintentional hop, the prototype aircraft made a total of 32 flights. The XFV-1 was able to make a few transitions in flight from the conventional to the vertical flight mode and back, and had briefly held in hover at altitude, but the T40 output was simply not enough to ensure proper and secure VTOL operations. Performance remained limited by the confines of the flight test regime. Another issue that arose through the advancements of jet engine designs was the realization that the XFV's top speed would be eclipsed by contemporary fighters. Additionally, the purely manual handling of the aircraft esp. during landing was very demanding - the XFV could only be controlled by highly experienced pilots.

 

Both Navy and the Marines Corps were still interested in the concept, though, so that, in early 1955, the decision was made to build a limited pre-production series of the aircraft, the FV-2, for operational field tests and evaluation. The FV-2 was the proposed production version (Model 181-43-02), primarily conceived and optimized as a night/all-weather interceptor for point defense, and officially baptized “Solstice”. The FV-2 was powered by the T54-A-16 turboprop, which had eventually overcome its teething troubles and offered a combined power output equivalent of 7,500 shp (5,600 kW) from the propellers and the twin-engines’ residual thrust. Outwardly the different engine was recognizable through two separate circular exhausts which were introduced instead of the XFV’s single shallow ventral opening. The gearbox had been beefed up, too, with additional oil coolers in small ventral fairings behind the contraprops and the propeller blades were aerodynamically improved to better cope with the higher power output and rotation speed. Additionally, an automatic pitch control system was introduced to alleviate the pilot from the delicate control burdens during hover and flight mode transition.

 

Compared with the XFV, the FV-2 incorporated 150 lb (68 kg) of cockpit armor, along with a 1.5 in (38 mm) bullet-proof windscreen. A Sperry Corporation AN/APS-19 type radar was added in the fixed forward part of the nose spinner under an opaque perspex radome. The AN/APS-19 was primarily a target detection radar with only a limited tracking capability, and it had been introduced with the McDonnell F2H-2N. The radar had a theoretical maximum detection range of 60 km, but in real life air targets could only be detected at much shorter distances. At long ranges the radar was mainly used for navigation and to detect land masses or large ships.

Like the older AN/APS-6, the AN/APS-19 operated in a "Spiral Scan" search pattern. In a spiral scan the radar dish spins rapidly, scanning the area in front of the aircraft following a spiral path. As a result, however targets were not updated on every pass as the radar was pointing at a different angle on each pass. This also made the radar prone to ground clutter effects, which created "pulses" on the radar display. The AN/APS-19 was able to lock onto and track targets within a narrow cone, out to a maximum range of about 1 mile (1.5 km), but to do so the radar had to cease scanning.

 

The FV-2’s standard armament consisted of four Mk. 11 20 mm cannon fitted in pairs in the two detachable wingtip pods, with 250 rounds each, which fired outside of the wide propeller disc. Alternatively, forty-eight 2¾ in (70 mm) folding-fin rockets could be fitted in similar pods, which could be fired in salvoes against both air and ground targets. Instead of offensive armament, 200 US gal. (165 imp. gal./750 l) auxiliary tanks for ferry flights could be mounted onto the wing tips.

 

Until June 1956 a total of eleven FV-2s were built and delivered. With US Navy Air Development Squadron 8 (also known as VX-8) at NAS Atlantic City, a dedicated evaluation and maintenance unit for the FV-2 and the operations of VTOL aircraft in general was formed. VX-2 operated closely with its sister unit VX-3 (located at the same base) and operated the FV-2s alongside contemporary types like the Grumman F9F-8 Cougar, which at that time went through carrier-qualification aboard the USS Midway. The Cougars were soon joined by the new, supersonic F-8U-1 Crusaders, which arrived in December 1956. The advent of this supersonic navy jet type rendered the FV-2’s archaic technology and its performance more and more questionable, even though the VTOL concept’s potential and the institutions’ interest in it kept the test unit alive.

 

The FV-2s were in the following years put through a series of thorough field tests and frequently deployed to land bases all across the USA and abroad. Additionally, operational tests were also conducted on board of various ship types, ranging from carriers with wide flight decks to modified merchant ships with improvised landing platforms. The FV-2s also took part in US Navy and USMC maneuvers, and when not deployed elsewhere the training with new pilots at NAS Atlantic City continued.

 

During these tests, the demanding handling characteristics of the tailsitter concept in general and the FV-2 in specific were frequently confirmed. Once in flight, however, the FV-2 handled well and was a serious and agile dogfighter – but jet aircraft could easily avoid and outrun it.

Other operational problems soon became apparent, too: while the idea of a VTOL aircraft that was independent from runways or flight bases was highly attractive, the FV-2’s tailsitter concept required a complex and bulky maintenance infrastructure, with many ladders, working platforms and cranes. On the ground, the FV-2 could not move on its own and had to be pushed or towed. However, due to the aircraft’s high center of gravity it had to be handled with great care – two FV-2s were seriously damaged after they toppled over, one at NAS Atlantic City on the ground (it could be repaired and brought back into service), the other aboard a ship at heavy sea, where the aircraft totally got out of control on deck and fell into the sea as a total loss.

To make matters even worse, fundamental operational tasks like refueling, re-arming the aircraft between sorties or even just boarding it were a complicated and slow task, so that the aircraft’s theoretical conceptual benefits were countered by its cumbersome handling.

 

FV-2 operations furthermore revealed, despite the considerably increased power output of the T54 twin engine that more than compensated for the aircraft’s raised weight, only a marginal improvement of the aircraft’s performance; the FV-2 had simply reached the limits of propeller-driven aircraft. Just the rate of climb was markedly improved, and the extra power made the FV-2’s handling safer than the XFV’s, even though this advancement was only relative because the aircraft’s hazardous handling during transition and landing as well as other conceptual problems prevailed and could not be overcome. The FV-2’s range was also very limited, esp. when it did not carry the fuel tanks on the wing tips, so that the aircraft’s potential service spectrum remained very limited.

 

Six of the eleven FV-2s that were produced were lost in various accidents within only three years, five pilots were killed. The T54 engine remained unreliable, and the propeller control system which used 25 vacuum tubes was far from reliable, too. Due to the many problems, the FV-2s were grounded in 1959, and when VX-8 was disestablished on 1 March 1960, the whole project was cancelled and all remaining aircraft except for one airframe were scrapped. As of today, Bu.No. 53-3537 resides disassembled in storage at the National Museum of the United States Navy in the former Breech Mechanism Shop of the old Naval Gun Factory on the grounds of the Washington Navy Yard in Washington, D.C., United States, where it waits for restoration and eventual public presentation.

 

As a historic side note, the FV-2’s detachable wing tip gun pods had a longer and more successful service life: they were the basis for the Mk.4 HIPEG (High Performance External Gun) gun pods. This weapon system’s main purpose became strafing ground targets, and it received a different attachment system for underwing hardpoints and a bigger ammunition supply (750 RPG instead of just 250 on the FV-2). Approximately 1.200 Mk. 4 twin gun pods were manufactured by Hughes Tool Company, later Hughes Helicopter, in Culver City, California. While the system was tested and certified for use on the A-4, the A-6, the A-7, the F-4, and the OV-10, it only saw extended use on the A-4, the F-4, and the OV-10, esp. in Vietnam where the Mk. 4 pod was used extensively for close air support missions.

  

General characteristics:

Crew: 1

Length/Height: 36 ft 10.25 in (11.23 m)

Wingspan: 30 ft 10.1 in (9.4 m)

Wing area: 246 sq ft (22.85 m²)

Empty weight: 12,388 lb (5,624 kg)

Gross weight: 17,533 lb (7,960 kg)

Max. takeoff weight: 18,159 lb (8,244 kg)

 

Powerplant:

1× Allison T54-A-16 turboprop with 7,500 shp (5,600 kW) output equivalent,

driving a 6 blade contra-rotating propeller

 

Performance:

Maximum speed: 585 mph (941 km/h, 509 kn

Cruise speed: 410 mph (660 km/h, 360 kn)

Range: 500 mi (800 km, 430 nmi) with internal fuel

800 mi (1,300 km, 700 nmi) with ferry wing tip tanks

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 12,750 ft/min (75.0 m/s)

Wing loading: 73.7 lb/sq ft (360 kg/m²)

 

Armament:

4× 20 mm (.79 in) Mk. 11 machine cannon with a total of 1.000 rounds, or

48× 2.75 in (70 mm) rockets in wingtip pods, or

a pair of 200 US gal. (165 imp. gal./750 l) auxiliary tanks on the wing tips

  

The kit and its assembly:

Another submission to the “Fifties” group build at whatifmodellers-com, and a really nice what-if aircraft that perfectly fits into the time frame. I had this Pegasus kit in The Stash™ for quite a while and the plan to build an operational USN or USMC aircraft from it in the typical all-dark-blue livery from the early Fifties, and the group build was a good occasion to realize it.

 

The Pegasus kit was released in 1992, the only other option to build the XFV in 1:72 is a Valom kit which, as a bonus, features the aircraft’s fixed landing gear that was used during flight trials. The Pegasus offering is technically simple and robust, but it is nothing for those who are faint at heart. The warning that the kit requires an experienced builder is not to be underestimated, because the IP kit from the UK comes with white metal parts and no visual instructions, just a verbal description of the building steps. The IP parts (including the canopy, which is one piece, quite thick but also clear) and the decals look good, though.

 

The IP parts feature flash and uneven seam lines, sprue attachment points are quite thick. The grey IP material had on my specimen different grades of hard-/brittleness, the white metal parts (some of the propeller blades) were bent and had to be re-aligned. No IP parts would fit well (there are no locator pins or other physical aids), the cockpit tub was a mess to assemble and fit into the fuselage. PSR on any seam all around the hull. But even though this sound horrible, the kit goes together relatively easy – thanks to its simplicity.

 

I made some mods and upgrades, though. One of them was an internal axis construction made from styrene tubes that allow the two propeller discs to move separately (OOB, you just stack and glue the discs onto each other into a rigid nose cone), while the propeller tip with its radome remained fixed – just as in real life. However, due to the parts’ size and resistance against each other, the props could not move as freely as originally intended.

Separate parts for the air intakes as well as the wings and tail surfaces could be mounted with less problems than expected, even though - again – PSR was necessary to hide the seams.

  

Painting and markings:

As already mentioned, the livery would be rather conservative, because I wanted the aircraft to carry the uniform USN scheme in all-over FS 35042 with white markings, which was dropped in 1955, though. The XFV or a potential serial production derivative would just fit into this time frame, and might have carried the classic all-blue livery for a couple of years more, especially when operated by an evaluation unit. Its unit, VX-8, is totally fictional, though.

 

The cockpit interior was painted in Humbrol 80 (simulating bright zinc chromate primer), and to have some contrasts I added small red highlights on the fin pod tips and the gun pods' anti-flutter winglets. For some more variety the radome became earth brown with some good weathering, simulating an opaque perspex hood, and I added white (actually a very light gray) checkerboard markings on the "propeller rings", a bit inspired by the spinner markings on German WWII fighters. Subtle, but it looks good and breaks the otherwise very simple livery.

Some post-panel-shading with a lighter blue was done all over the hull, the exhaust area and the gun ports were painted with iron (Revell 91) and treated with graphite for a more metallic shine.

Silver decal stripe material was used to create the CoroGuard leading edges and the fine lines at the flaps on wings and fins - much easier than trying to solve this with paint and brush...

 

The decals were puzzled together from various dark blue USN aircraft, including a F8F, F9F and F4U sheet. The "XH" code was created with single 1cm hwite letters, the different font is not obvious, thanks to the letter combination.

Finally, the model was sealed with semi-gloss acrylic varnish (still shiny, but not too bright), the radome and the exhaust area were painted with matt varnsh, though.

  

A cool result, despite the rather dubious kit base. The Pegasus kit is seriously something for experienced builders, but the result looks convincing. The blue USN livery suits the XFV/FV-2 very well, it looks much more elegant than in the original NMF - even though it would, in real life, probably have received the new Gull Gray/White scheme (introduced in late 1955, IIRC, my FV-2 might have been one of the last aircraft to be painted blue). However, the blue scheme IMHO points out the aircraft's highly aerodynamic teardrop shape, esp. the flight pics make the aircraft almost look elegant!

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!

  

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.

The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.

 

The following FAST Pack 2.0 system featured two 120.000 kg class P&W+EF-2001 booster thrusters (mounted on the dorsal section of the VF-1) and two CTB-04 conformal propellant/coolant tanks (mounted on the leg/engines), since the VF-1's internal tanks could not carry enough propellant to achieve a stable orbit from Earth bases and needed the help of a booster pack to reach Low Earth Orbit. Anyway, the FAST Pack 2.0 wasn't adapted for atmospheric use, due to its impact on a Valkyrie's aerodynamics and its weight; as such, it needed to be discarded before atmospheric entry.

Included in the FAST Pack boosters and conformal tanks were six high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in two dorsal-mounted NP-BP-01, as well as ten more high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in the two leg/engine-mounted NP-FB-01 systems.

Granting the VF-1 a significantly increased weapons payload as well as greater fuel and thrust, Shinnakasu Heavy Industry's FAST Pack system 2.0 was in every way a major success in space combat. The first VF-1 equipped with FAST Packs was deployed in January 2010 for an interception mission.

Following first operational deployment and its effectiveness, the FAST Pack system was embraced enthusiastically by the U.N. Spacy and found wide use. By February 2010, there were already over 300+ so-called "Super Valkyries" stationed onboard the SDF-1 Macross alone.

 

The FAST Pack went through constant further development, including upgraded versions for late production and updated VF-1s (V3.0 and V4.0). Another addition to the early V2.0 variant of 2010 was the so-called “S-FAST Pack”. The S-FAST pack was originally developed at the Apollo lunar base, for the locally based VF-1 interceptor squadrons that were tasked with the defense of this important production and habitat site on the Moon, but it also found its way to other orbital stations and carriers.

 

Officially designated FAST Pack V2.1, the S-FAST Pack consisted of the standard pair of dorsal rocket boosters plus the pallets with additional maneuvering jets, sensors and weapons. The S-FAST pack added another pair of P&W+EF-2001 boosters under the inner wings, having the duty to give to fighter the power necessary to exit easily from the gravity of moons or little planets without atmosphere, and improve acceleration during combat situations. Range was also further extended, together with additional life support systems for prolonged deep space operations, or the case of emergency.

 

In order to accept the S-FAST pack and exploit its potential, the VF-1’s wings and inner wing attachment points had to be strengthened due to the additional load and propulsion. The use of the S-FAST pack also precluded the fighter from transforming into Battroid or Gerwalk mode – the underwing packs had to be jettisoned beforehand. The other standard FAST Pack 2.0 elements could still be carried, though.

 

The modfied Valkyries capable of accepting the S-FAST Pack received an additional “S” to their type designation – more than 100 VF-1s were converted or built in this deep space configuration until late 2011. Initial deployment of the S-FAST Pack was conducted through SVF-24 “Moon Shadows” in early 2010, a unit that was quickly disbanded, though, but re-formed as SVF-124 “Moon Shooters”, tasked with the defense of the lunar Apollo Base and several special missions.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)

 

However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!

 

General characteristics:

All-environment variable fighter and tactical combat Battroid,

used by U.N. Spacy, U.N. Navy, U.N. Space Air Force

 

Accommodation:

Pilot only in Marty & Beck Mk-7 zero/zero ejection seat

Dimensions:

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Empty weight: 13.25 metric tons;

Standard T-O mass: 18.5 metric tons;

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)

4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

The S-FAST Pack added 4x P&W+EF-2001 booster thrusters with 120.000 kg each, plus a total of 28x P&W LHP04 low-thrust vernier thrusters

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Design Features:

3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

 

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs

 

The optional Shinnakasu Heavy Industry S-FAST Pack 2.1 augmentative space weapon system added:

6x micro-missiles in two NP-AR-01 micro-missile launcher pods (mounted rear-ward under center ventral section in Fighter mode or on lower arm sections in GERWALK/Battroid mode)

4x12 micro missiles in four HMMP-02 micro-missile launchers, one inside each booster pod

 

The kit and its assembly:

This VF-1 is another contribution to the “Old Kit” Group Build at whatifmodelers.com, running in late 2016. I am not certain about the moulds’ inception date, but since it is an ARII incarnation of this type of kit and even moulded in the early pastel green styrene, I’d think that it was produced in 1982 or 83.

 

Anyway, I love the Macross VF-1, IMHO a design masterpiece created by Shoji Kawamori and one of my favorite mecha designs ever, because it was created as a late 70ies style jet fighter that could transform into a robot in a secondary role. As a simple, purposeful military vehicle. And not like a flashy robot toy.

 

Effectively, this Super Valkyrie is a highly modified OOB kit with many donation parts, and this kit is a bit special, for several reasons. There are several 1:100 OOB kits with FAST Packs from ARII/Bandai available (and still around today), but these are normally only Battroids or Gerwalks with additional parts for the FAST kit conversion. The kit I used here is different: it is, after maybe 25 years of searching and building these kits, the #70 from the original production run. It is (so far!) the only Fighter mode kit with the additional FAST Pack parts! Must be rare, and I have never seen it in catalogues?

 

Until today, I converted my Super or Strike Valkyries from Gerwalk kits, a task that needs some improvisation esp. around the folded arms between the legs, and there’s no OOB option for an extended landing gear. The latter made this Fighter mode kit very attractive, even though the actual kit is pretty disappointing, and AFAIK this kit variant is only available as a VF-1S.

 

With the Super Valkyrie fighter kit you receive basically a Gerwalk with a standard fighter cockpit (which includes a front wheel well and an extended front wheel leg), plus extra parts. The leg/engine-mounted NP-FB-01 systems are less bulbous than the parts on the Gerwalk or Battroid kit, and the OOB dorsally mounted NP-BP-01 boosters are TINY, maybe 1:120 or even 1:144! WTF?

 

Further confusion: the kit includes a set of lower arm parts with integrated rocket launchers, but these are not necessary at all for the Fighter build?! As a kind of compensation there’s a new and exclusive element that simulates the folded arms under the ‘fuselage’ and which, as an added value, properly holds the hand gun under the fuselage. As a quirky flaw, though, the hand gun itself comes in the extended form for the Battroid/Gerwalk mode. For the fighter in flight mode, it has to be modified, but that’s easily done.

 

Anyway, with the potential option to build a Super Valkyrie with an extended landing gear, this was my route to go with this vintage kit. The Super Valkyrie already looks bulky with the FAST Pack added, but then I recently found the S-FAST Pack option with two more boosters under the wings – total overkill, but unique. And I had a spare pair of booster bulks in the stash (w/o their nozzles, though), as well as a complete pair of additional bigger standard FAST boosters that could replace the ridiculous OOB parts…

 

Building such a Super/Strike Valkyrie means building separate components, with a marriage of parts as one of the final steps. Consequently, cockpit, central fuselage with the wings and the air intakes, the folded stabilizer pack, the folded arms element with the handgun, the two legs and the four boosters plus other ordnance had to be built and painted separately.

 

Here and there, details were changed or added, e. g. a different head (a ‘J’ head for the flight leader’s aircraft with two instead of the rare, OOB ‘S’ variant with four laser cannon), covers for the main landing gear (the latter does not come with wells at all, but I did not scratch them since they are hardly recognizable when the kit is sitting on the ground), the typical blade aerials under the cockpit and the feet had to be modified internally to become truly ‘open’ jet exhausts.

 

The wing-mounted boosters received new nozzles and their front end was re-sculpted with 2C putty into a square shape, according to reference sketches. Not 100% exact, but the rest of the VF-1 isn’t either.

 

This VF-1 was also supposed to carry external ordnance and my first choice were four wing-mounted RMS-1 Anti-Ship Reaction Warheads, scratched from four 1.000 lb NATO bombs. But, once finished, I was not happy with them. So I looked for another option, and in a source book I found several laser-guided bombs and missiles, also for orbital use, and from this inspiration comes the final ordnance: four rocket-propelled kinetic impact projectiles. These are actually 1:72 JASDF LGB’s from a Hasegawa weapon set, sans aerodynamic steering surfaces and with rocket boosters added to the tail. Also not perfect, but their white color and sleek shape is a good counterpart to the FAST elements.

 

Experience from many former builds of this mecha kit family helped a lot, since the #70 kit is very basic and nothing really fits well. Even though there are not many major seams or large elements, PSR work was considerable. This is not a pleasant build, rather a fight with a lot of compromises and semi-accuracies.

Seriously, if you want a decent 1:100 VF-1, I’d rather recommend the much more modern WAVE kits (including more realistic proportions).

  

Painting and markings:

The paint scheme for this Super Valkyrie was settled upon before I considered the S-FAST Pack addition: U.N. Spacy’s SVF-124 is authentic, as well as its unique camouflage paint scheme.

The latter is a special scheme for the lunar environment where the unit was originally formed and based, with all-black undersides, a high, wavy waterline and a light grey upper surface, plus some medium grey trim and a few colorful US Navy style markings and codes.

 

My core reference is a ‘naked’ bread-and-butter VF-1A of SVF-124 in Fighter mode, depicted as a profile in a VF-1 source book from SoftBank Publishing. The colors for the FAST Pack elements are guesstimates and personal interpretations, though, since I could not find any reference for their look in this unit.

As a side note, another, later SVF-124 aircraft in a similar design is included as an option in a limited edition 1:72 VF-22S kit from Hasegawa, which is backed by CG pics in a VF-22 source book from Softbank, too.

Furthermore, SVF-124 finds mention in a Japanese modeler magazine, where the aforementioned VF-22S kit was presented in 2008. So there must be something behind the ‘Moon Shooters’ squadron.

 

According to the Hasegawa VF-22S’s painting instructions, the underside becomes black and the upper surfaces are to be painted with FS36270 (with some darker fields on the VF-22, though, similar to the USAF F-15 counter-shaded air superiority scheme, just a tad darker).

Due to the 1:100 scale tininess of my VF-1, I alternatively went for Revell 75 (RAL 7039), which is lighter and also has a brownish hue, so that the resulting aircraft would not look too cold and murky, and not resemble an USAF aircraft.

 

All FAST Pack elements were painted in a uniform dark grey (Humbrol 32), while some subtle decorative trim on the upper surfaces, e.g. the canopy frame, an anti-glare panel and a stripe behind the cockpit and decoration trim on the wings’ upper surfaces, was added with Revell 77 (RAL 7012). Overall, colors are rather dull, but IMHO very effective in the “landscape” this machine is supposed to operate, and the few colorful markings stand out even more!

 

The cockpit interior was painted in a bluish grey, with reddish brown seat cushions (late 70ies style!), and the landing gear became all white. For some added detail I painted the wings’ leading edges in a mustard tone (Humbrol 225, Mid Stone).

 

The kit received some weathering (black ink wash, drybrushing on panels) and extra treatment of the panel lines – even though the FAST Pack elements hide a lot of surface or obscure view.

 

More color and individuality came with the markings. The standard decals like stencils or the U.N. Spacy insignia come from the kit’s and some other VF-1s’ OOB sheets.

Based on the SVF-124 VF-1 profile and taking the basic design a bit further, I used dull red USAF 45° digits for the 2nd flight leader’s “200” modex and the Apollo Base’s code “MA” on the dorsal boosters. Some discreet red trim was also applied to the FAST Packs – but only a little.

 

Since all of SVF-124’s aircraft are rumored to carry personal markings, including nose art and similar decorations, I tried to give this VF-1JS a personal note: the pin-up badges on the dorsal boosters come from a Peddinghouse decal sheet for Allied WWII tanks, placed on a silver roundel base. Unfortunately (and not visible before I applied them) the pin-up decal was not printed on a white basis, so that the contrast on the silver is not very strong, but I left it that way. Additionally, the tagline “You’re a$$ next, Jerry” (which IS printed in opaque white…?) was added next to the artwork – but it’s so tiny that you have to get really close to decipher it at all…

 

Finally, after some soot stains around the exhausts and some vernier nozzels with graphite, the kit received a coat of matt acrylic varnish.

 

Building this vintage VF-1 kit took a while and a lot of effort, but I like the result: with the S-FAST Pack, the elegant VF-1 turned into a massive space fighter hulk! The normal Super Valkyries already look very compact and purposeful, but this here is truly menacing. Especially when standing on its own feet/landing gear, with its nose-down stance and the small, original wheels, this thing reminds of a Space Shuttle that had just landed.

 

Good that I recently built a simple VF-1 fighter as a warm-up session. ARII’s kit #70 is not a pleasant build, rather a fight with the elements and coupled with a lot of compromises – if you want a Super Valkyrie Fighter in 1:100, the much more modern WAVE kit is IMHO the better option (and actually not much more pricey than this vintage collector’s item). But for the vintage feeling, this exotic model kit was just the right ticket, and it turned, despite many weaknesses and rather corny details, into an impressive fighter. Esp. the lunar camouflage scheme looks odd, but very unique and purposeful.

 

Anyway, with so many inherent flaws of the ARII kit, my former method of converting a pure (and much more common) Gerwalk kit into a space-capable VF-1 fighter is not less challenging and complicated than trying to fix this OOB option into a decent model. :-/

Some background:

The Rolls-Royce Griffon engine was designed in answer to Royal Navy specifications for an engine capable of generating good power at low altitudes. Concepts for adapting the Spitfire to take the new engine had begun as far back as October 1939; Joseph Smith felt that "The good big 'un will eventually beat the good little 'un." and Ernest Hives of Rolls-Royce thought that the Griffon would be "a second power string for the Spitfire". The first of the Griffon-engined Spitfires flew on 27 November 1941. Although the Griffon-powered Spitfires were never produced in the large numbers of the Merlin-engined variants they were an important part of the Spitfire family, and in their later versions kept the Spitfire at the forefront of piston-engined fighter development. The first Griffon-powered Spitfires suffered from poor high- altitude performance due to having only a single stage supercharged engine. By 1943, Rolls-Royce engineers had developed a new Griffon engine, the 61 series, with a two-stage supercharger. In the end it was a slightly modified engine, the 65 series, which was used in the Mk. XIV, the first Spitfire mark with a Griffon engine to enter service. The resulting aircraft provided a substantial performance increase over the Mk IX. Although initially based on the Mk VIII airframe, common improvements made in aircraft produced later included the cut-back fuselage and tear-drop canopies, and the E-Type wing with improved armament.

 

The Mk. XIV differed from its direct predecessor, the Mk XII, in that the longer, two-stage supercharged Griffon 65, producing 2,050 hp (1,528 kW), was mounted 10 inches (25.4 cm) further forward. The top section of the engine bulkhead was angled forward, creating a distinctive change of angle to the upper cowling's rear edge. A new five-bladed Rotol propeller of 10 ft 5 in (3.18 m) in diameter was used. The "fishtail" design of ejector exhaust stub gave way to ones of circular section. The increased cooling requirements of the Griffon engine meant that all radiators were much bigger, and the underwing housings were deeper than previous versions. The cowling fasteners were new, flush fitting "Amal" type and there were more of them. The oil tank (which had been moved from the lower cowling location of the Merlin engine variants to forward of the fuselage fuel tanks) was increased in capacity from 6 to 10 gal.

To help balance the new engine, the radio equipment was moved further back in the rear fuselage and the access hatch was moved from the left fuselage side to the right. Better VHF radio equipment allowed for the aerial mast to be removed and replaced by a "whip" aerial further aft on the fuselage spine. Because the longer nose and the increased slipstream of the big five-bladed propeller a new tail unit with a taller, broader fin and a rudder of increased area was adopted.

 

When the new fighter entered service with 610 Squadron in December 1943 it was a leap forward in the evolution of the Spitfire. The Mk. XIV could climb to 20,000 ft (6,100 m) in just over five minutes and its top speed, which was achieved at 25,400 ft (7,700 m), was 446 mph (718 km/h). In operational service many pilots initially found that the new fighter could be difficult to handle, particularly if they were used to earlier Spitfire marks. But in spite of the difficulties, pilots appreciated the performance increases.

 

F Mk. XIVs had a total of 109.5 gal of fuel consisting of 84 gal in two main tanks and a 12.5 imp gal fuel tank in each leading-edge wing tank; other 30, 45, 50 or 90 gal drop tanks could be carried. The fighter's maximum range was just a little over 460 miles (740 km) on internal fuel, since the new Griffon engine consumed much more fuel per hour than the original Merlin engine of earlier variants. By late 1944, Spitfire XIVs were fitted with an extra 33 gal in a rear fuselage fuel tank, extending the fighter's range to about 850 miles (1,370 km) on internal fuel and a 90 gal drop tank. Mk. XIVs with "tear-drop" canopies had 64 gal. As a result, F and FR Mk. XIVs had a range that was increased to over 610 miles (980 km), or 960 miles (1,540 km) with a 90 gal drop tank. The armament initially consisted of two 20 mm Hispano cannon and four light 0.303” machine guns (in a standard “C” wing configuration), but later builds had the latter replaced with a pair of heavier 0.5” machine guns that had better range and weight of fire (“E” wing configuration).

 

The first test of the aircraft was in intercepting V1 flying bombs and the Mk. XIV was the most successful of all Spitfire marks in this role. When 150 octane fuel was introduced in mid-1944 the "boost" of the Griffon engine was able to be increased to +25 lbs (80.7"), allowing the top speed to be increased by about 30 mph (26 kn; 48 km/h) to 400 mph (350 kn; 640 km/h) at 2,000 ft (610 m).

The Mk. XIV was used by the 2nd Tactical Air Force as their main high-altitude air superiority fighter in northern Europe with six squadrons operational by December 1944.

 

One problem which did arise in service was localized skin wrinkling on the wings and fuselage at load attachment points; although Supermarine advised that the Mk. XIVs had not been seriously weakened, nor were they on the point of failure, the RAF issued instructions in early 1945 that all F and FR Mk. XIVs were to be refitted with clipped wings. Spitfire XIVs began to arrive in the South-East Asian Theatre in June 1945, too late to operate against the Japanese. In total, 957 Mk. XIVs were built, over 430 of which were FR Mk. XIVs.

 

After the war, secondhand Mk. XIVs still in good shape were exported to a number of foreign air forces; 132 went to the Royal Belgian Air Force, 70 went to the Royal Indian Air Force and 30 of the reconnaissance version went to the Royal Thai Air Force. The Royal Iraqi Air Force (RIrAF) was another operator, even though only a small one.

In late 1946, five years after the Anglo-Iraqi War had left the RIrAF shattered, the Iraqis reached an agreement with the British under which they would return their surviving Avro Ansons in exchange for the authorization to order more modern and potent fighter aircraft from the UK, namely Supermarine Spitfires and Hawker Furies. The next year, three de Havilland Doves and three Bristol Freighters were ordered, too, and they arrived in early 1947 with a batch of ten refurbished ex-RAF Spitfire F Mk. XIVcs, some of them WWII survivors. All these machines received the original wing tips to better cope with the expected higher ambient temperatures in the Middle Eastern theatre of operations, reinforced aluminum skinning along the wing roots, and they were retrofitted with hardpoints under the wings and the fuselage to carry unguided missiles, bombs and drop tanks, what gave them an additional ground attack capability. The radio equipment was modernized, too, including a DF loop antenna as navigational aid. Despite these standardizations, though, the Spitfires were delivered with a mix of the different canopies.

 

The RIrAF was still recovering and re-structuring its assets when it joined in the war against the newly created state of Israel in the 1948 Arab-Israeli War. The RIrAF only played a small role in the first war against Israel, though. A few Spitfire F Mk. XIVs as well as Avro Anson training bombers operated from Transjordan airfields from where they flew several attacks against the Israelis. After a series of indiscriminate attacks on Arab capitals, flown by three Boeing B-17s that had been pressed into service by the Israeli Air Force, the governments of Transjordan and Syria demanded that the Iraqis take more offensive action and replace their Ansons with Hawker Furies. However, only six Furies were sent to Damascus to join the Spitfires in the region, and they never encountered any Israeli aircraft during their deployment.

Despite some effective attacks on ground targets by the Spitfires, limited amount of cannon ammunition, RPGs and suitable bombs heavily limited the Iraqi operations. The fighters were mostly used for armed reconnaissance, and three Spitfires were upgraded to FR Mk. XIV standard for this purpose. In 1949 a second batch of eight more Spitfire F Mk. XIVs was delivered from Britain, and in 1951 the RIrAF purchased 20 more Fury F.Mk.1s, for a total of 50 F.Mk.1s single-seaters and 2 two-seaters. They soon replaced the Spitfires in frontline units, even though the machines were still kept in service.

 

In the early Fifties, thanks to increased income from oil and agricultural exports, the RIrAF was thoroughly re-equipped. In 1951, 15 each of de Havilland Canada DHC-1 Chipmunks, Percival Provosts and North American T-6s were bought to replace obsolete de Havilland Tiger Moth trainers. With these new aircraft the RIrAF Flying School was expanded into the Air Force College. The training curriculum was improved, and the number of students graduating each year was increased. This allowed to form a solid basis for the RIrAF's long-term growth. Also in 1951, the RIrAF bought its first helicopters: three Westland Dragonflies. The RIrAF's first jet fighter was the de Havilland Vampire: 12 FB.Mk.52 fighters and 10 T.Mk.55 trainers were delivered from 1953 to 1955, and they fully replaced the Spitfires. The Vampires were quickly supplemented by 20 de Havilland Venoms, delivered between 1954 and 1956.

Following the formation of the Baghdad Pact, the United States donated at least six Stinson L-5 Sentinels and seven Cessna O-1 Bird Dogs to the RIrAF. The RAF also vacated Shaibah Air Base, and the RIrAF took over it as Wahda Air Base. In 1957, six Hawker Hunter F.Mk.6s were delivered. The next year, the United States agreed to provide 36 F-86F Sabres free of charge.

 

However, following the 14 July Revolution of 1958, which resulted in the end of monarchy in Iraq, the influence of the Iraqi Communist Party grew significantly. The first commander of the Iraqi Air Force (the "Royal" prefix was dropped after the revolution), Jalal Jaffar al-Awqati, was an outspoken communist, and encouraged prime minister Abd al-Karim Qasim to improve relations between Iraq and the USSR. The Soviets reacted quickly, and in the autumn of 1958 a series of arms contracts was passed between Iraq and the Soviet Union and Czechoslovakia. These stipulated the delivery of MiG-15UTI trainers, MiG-17F fighters, Ilyushin Il-28 bombers, and Antonov An-2 and An-12 transports. The first aircraft arrived in Iraq in January 1959; during the late Sixties and the early Seventies additional MiG-17s may have been purchased and then forwarded to either Syria or Egypt.

 

General characteristics

Crew: 1

Length: 32 ft 8 in (9.96 m)

Wingspan: 36 ft 10 in (11.23 m) with full span elliptical tips

Height: 10 ft 0 in (3.05 m)

Wing area: 242.1 sq ft (22.49 m²)

Airfoil: NACA 2213 (root), NACA 2209.4 (tip)

Empty weight: 6,578 lb (2,984 kg)

Gross weight: 7,923 lb (3,594 kg)

Max. takeoff weight: 8,400[53] lb (3,810 kg)

 

Powerplant:

1× Rolls-Royce Griffon 65 supercharged V12, 2,050 hp (1,530 kW) at 8,000 ft (2,438 m),

driving a 5-bladed Jablo-Rotol propeller

 

Performance:

Maximum speed: 441 mph (710 km/h, 383 kn) in FS supercharger gear at 29,500 ft.

391 mph in MS supercharger gear at 5,500 ft.

Combat range: 460 mi (740 km, 400 nmi)

Ferry range: 1,090 mi (1,760 km, 950 nmi)

Service ceiling: 43,500 ft (13,300 m)

Rate of climb: 5,040 ft/min (25.6 m/s) in MS supercharger gear at 2,100 ft.

3,550 ft/min in FS supercharger gear at 22,100 ft.

Time to altitude: 7 mins to 22,000 ft (at max weight)

Wing loading: 32.72 lb/sq ft (159.8 kg/m²)

Power/mass: 0.24

 

Armament:

2× 20 mm (0.787-in) Hispano Mk II cannon, 120 rpg

4× 0.303 in (7.7 mm) Browning machine guns, 350 rpg,

Underwing hard points for 8× 60 lb (27 kg) rockets, 2 x 250 lb (113 kg) bombs or slipper tanks,

1× ventral hardpoint for a 500 lb (227 kg) bomb or a drop tank

  

The kit and its assembly:

This was a rather spontaneous interim build. The Academy Spitfire was left over from a D-Day combo that contained a Hawker Typhoon, too, and I lacked an idea for the Spitfire for a long time) since I am not a big fan of the aircraft, at least what-if-inspiration-wise). However, when pondering about a potential operator from the very early pos-war period I remembered the Royal Iraqi Air Force and its later Hawker Hunters which retained their NATO-style camouflage (RAF green/grey) despite being primarily operated in a desert environment. This, on a Spitfire…?

 

From this idea the Academy Spitfire was built almost OOB. Because the kit offers them as an option and for the cool look, I gave the Spitfire four RPGs under each outer wing. The ventral drop tank was taken from a Special Hobby late Spitfire kit. The only other additions are the antenna mast and the non-standard DF loop antenna behind the cockpit, created from thin wire and mounted on a small, streamlined socket.

  

Painting and markings:

The upper surfaces were painted in standard RAF WWII colors, Dark Green and Ocean Grey, using a mix of Humbrol 163 and 30 for a slightly more bluish WWII-style green and a mix of 106 and 145 for a lightened grey tone, respectively. As an individual contrast and paint scheme variation the undersides and the spinner were painted in RAF Azure Blue (Humbrol 157, lightened up with 47), more appropriate than the standard WWII Medium Sea Grey from the European theatre of operations. The cockpit interior became RAF cockpit green (Humbro,78) while the inside surfaces of the landing gear were painted in Medium Sea Grey (Humbrol 165), reflecting the original undersides’ tone in former RAF service.

 

Other markings were minimal. The Iraqi triangles were taken from a Balkan Models Su-25 sheet, because their green was rather pale, for more contrast to the surrounding camouflage. RIrAF fin flash was taken from a PM Model Hawker Fury two-seater (a.k.a. “Bagdad Fury”). The tactical code came from an Airfix Hawker Hunter (from an optional Kuwaiti machine). This looked O.K. but somewhat bleak, so I added more markings. I could not find any evidence for special ID markings on Iraqi aircraft during the Arab-Israel war, but to add an eye-catcher I gave the aircraft white ID bands on the wings and on the fuselage – inspired by markings carried by Egyptian aircraft (e. g. Spitfires) during the conflict, but somewhat simplified, without black trim. They were created from generic white decal sheet material.

 

After some soot stains around the gun ports and the exhausts, the model was sealed with matt acrylic varnish.

  

A relatively simple project and just a fictional livery - but the Iraqi Spitfire looks pretty cool, especially the ID stripes add a special touch. The European RAF scheme looks a bit off on an aircraft that would be delivered to the Middel East, but the Iraqi Air Force operated British types like the Hunter in this guise, and later Su-22 fighter bombers carried a similarly murky camouflage in very dark green and earth brown.

The Typhoon FGR.Mk 4 is a highly capable and extremely agile fourth-generation multi-role combat aircraft, capable of being deployed for the full spectrum of air operations, including air policing, peace support and high-intensity conflict. Initially deployed in the air-to-air role as the Typhoon F.Mk 2, the aircraft now has a potent, precision multi-role capability as the FGR4. The pilot performs many essential functions through the aircraft’s hands on throttle and stick (HOTAS) interface which, combined with an advanced cockpit and the Helmet Equipment Assembly (HEA), renders Typhoon superbly equipped for all aspects of air operations.

 

Although Typhoon has flown precision attack missions in all its combat deployments to date, its most essential role remains the provision of quick reaction alert (QRA) for UK and Falkland Islands airspace. Detachments have also reinforced NATO air defence in the Baltic and Black Sea regions.

 

With its multi-role capability and variety of weapons, the Typhoon FGR4 is capable of engaging numerous target types. In the air-to-air role it employs the infraredguided Advanced Short Range Air-to-Air Missile (ASRAAM) and radar-guided, beyond visual range Advanced Medium Range Air-to-Air Missile (AMRAAM). These weapons, used in conjunction with the jet’s ECR-90 Captor radar and PIRATE electro-optical targeting system, combine with the Typhoon’s superior performance and manoeuvrability to make it a formidable platform.

 

For ground-attack and close air support (CAS) missions, Typhoon is compatible with the GPS/laser-guided Enhanced Paveway II and Paveway IV weapons, usually in conjunction with the Litening III targeting pod. Its regular configuration for the armed reconnaissance and CAS roles includes Litening III, Paveway IV and the internal 27mm gun.

 

Paveway IV offers cockpit-programmable impact angle, impact direction and fuse delay features for precisely tailored target effects. The 27mm gun is ideally suited to providing warning shots or for accurate attacks against targets including light vehicles and personnel.

A Gunner of 32 Battery, 16 Regiment Royal Artillery checks the components of a Rapier Air Defence System prior to its use on Exercise Capable Eagle.

 

The Royal Artillery were supporting the Royal Air Force as part of a large scale exercise that saw aircraft deployed at a Yorkshire airfield operating across Scotland and Northern England.

 

With more than forty years of service, the Rapier ground-to-air missile system is a key element of the air defence umbrella of any RAF deployed operating base. While the RAF Regiment and RAF Police use their specialist knowledge to defend UK air forces from ground attack, it falls to the Royal Artillery to provide a point defence against air attack.

  

-------------------------------------------------------

© Crown Copyright 2013

Photographer: Sgt Ralph Merry ABIPP RAF

Image 45156201.jpg from www.defenceimages.mod.uk

  

This image is available for high resolution download at www.defenceimagery.mod.uk subject to the terms and conditions of the Open Government License at www.nationalarchives.gov.uk/doc/open-government-licence/. Search for image number 45156201.jpg

 

For latest news visit www.gov.uk/government/organisations/ministry-of-defence

Follow us:

www.facebook.com/defenceimages

www.twitter.com/defenceimages

 

Some background:

Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.

 

The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.

 

In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.

 

Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.

 

The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.

 

At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.

  

General characteristics:

Accommodation: pilot only, in standard cockpit in main body

Overall Height: 18.2 meters

Overall Length: 7.6 meters

Overall Width: 12.6 meters

Max Weight: 39.8 metric tons

 

Powerplant & propulsion:

1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,

driving 2x main booster Thrusters and 12x vernier thrusters

 

Performance:

unknown

 

Armament:

None

 

Special Equipment and Features:

Standard all-frequency radar antenna

Standard laser long-range sensor

Ectromelia infrared, visible light and ultraviolet frequency sensor cluster

ECM/ECCM suite

  

The kit and its assembly:

I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.

 

The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).

 

I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!

 

But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.

 

Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.

 

However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.

  

Painting and markings:

Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.

 

Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.

 

The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.

 

The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?

 

Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.

  

A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

In 1948, a swept wing version of the F-84 was created with the hope of bringing performance to the level of the F-86. The last production F-84E was fitted with a swept tail, a new wing with 38.5 degrees of leading-edge sweep and 3.5 degrees of anhedral, and a J35-A-25 engine producing 5,300 pound-force (23.58 kN) of thrust. The aircraft was designated XF-96A and flew on 3 June 1950. Although the airplane was capable of 602 knots (693 mph, 1,115 km/h), the performance gain over the F-84E was considered minor. Nonetheless, it was ordered into production in July 1950 as the F-84F Thunderstreak. The F-84 designation was eventually retained because the fighter was expected to be a low-cost improvement of the straight-wing Thunderjet with over 55 percent commonality in tooling.

 

In the meantime, the USAF, hoping for improved high-altitude performance from a more powerful engine, arranged for the British Armstrong Siddeley Sapphire turbojet engine to be built in the United States as the Wright J65. To accommodate the larger engine, YF-84Fs with a British-built Sapphire as well as production F-84Fs with the J65 had a vertically stretched fuselage, with the air intake attaining an oval cross-section. Production quickly ran into problems, though. Although tooling commonality with the Thunderjet was supposed to be 55 %, but just 15 % of the tools could actually be re-used. To make matters worse, the F-84F utilized press-forged wing spars and ribs. At the time, only three presses in the United States could manufacture these, and priority was given to the Boeing B-47 Stratojet bomber over the F-84. The YJ65-W-1 engine was considered obsolete, too, and the improved J65-W-3 did not become available until 1954. When the first production F-84F flew on 22 November 1952, it was considered not ready for operational deployment due to control and stability problems. The first 275 aircraft, equipped with conventional stabilizer-elevator tailplanes, suffered from accelerated stall pitch-up and poor turning ability at combat speeds. Beginning with Block 25, the problem was improved upon by the introduction of a hydraulically powered one-piece stabilator. A number of aircraft were also retrofitted with spoilers for improved high-speed control. As a result, the F-84F was not declared operational until 12 May 1954.

 

The second YF-84F prototype was completed with wing-root air intakes. These were not adopted for the fighter due to loss of thrust, but this arrangement kept the nose section free and permitted placement of cameras, and the different design was adopted for the RF-84F Thunderflash reconnaissance version. Being largely identical to the F-84F, the Thunderflash suffered from the same production delays and engine problems, though, delaying operational service until March 1954.

 

During the F-84F’s development the Air Defense Command was looking for a replacement for the outdated F-94 ‘Starfire’ interceptor, a hasty development from the T-33 trainer airframe with an afterburner engine and an on-board radar. However, the F-94 was only armed with machine guns in its early versions or unguided missiles in its later incarnations, which were inadequate. An aircraft with better performance, ideally with supersonic speed, a better radar, and the ability to carry guided missiles (in the form if the AIR-1 and 2 ‘Falcon’ AAMs) as well as the AIR-2 ‘Genie’ missile was now requested.

 

The Douglas AIR-2 Genie followed a unique but effective concept that represented the technological state-of-the-art: it was an unguided air-to-air rocket with a 1.5 kt W25 nuclear warhead. The interception of Soviet strategic bombers was a major military preoccupation of the late 1940s and 1950s. The World War II-age fighter armament of machine guns and cannon were inadequate to stop attacks by massed bomber formations, which were expected to come in at high altitude and at high subsonic speed. Firing large volleys of unguided rockets into bomber formations was not much better, and true air-to-air missiles were in their infancy. In 1954 Douglas Aircraft began a program to investigate the possibility of a nuclear-armed air-to-air weapon. To ensure simplicity and reliability, the weapon would be unguided, since the large blast radius made precise accuracy unnecessary. Full-scale development began in 1955, with test firing of inert warhead rockets commencing in early 1956. The final design carried a 1.5-kiloton W25 nuclear warhead and was powered by a Thiokol SR49-TC-1 solid-fuel rocket engine of 162 kN (36,000 lbf) thrust, sufficient to accelerate the rocket to Mach 3.3 during its two-second burn. Total flight time was about 12 seconds, during which time the rocket covered 10 km (6.2 mi). Targeting, arming, and firing of the weapon were coordinated by the launch aircraft's fire-control system. Detonation was by time-delay fuze, although the fuzing mechanism would not arm the warhead until engine burn-out, to give the launch aircraft sufficient time to turn and escape. However, there was no mechanism for disarming the warhead after launch. Lethal radius of the blast was estimated to be about 300 meters (980 ft). Once fired, the Genie's short flight-time and large blast radius made it virtually impossible for a bomber to avoid destruction. The rocket entered service with the designation MB-1 Genie in 1957.

 

During the development phase the first carrier aircraft earmarked to carry the AIR-2 was the Northrop F-89 Scorpion, which had already been introduced in the early Fifties. While being an all-weather interceptor with on-board radar, it was a slow and large aircraft, and outdated like the F-94. Trying to keep the F-84 production lines busy, however, Republic saw the chance to design an all-weather interceptor aircraft that would surpass the F-89’s mediocre performance and meet the AIR-2 carrier requirements on the basis of the swept-wing (R)F-84F. To emphasize its dedicated interceptor role and set it apart from its fighter-bomber ancestors, the heavily modified aircraft was designated F-96B (even though it had little to do with the XF-96A that became the F-84F) and called ‘Thunderguard’.

 

The F-96B was largely based on the RF-84F’s airframe with its wing-root air intakes, what offered ample space in the aircraft’s nose for a radar system and other equipment. The radar was coupled with a state-of-the-art Hughes MC-10 fire control system. To relieve the pilot from operating the radar system one of the fuel cells behind the cockpit was deleted and a second crew member was placed behind him under an extended, strutless hood that opened to starboard. To compensate for the loss of fuel and maintain the F-84F’s range, a new tank was mounted under the cockpit floor in the aircraft’s center of gravity.

To improve performance and cope with the raised take-off weight, the F-96B was powered by an uprated Wright J65-W-18 turbojet, which generated 0.4 kN more dry thrust than the F-84F’s original J65-W-3 (7,700 lbf/34 kN). This was not too much, though, so that the J65 was additionally outfitted with an afterburner. With this upgrade the powerplant provided a maximum thrust of 10,500 lbf (47 kN), what resulted in a markedly improved rate of climb and the ability to break the sound barrier in level flight. The additional reheat section necessitated a wider and longer rear fuselage, which had to be redesigned. As an unintended side benefit, this new tail section reduced overall drag due to a slightly area-ruled coke-bottle shape behind the wings’ trailing edge, which was even emphasized through the ventral brake parachute fairing.

Armament consisted only of missiles, which were all carried externally on wing stations, all guns of the former F-84 versions were deleted to save weight. The F-96B’s weapons range included GAR-1/2/3/4 (Later re-designated as AIM-4) radar- and IR-guided Falcon air-to-air missiles and a pair of MB-1 Genie missiles. Up to four pods with nineteen unguided 2.75 in (70 mm) "Mighty Mouse" Mk 4/Mk 40 Folding-Fin Aerial Rockets each were an alternative, too, and a pair of drop tanks were typically carried under the inner wings to provide the aircraft with sufficient range, since the new afterburner significantly increased fuel consumption.

 

Even though it was only a derivative design, the F-96B introduced a lot of innovations. One of these was the use of a diverertless supersonic inlet (DSI), a novel type of jet engine air intake to control air flow into their engines. Initial research into the DSI was done by Antonio Ferri in the 1950s. It consisted of a "bump" and a forward-swept inlet cowl, which worked together to divert boundary layer airflow away from the aircraft's engine. In the case of the F-96B this was realized as an inward-turning inlet with a variable contraction ratio. However, even though they had not been deemed necessary to guarantee a clean airflow, the F-96B’s air intakes were further modified with splitter plates to adapt them to the expected higher flight speeds and direct the air flow. The initial flight tests had also revealed a directional instability at high speed, due to the longer nose, so that the tail surfaces (both fin and stabilizers) were enlarged for the serial aircraft to compensate.

 

Another novel feature was an IRST sensor in front of the windscreen which augmented the on-board radar. This sensor, developed by Hughes International and designated ‘X-1’, was still very experimental, though, highly unreliable, and difficult to handle, because it relied on pressurized coolant to keep the sensor cold enough to operate properly, and dosing it at a consistent level proved to be difficult (if not impossible). On the other side the IRST allowed to track targets even in a massively radar-jammed environment. The 7” diameter silicone sensor was, together with the on-board radar, slaved to the fire control system so that its input could be used to lock guided missiles onto targets, primarily the GAR-1 and GAR-2 AAMs. The X-1 had a field of view of 70×140°, with an angular resolution of 1°, and operated in 2.5 micron wavelength range. When it worked properly the sensor was able to detect a B-47-sized aircraft’s tails aspect from 25 nm (29 ml/46 km) and a target of similar size from directly ahead from 10 nm (12 ml/19 km). Later, better developed versions of Hughes IRST, like the X-3 that was retrofitted to the F-101B in the early Sixties, had a better range and were more reliable.

 

During the Thunderguard’s development another competitor entered the stage, the F-101B Voodoo. In the late 1940s, the Air Force had already started a research project into the future interceptor aircraft that eventually settled on an advanced specification known as the 1954 interceptor. Contracts for this specification eventually resulted in the selection of the F-102 Delta Dagger, but by 1952 it was becoming clear that none of the parts of the specification other than the airframe would be ready by 1954; the engines, weapons, and fire control systems were all going to take too long to get into service. An effort was then started to quickly produce an interim supersonic design to replace the various subsonic interceptors then in service, and the F-101 airframe was selected as a starting point. Although McDonnell proposed the designation F-109 for the new aircraft (which was to be a substantial departure from the basic Voodoo fighter bomber), the USAF assigned the designation F-101B. Its development was protracted, so that the F-96B – even though it offered less performance – was ordered into production to fill the USAF’s urgent interceptor gap.

 

F-96B production started after a brief test phase in late 1957, and the first aircraft were delivered to the 60th Fighter-Interceptor Squadron in 1958. However, when it became clear that the F-101B would finally enter service in 1959, F-96B production was quickly cut down and the initial order of 300 aircraft reduced to only 150, which were produced until early 1960 in three batches. Only sixty were directly delivered to ADC units, because these were preferably equipped with the supersonic F-102A and the new F-101B, which could also carry the nuclear Genie missile. The rest was directly handed over to Air National Guard units – and even there they were quickly joined and replaced by the early ADC aircraft.

 

Operationally, almost all F-96Bs functioned under the US–Canadian North American Air Defense Command (NORAD), which protected North American airspace from Soviet intruders, particularly the threat posed by nuclear-armed bombers. In service, the F-96Bs were soon upgraded with a data link to the Semi-Automatic Ground Environment (SAGE) system, allowing ground controllers to steer the aircraft towards its targets by making adjustments through the plane's autopilot. Furthermore, the F-96B was upgraded to allow the carrying of two GAR-11/AIM-26 Nuclear Falcon missiles instead of the Genies when they became available in 1961.

A handful F-96Bs were camouflaged during the late Sixties with the USAF’s new SEA scheme, but most aircraft retained their original bare metal finish with more or less colorful unit markings. Due to its limited capabilities and the introduction of the Mach 2 McDonnell F-4 Phantom, the last F-96B was retired from ANG service in 1971.

  

General characteristics:

Crew: 2

Length: 54t 11 1/2 in (16,77 m) incl. pitot

Wingspan: 33 ft 7.25 in (10,25 m)

Height: 16 ft 9 in (5,11 m)

Wing area: 350 sq ft (37,55 m²)

Empty weight: 13,810 lb (6.264 kg)

Gross weight: 21,035 lb (9.541 kg)

Max takeoff weight: 28,000 lb (12.701 kg)

 

Powerplant:

1× Wright J65-W-18 turbojet with 8,600 lbf (34 kN) dry thrust and 10,500 lbf (47 kN) with afterburner

 

Performance:

Maximum speed: 695 mph (1,119 km/h, 604 kn, Mach 1.1) at 35,000 ft (10,668 m)

Cruise speed: 577 mph (928 km/h, 501 kn)

Range: 810 mi (1,304 km, 704 nmi) combat radius with two droptanks

Service ceiling: 49,000 ft (15,000 m)

Rate of climb: 16,300 ft/min (83 m/s)

Wing loading: 86 lb/sq ft (423 kg/m²)

 

Armament:

No internal guns;

6× underwing hardpoints for a total ordnance load of up to 6,000lb (2,727 kg), including

a pair of 191.5 US gal (727 l) or 375 US gal (1.429 l) drop tanks on the inner stations

and a mix of AIM-4 Falcon (up to six), MB-1 Genie (up to two) and/or pods with

nineteen 2.75”/70 mm FFAR unguided missiles each (up to four) on the outer stations

  

The kit and its assembly:

This fictional missing link between the RF-84F and the F-105 was conceived for the Fifties Group Build at whatifmodellers.com, an era when the USAF used a wide variety of interceptor aircraft types and technical advancements were quick and significant – in just a decade the interceptor evolved from a subsonic machine gun-toting aircraft to a guided weapons carrier platform, capable of Mach 2.

 

The F-96B (I re-used Republic’s dropped designation for the swept-wing F-84F) was to display one of the many “in between” designs, and the (R)F-84F was just a suitable basis for a conversion similar to the T-33-derived F-94, just more capable and big enough to carry the nuclear Genie missile.

The basis became Italeri’s vintage RF-84F kit, a rather simple affair with raised panel lines and a mediocre fit, plus some sinkholes. This was, however, heavily modified!

 

Work started with the implantation of a new tandem cockpit, taken wholesale from a Heller T-33. Fitting the cockpit tub into the wider Thunderflash hull was a bit tricky, putty blobs held the implant in place. The canopy was taken from the T-33, too, just the RF-84F’s original rear side windows were cut away to offer sufficient length for the longer clear part and the cockpit side walls had to be raised to an even level with the smaller windscreen with the help of styrene strips. With these adapters the T-33 canopy fitted surprisingly well over the opening and blended well into the spine.

 

The camera nose section lost its tip, which was replaced with the tail cone from a Matchbox H.S. Buccaneer (actually its air brake), and the camera windows as well as the slant surfaces that held them were PSRed away for a conical shape that extended the new pointed radome. Lots of weight in the nose and under the cockpit floor ensured a safe stance on the OOB landing gear.

The rear section behind the air brakes became all-new; for an afterburner I extended and widened the tail section and implanted the rear part from a B-66 (Italeri kit, too) engine nacelle, which received a wider nozzle (left over from a Nakotne MiG-29, a featureless thing) and an interior.

To balance the longer nose I also decided to enlarge the tail surfaces and replaced the OOB fin and stabilizers with leftover parts from a Trumpeter Il-28 bomber – the fin was shortened and the stabilizers reduced in span to match the rest of the aircraft. Despite the exotic source the parts blend well into the F-84’s overall design!

 

To add supersonic credibility and to connect the design further with the later F-105 I modified the air intakes and cut them into a raked shape – quite easy to realize. Once the wings were in place, I also added small splitter plates, left over from an Airfix BAC Strikemaster.

 

As an interceptor the armament had to be adapted accordingly, and I procured the quartet of IR-guided Falcons as well as the Genie duo from an Academy F-89. The large drop tanks were taken OOB from the Italeri kit. The Genies were mounted onto their massive Scorpion pylons under the outer wings of the F-96B, while the Falcons, due to relatively little space left under the wings, required a scratched solution. I eventually settled for dual launchers on small pylons, mounted in front of the landing gear wells. The pylons originally belong to an ESCI Ka-34 “Hokum” helicopter kit (they were just short enough!), the launch rails are a halved pair of F-4 Sidewinder rails from a Hasegawa air-to-air weapons set. With everything on place the F-96B looks quite crowded.

  

Painting and markings:

The machine would represent a late Fifties USAF type, so that the paint options were rather limited if I wanted to be authentic. ADC Grey was introduced in the early Sixties, SEA camouflage even later, so that bare metal became a natural choice – but this can be quite attractive! The model received an overall coat with acrylic “White Aluminum” from the rattle can, plus some darked panels all over the hull (Humbrol 56 for good contrast) and an afterburner section in Revell 91 (Iron Metallic) and Humbrol’s Steel Metallizer. The radome became deep black, the anti-glare panel in front of the windscreen olive drab (Revell 46). Light grey (Revell 75) was used for some small di-electric fairings.

Interior surfaces (cockpit and landing gear wells) were painted with Zinc Chromate primer (I used Humbrol 80), while the landing gear struts became silver-grey (Humbrol 56) and the inside of the covers as well as the air brakes were painted in bright red (Humbrol 19).

Once basic painting was done the model received a black ink washing and was rubbed with grinded graphite to emphasize the raised panel lines, and the material adds a nice dark metallic shine to the silver base coat.

 

Another challenge was to find suitable unit markings for the Fifties era in the decal vault, which would also fit onto the model. After a long search I eventually settled for rather simple markings from a 325th FIS F-102 from an Xtradecal sheet, which only features a rather timid fin decoration.

Finding other suitable standard markings remained demanding, though. Stars-And-Bars as well as the USAF taglines were taken from the Academy F-89 that also provided the ordnance, most stencils were taken from the OOB Italeri sheet and complemented by small markings from the scrap box. The biggest problem was the creation of a matching serial number. The “FF” code was originally used for P/F-51D Mustangs during the Korea War, but after the type had been phased out it might have been re-used? The letters as well as the serial number digits were created from various markings for USAF F-100s, also from an Xtradecal sheet.

 

Once the decals had been applied the model was sealed with semi-gloss acrylic varnish, except for the radome, the anti-glare panel as well as the walking areas on the wings as well as parts of the afterburner section, which were coated with matt varnish.

  

A rather straightforward conversion, even though finishing the project took longer than expected. But the result looks surprisingly natural and plausible. Lots of PSR was needed to modify the fuselage, though, especially the tail section was not easy to integrate into the Thunderflash’s hull. Sticking to the simple NMF livery paid IMHO out, too: the livery looks very natural and believable on the fictional aircraft, and it suits the F-84’s bulbous shape well.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Fiat G.91 was an Italian jet fighter aircraft designed and built by Fiat Aviazione, which later merged into Aeritalia. The G.91 had its origins in the NATO-organized NBMR-1 competition in 1953, which sought a light fighter-bomber "Light Weight Strike Fighter" to be adopted as standard equipment across the air forces of the various NATO nations. The competition was intended to produce an aircraft that was light, small, expendable, equipped with basic weapons and avionics and capable of operating with minimal ground support. These specifications were developed for two reasons: the first was the nuclear threat to large air bases, many cheaper aircraft could be better dispersed, and the other was to counter the trend towards larger and more expensive aircraft. After reviewing multiple submissions, the G.91 was picked as the winning design of the NBMR-1 competition.

 

The G.91 entered into operational service with the Italian Air Force in 1961, and with the West German Luftwaffe in the following year. Various other nations adopted it, such as the Portuguese Air Force, who made extensive use of the type during the Portuguese Colonial War in Africa. The G.91 remained in production for 19 years, during which a total of 756 aircraft were completed, including the prototypes and pre-production models. The assembly lines were finally closed in 1977, and the original G.91 enjoyed a long service life that extended over 35 years.

 

The G.91 was also used as a basis for a two-seat trainer variant with a stretched fuselage and further developments, based on this bigger airframe: the twin-engine development G.91Y, which was originally ordered by the Italian Air Force and Switzerland (as G.91YS) and later also operated by Poland, as well as the simpler, single-engine G-91X, a dedicated export alternative.

 

Like the G.91Y, the G.91X was an increased-performance version of the nimble baseline Fiat G.91, but unlike the G.91Y it was not funded by the Italian government but rather a private venture of Fiat. Like the G.91Y, it was based on the G.91T two-seat trainer variant. Structural modifications to reduce airframe weight increased performance and an additional fuel tank occupying the space of the G.91T's rear seat provided extra range. Combat manoeuvrability was improved with the addition of automatic leading-edge slats. While the G.91Y and X had a very similar appearance, their internal structure behind the cockpit section differed considerably and their tail section was visibly different, while the aerodynamic surfaces as well as the nose section (including the radar-less nose housing three cameras) were identical.

 

Instead of being powered by the G.91Y’s pair of small afterburning General Electric J85 turbojets, the G.91X only carried a single Pratt & Whitney J52 axial-flow dual-spool turbojet engine without reheat, a proven engine that was used in a number of successful aircraft, most of all the late Douglas A-4 Skyhawk versions. The bigger engine increased thrust by 60% over the original, earlier Orpheus-powered single-engine variants, and made the light G.91 a very agile aircraft. However, the J52 was considerably heavier than the small J85s, and despite less complex auxiliary installations, the G.91X weighed roughly 1.000 lb more than the G.91Y.

 

Performance-wise, the G.91X was, despite its conservative and heavier J52 powerplant, on par with the G.91Y, even though range, acceleration and rate of climb were not as good, the G.91Y’s afterburners gave the “Yankee Gina” a significant extra punch. On the other side, the G.91X was more robust, technically simpler and therefore easier to maintain and even better suited to operations from unprepared frontline airfields with minimal infrastructure.

Basically, the G.91X was designed to carry the same sophisticated avionics equipment as the G.91Y, which had been considerably upgraded with many of the American, British and Canadian systems being license-manufactured in Italy, but for the intended export customers in small countries with a limited budget, only a rather basic avionics package was offered, making the G.91X a simple daylight attack aircraft without any smart weapon or guided AAM capability (which the G.91Y lacked, too, only the YS for Switzerland could deploy weapons like the AIM-9 or the AGM-65).

 

Flight testing of two prototypes aircraft ran in July 1968 in parallel to the G.91Y program and was successful, with one aircraft reaching a maximum speed of Mach 0.95 in level flight, slightly less than its two-engine sibling. Airframe buffeting was noted and was rectified in production aircraft by raising the position of the tailplane slightly, and canted fins - similar to the G.91Y, but smaller - were added under the lower rear fuselage to improve directional stability. Unlike the G.91Y, which had been designed to NATO specifications, the G.91X did not feature an arrester hook, just a tail bumper.

 

The initial order of 55 G.91Y aircraft for the Italian Air Force was completed by Fiat in March 1971, by which time the company had changed its name to Aeritalia (from 1969, when Fiat Aviazione joined the Aerfer). The order was increased to 75 aircraft with 67 eventually being delivered.

In contrast to this success, the G.91X did not find immediate takers, though, because the potential market of Western-oriented countries was in the Seventies largely dominated by US American military support programs, which aggressively marketed the supersonic Northrop F-5 as a counterpart to MiG-17 and MiG-21 fighters, which had been provided to many countries by the USSR.

 

One large potential customer had been Israel, but the G.91X was declined in favor of the bigger and more sophisticated A-4N Skyhawk. Turkey and Greece also showed interest, but both eventually procured F-5 variants, heavily promoted by the USA. In the end, only a small number of the G.91X were built and sold to rather small and obscure air forces.

 

One of these few G.91X operators became Honduras. After the so-called Football War with El Salvador in 1969, the Honduran Air Force (HAF) entered the jet era in 1971 and started a re-organization and modernization program. This included the procurement of 10 old, ex-Yugoslav Canadair CL-13 Mk.4 Sabre. Later, in 1974 and as a result of an institutional growth of the Honduran Air Force, the "Coronel Hernán Acosta Mejía" Air Base, the "Coronel Armando Escalón Espinal" Base as well as the General Command of the Air Force and General Air Force General Staff were created.

 

Between 1976 and 1978 sixteen other Israeli aircraft were acquired, of the IAI \ Dassault Super-Mystere B.2 \ J-52 S'aar type, six new Cessna A-37 Dragonfly COIN aircraft and fifty UH-1 Iroquois helicopters. By then, the Sabres were in such a poor condition and deteriorated quickly under the harsh local climate, that a replacement was soon needed. The choice fell on the G.91X, not only because of the aircraft’s simplicity and ruggedness, but also because of its (though limited) reconnaissance capability as well as the engine and ammunition commonality with the ex-Israeli Sa’ars. A total of twelve G.91X were procured in 1977 and delivered until late 1979, and they were immediately put into action during the 1980s confrontation with the Sandinista government of Nicaragua, with heavy involvements in bombing raids and COIN missions. The Honduran G.91Xs flew frequent attack and reconnaissance missions, and even though they were no fighters the Ginas downed several Sandinista helicopters, including a Mil Mi-24 Hind (rather accidently shot down, though, through a salvo of unguided 5” FFARs which crossed the helicopter's flight path).

 

After the hostilities with Nicaragua had ended in 1990, the Honduran G.91Xs became actively involved in fighting drug trafficking and flew frequent reconnaissance and attack missions over home soil. By that time, the Honduran aircraft fleet was augmented or replaced (three G.91Xs had been lost through accidents or enemy fire by 1991) with 11 ex-USAF OA/A-37B Dragonflies, 12 ex-USAF Northrop F-5E/F Tiger II interceptors, 12 new Embraer T-27 Tucano armed trainers and four new CASA 101BB-02 attack airplanes.

By 1996, all eight remaining Honduran G.91Xs were, together with the Super Mystères, retired. The surviving aircraft were put up for sale as surplus, and one, already grounded G.91X airframe has been preserved at the Honduras Air Museum.

  

General characteristics:

Crew: one

Length: 11.67 m (38 ft 3.5 in)

Wingspan: 9.01 m (29 ft 6.5 in)

Height: 4.43 m (14 ft 6.3 in)

Wing area: 18.13 m² (195.149 ft²)

Empty weight: 4,400 kg (9,692 lb)

Loaded weight: 8,100 kg (17,842 lb)

Max. takeoff weight: 9,000 kg (19,823 lb)

 

Powerplant:

1× Pratt & Whitney J52-P6A turbojet with 8,500 lbf (38,000 N) of thrust

 

Performance:

Maximum speed: 1,110 km/h (600 kn, 690 mph, Mach 0.95) at 10,000 m (33,000 ft)

Range: 1,100 km (594 nmi, 683 mi)

Max. ferry range with drop tanks: 3,200 km (1,988 mls)

Service ceiling: 12,500 m (41,000 ft)

Rate of climb: 58 m/s (11.400 ft/min)

Wing loading: max. 480 kg/m² (98.3 lb/ft²)

Thrust/weight: 0.47 at maximum loading

 

Armament:

2× 30 mm (1.18 in) DEFA cannons with 120 RPG

4× under-wing pylon stations with a capacity of 1,814 kg (4,000 lb)

  

The kit and its assembly:

This build is my submission the 2020 "One week” group build at whatifmodellers.com. I had originally earmarked my Thai Navy A-4 for this event, but already built it for the “In the navy” GB that ran a couple of weeks earlier, since it was a perfect thematic match.

 

While searching for an alternative I found a Matchbox G.91Y in the stash and wondered about a single engine alternative, a simpler aircraft in the spirit of the original G.91R variants. Since I had some surplus fuselages from G.91R Revell kits in the donor bank, the G.91X was born.

 

The basis is the Matchbox G.91Y kit, a basic affair with mediocre fit and only few details. It was mostly built OOB, except for lowered flaps (easy to realize on this kit) and a completely new lower rear fuselage from a smaller G.91R section with only a single exhaust. This feat was a little more challenging than it seems, since the G.91R is considerably smaller and shorter than the G.91Y – a lot of improvisation and PSR went into this cosmetic stunt. For instance, the seams between the parts had to be reinforced from the inside, bridging the different fuselage shapes, and a 2-3mm gap between the fuselage halves had to be filled. In order to emphasize the new engine arrangement, the G.91Y’s dorsal air scoops were sanded away and a new jet exhaust had to be found for the new, rather oval tail orifice. I eventually settled upon a protective cap from y syringe needle.

 

Furthermore, the cast-on guns were replaced with hollow steel needles, and some blade antennae (styrene sheet) as well as gun nozzle protectors (thin wire) were added. The cockpit was also slightly pimped with styrene profiles and some wire (on the ejection seat and for some side consoles), the pilot figure – even though the Matchbox figures are among the best I know – was replaced by a pilot from an Airfix A-4 Skyhawk (left over from the recent Thai Navy A-4LT build). However, the canopy remained closed, since opening it would require more fuselage cutting.

 

The ordnance was kept simple, reflecting the attack/COIN role of this aircraft: a pair of LAU-19 unguided missile pods and two Mk. 82 bombs; these came from an Italeri NATO weapon set and an Airfix A-4 kit, respectively.

  

Painting and markings:

Another inspiration for this build were pictures from a PC-7 trainer of the Guatemala Air Force, which carried a livery in three murky shades of green. I found this paint scheme pretty interesting, esp. as an alternative to the ubiquitous SEA scheme (that Honduran A-37s carried). For the G.91X I adapted the scheme with slightly more contrasty tones of two shades of green and a more brownish hue: Faded Olive Drab (Modelmaster #2051), Olive Drab (Humbrol 155) and Dark Green (Humbrol 30). The undersides were painted in a light grey (Humbrol 166). I initially considered a wrap-around scheme, but eventually found it to look too boring – also with a look at the potential markings, because aircraft of the Honduran Air Force typically only carried and carry minimal markings. Instead of the Guatemalan PC-7’s apparently symmetrical scheme I rather went for a more disruptive pattern, though.

 

The model was seriously weathered with a black ink washing and post panel shading, simulating constant use and the influence of tropical climate conditions. The decals were puzzled together from various sources and improvised. Most stencils come from the OOB sheet, the roundels on the fuselage and the flags on the fin were printed at home on clear sheet, with a white decal base added underneath. Quite complicated, but the alternative white decal paper as printing base would not yield sufficiently opaque markings. In order to add some eye-catchers I gave the Gina roundels on the fuselage and on the wings, too – these are rather modern markings, but just with the flags on the fin I found the model to look quite murky and boring. Artistic freedom… The “FAH” abbreviations were created with single USAF 45° letters.

 

Finally, after some soot stains around the guns and the exhaust with grinded graphite, the aircraft was sealed with matt Italeri acrylic varnish.

  

A relatively simple project – chosen with the perspective of just a week (well, eight days, to be honest) to tackle and finish it, despite the major fuselage surgery and the photo shooting and editing on top.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Lockheed XFV (sometimes erroneously referred to as the "Salmon", even though this was actually the name of one of its test pilots and not an official designation) was an American experimental tailsitter prototype aircraft built by Lockheed in the early 1950s to demonstrate the operation of a vertical takeoff and landing (VTOL) fighter for protecting convoys.

 

The Lockheed XFV originated as a result of a proposal issued by the U.S. Navy in 1948 for an aircraft capable of vertical takeoff and landing (VTOL) aboard platforms mounted on the afterdecks of conventional ships. Both Convair and Lockheed competed for the contract, but in 1950 the requirement was revised with a call for a research aircraft capable of eventually evolving into a VTOL ship-based convoy escort fighter. On 19 April 1951, two prototypes were ordered from Lockheed under the designation XFO-1 (company designation was Model 081-40-01). Soon after the contract was awarded, the project designation changed to XFV-1 when the Navy's code for Lockheed was changed from O to V.

 

The XFV was powered by a 5,332 hp (3,976 kW) Allison YT40-A-6 turboprop engine, composed of two Allison T38 power sections driving three-bladed contra-rotating propellers via a common gearbox. The aircraft had no landing gear, just small castoring wheels at the tips of the tail surfaces which were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. The wings were diamond-shaped and relatively thin, with straight and sharp leading edges – somewhat foretelling the design of Lockheed’s Mach-2-capable F-104 Starfighter.

 

To begin flight testing, a temporary non-retractable undercarriage with long braced V-legs was attached to the fuselage, and fixed tail wheels attached to the lower pair of fins. In this form, the aircraft was trucked to Edwards AFB in November 1953 for ground testing and taxiing trials. During one of these tests, at a time when the aft section of the large spinner had not yet been fitted, Lockheed chief test pilot Herman "Fish" Salmon managed to taxi the aircraft past the liftoff speed, and the aircraft made a brief hop on 22 December 1953. The official first flight took place on 16 June 1954.

Full VTOL testing at Edwards AFB was delayed pending the availability of the 7,100 shp Allison T54, which was earmarked to replace the T40 and power eventual serial production aircraft. But the T54 faced severe development delays, esp. its gearbox. Another problem that arose with the new engine was that the propeller blade tips would reach supersonic speed and therefore compressibility problems.

After the brief unintentional hop, the prototype aircraft made a total of 32 flights. The XFV-1 was able to make a few transitions in flight from the conventional to the vertical flight mode and back, and had briefly held in hover at altitude, but the T40 output was simply not enough to ensure proper and secure VTOL operations. Performance remained limited by the confines of the flight test regime. Another issue that arose through the advancements of jet engine designs was the realization that the XFV's top speed would be eclipsed by contemporary fighters. Additionally, the purely manual handling of the aircraft esp. during landing was very demanding - the XFV could only be controlled by highly experienced pilots.

 

Both Navy and the Marines Corps were still interested in the concept, though, so that, in early 1955, the decision was made to build a limited pre-production series of the aircraft, the FV-2, for operational field tests and evaluation. The FV-2 was the proposed production version (Model 181-43-02), primarily conceived and optimized as a night/all-weather interceptor for point defense, and officially baptized “Solstice”. The FV-2 was powered by the T54-A-16 turboprop, which had eventually overcome its teething troubles and offered a combined power output equivalent of 7,500 shp (5,600 kW) from the propellers and the twin-engines’ residual thrust. Outwardly the different engine was recognizable through two separate circular exhausts which were introduced instead of the XFV’s single shallow ventral opening. The gearbox had been beefed up, too, with additional oil coolers in small ventral fairings behind the contraprops and the propeller blades were aerodynamically improved to better cope with the higher power output and rotation speed. Additionally, an automatic pitch control system was introduced to alleviate the pilot from the delicate control burdens during hover and flight mode transition.

 

Compared with the XFV, the FV-2 incorporated 150 lb (68 kg) of cockpit armor, along with a 1.5 in (38 mm) bullet-proof windscreen. A Sperry Corporation AN/APS-19 type radar was added in the fixed forward part of the nose spinner under an opaque perspex radome. The AN/APS-19 was primarily a target detection radar with only a limited tracking capability, and it had been introduced with the McDonnell F2H-2N. The radar had a theoretical maximum detection range of 60 km, but in real life air targets could only be detected at much shorter distances. At long ranges the radar was mainly used for navigation and to detect land masses or large ships.

Like the older AN/APS-6, the AN/APS-19 operated in a "Spiral Scan" search pattern. In a spiral scan the radar dish spins rapidly, scanning the area in front of the aircraft following a spiral path. As a result, however targets were not updated on every pass as the radar was pointing at a different angle on each pass. This also made the radar prone to ground clutter effects, which created "pulses" on the radar display. The AN/APS-19 was able to lock onto and track targets within a narrow cone, out to a maximum range of about 1 mile (1.5 km), but to do so the radar had to cease scanning.

 

The FV-2’s standard armament consisted of four Mk. 11 20 mm cannon fitted in pairs in the two detachable wingtip pods, with 250 rounds each, which fired outside of the wide propeller disc. Alternatively, forty-eight 2¾ in (70 mm) folding-fin rockets could be fitted in similar pods, which could be fired in salvoes against both air and ground targets. Instead of offensive armament, 200 US gal. (165 imp. gal./750 l) auxiliary tanks for ferry flights could be mounted onto the wing tips.

 

Until June 1956 a total of eleven FV-2s were built and delivered. With US Navy Air Development Squadron 8 (also known as VX-8) at NAS Atlantic City, a dedicated evaluation and maintenance unit for the FV-2 and the operations of VTOL aircraft in general was formed. VX-2 operated closely with its sister unit VX-3 (located at the same base) and operated the FV-2s alongside contemporary types like the Grumman F9F-8 Cougar, which at that time went through carrier-qualification aboard the USS Midway. The Cougars were soon joined by the new, supersonic F-8U-1 Crusaders, which arrived in December 1956. The advent of this supersonic navy jet type rendered the FV-2’s archaic technology and its performance more and more questionable, even though the VTOL concept’s potential and the institutions’ interest in it kept the test unit alive.

 

The FV-2s were in the following years put through a series of thorough field tests and frequently deployed to land bases all across the USA and abroad. Additionally, operational tests were also conducted on board of various ship types, ranging from carriers with wide flight decks to modified merchant ships with improvised landing platforms. The FV-2s also took part in US Navy and USMC maneuvers, and when not deployed elsewhere the training with new pilots at NAS Atlantic City continued.

 

During these tests, the demanding handling characteristics of the tailsitter concept in general and the FV-2 in specific were frequently confirmed. Once in flight, however, the FV-2 handled well and was a serious and agile dogfighter – but jet aircraft could easily avoid and outrun it.

Other operational problems soon became apparent, too: while the idea of a VTOL aircraft that was independent from runways or flight bases was highly attractive, the FV-2’s tailsitter concept required a complex and bulky maintenance infrastructure, with many ladders, working platforms and cranes. On the ground, the FV-2 could not move on its own and had to be pushed or towed. However, due to the aircraft’s high center of gravity it had to be handled with great care – two FV-2s were seriously damaged after they toppled over, one at NAS Atlantic City on the ground (it could be repaired and brought back into service), the other aboard a ship at heavy sea, where the aircraft totally got out of control on deck and fell into the sea as a total loss.

To make matters even worse, fundamental operational tasks like refueling, re-arming the aircraft between sorties or even just boarding it were a complicated and slow task, so that the aircraft’s theoretical conceptual benefits were countered by its cumbersome handling.

 

FV-2 operations furthermore revealed, despite the considerably increased power output of the T54 twin engine that more than compensated for the aircraft’s raised weight, only a marginal improvement of the aircraft’s performance; the FV-2 had simply reached the limits of propeller-driven aircraft. Just the rate of climb was markedly improved, and the extra power made the FV-2’s handling safer than the XFV’s, even though this advancement was only relative because the aircraft’s hazardous handling during transition and landing as well as other conceptual problems prevailed and could not be overcome. The FV-2’s range was also very limited, esp. when it did not carry the fuel tanks on the wing tips, so that the aircraft’s potential service spectrum remained very limited.

 

Six of the eleven FV-2s that were produced were lost in various accidents within only three years, five pilots were killed. The T54 engine remained unreliable, and the propeller control system which used 25 vacuum tubes was far from reliable, too. Due to the many problems, the FV-2s were grounded in 1959, and when VX-8 was disestablished on 1 March 1960, the whole project was cancelled and all remaining aircraft except for one airframe were scrapped. As of today, Bu.No. 53-3537 resides disassembled in storage at the National Museum of the United States Navy in the former Breech Mechanism Shop of the old Naval Gun Factory on the grounds of the Washington Navy Yard in Washington, D.C., United States, where it waits for restoration and eventual public presentation.

 

As a historic side note, the FV-2’s detachable wing tip gun pods had a longer and more successful service life: they were the basis for the Mk.4 HIPEG (High Performance External Gun) gun pods. This weapon system’s main purpose became strafing ground targets, and it received a different attachment system for underwing hardpoints and a bigger ammunition supply (750 RPG instead of just 250 on the FV-2). Approximately 1.200 Mk. 4 twin gun pods were manufactured by Hughes Tool Company, later Hughes Helicopter, in Culver City, California. While the system was tested and certified for use on the A-4, the A-6, the A-7, the F-4, and the OV-10, it only saw extended use on the A-4, the F-4, and the OV-10, esp. in Vietnam where the Mk. 4 pod was used extensively for close air support missions.

  

General characteristics:

Crew: 1

Length/Height: 36 ft 10.25 in (11.23 m)

Wingspan: 30 ft 10.1 in (9.4 m)

Wing area: 246 sq ft (22.85 m²)

Empty weight: 12,388 lb (5,624 kg)

Gross weight: 17,533 lb (7,960 kg)

Max. takeoff weight: 18,159 lb (8,244 kg)

 

Powerplant:

1× Allison T54-A-16 turboprop with 7,500 shp (5,600 kW) output equivalent,

driving a 6 blade contra-rotating propeller

 

Performance:

Maximum speed: 585 mph (941 km/h, 509 kn

Cruise speed: 410 mph (660 km/h, 360 kn)

Range: 500 mi (800 km, 430 nmi) with internal fuel

800 mi (1,300 km, 700 nmi) with ferry wing tip tanks

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 12,750 ft/min (75.0 m/s)

Wing loading: 73.7 lb/sq ft (360 kg/m²)

 

Armament:

4× 20 mm (.79 in) Mk. 11 machine cannon with a total of 1.000 rounds, or

48× 2.75 in (70 mm) rockets in wingtip pods, or

a pair of 200 US gal. (165 imp. gal./750 l) auxiliary tanks on the wing tips

  

The kit and its assembly:

Another submission to the “Fifties” group build at whatifmodellers-com, and a really nice what-if aircraft that perfectly fits into the time frame. I had this Pegasus kit in The Stash™ for quite a while and the plan to build an operational USN or USMC aircraft from it in the typical all-dark-blue livery from the early Fifties, and the group build was a good occasion to realize it.

 

The Pegasus kit was released in 1992, the only other option to build the XFV in 1:72 is a Valom kit which, as a bonus, features the aircraft’s fixed landing gear that was used during flight trials. The Pegasus offering is technically simple and robust, but it is nothing for those who are faint at heart. The warning that the kit requires an experienced builder is not to be underestimated, because the IP kit from the UK comes with white metal parts and no visual instructions, just a verbal description of the building steps. The IP parts (including the canopy, which is one piece, quite thick but also clear) and the decals look good, though.

 

The IP parts feature flash and uneven seam lines, sprue attachment points are quite thick. The grey IP material had on my specimen different grades of hard-/brittleness, the white metal parts (some of the propeller blades) were bent and had to be re-aligned. No IP parts would fit well (there are no locator pins or other physical aids), the cockpit tub was a mess to assemble and fit into the fuselage. PSR on any seam all around the hull. But even though this sound horrible, the kit goes together relatively easy – thanks to its simplicity.

 

I made some mods and upgrades, though. One of them was an internal axis construction made from styrene tubes that allow the two propeller discs to move separately (OOB, you just stack and glue the discs onto each other into a rigid nose cone), while the propeller tip with its radome remained fixed – just as in real life. However, due to the parts’ size and resistance against each other, the props could not move as freely as originally intended.

Separate parts for the air intakes as well as the wings and tail surfaces could be mounted with less problems than expected, even though - again – PSR was necessary to hide the seams.

  

Painting and markings:

As already mentioned, the livery would be rather conservative, because I wanted the aircraft to carry the uniform USN scheme in all-over FS 35042 with white markings, which was dropped in 1955, though. The XFV or a potential serial production derivative would just fit into this time frame, and might have carried the classic all-blue livery for a couple of years more, especially when operated by an evaluation unit. Its unit, VX-8, is totally fictional, though.

 

The cockpit interior was painted in Humbrol 80 (simulating bright zinc chromate primer), and to have some contrasts I added small red highlights on the fin pod tips and the gun pods' anti-flutter winglets. For some more variety the radome became earth brown with some good weathering, simulating an opaque perspex hood, and I added white (actually a very light gray) checkerboard markings on the "propeller rings", a bit inspired by the spinner markings on German WWII fighters. Subtle, but it looks good and breaks the otherwise very simple livery.

Some post-panel-shading with a lighter blue was done all over the hull, the exhaust area and the gun ports were painted with iron (Revell 91) and treated with graphite for a more metallic shine.

Silver decal stripe material was used to create the CoroGuard leading edges and the fine lines at the flaps on wings and fins - much easier than trying to solve this with paint and brush...

 

The decals were puzzled together from various dark blue USN aircraft, including a F8F, F9F and F4U sheet. The "XH" code was created with single 1cm hwite letters, the different font is not obvious, thanks to the letter combination.

Finally, the model was sealed with semi-gloss acrylic varnish (still shiny, but not too bright), the radome and the exhaust area were painted with matt varnsh, though.

  

A cool result, despite the rather dubious kit base. The Pegasus kit is seriously something for experienced builders, but the result looks convincing. The blue USN livery suits the XFV/FV-2 very well, it looks much more elegant than in the original NMF - even though it would, in real life, probably have received the new Gull Gray/White scheme (introduced in late 1955, IIRC, my FV-2 might have been one of the last aircraft to be painted blue). However, the blue scheme IMHO points out the aircraft's highly aerodynamic teardrop shape, esp. the flight pics make the aircraft almost look elegant!

CFV 2.15. Improved wings/stabilizers, made it look more modern and capable. Added Cargo Module rear of Science Module, cargo pods are individually removable. Added light-speed rear of cargo Module. Sub-light engines and stabilizers are on "wings" and underneath framework. Shields also added/strengthened. Some armament added, oddly CFV had none before. Sensor array beefed up and added along top and to forward section. Still can break into Modules, so science compartment and/or cargo can be left on planet and Command Module and engines can explore or move elsewhere.

 

PS I have had THIS CFV since Christmas the year it came out. Somehow at 7 years old I was smart enough to keep the instructions.

Land Rover has a long history of delivering capable and premium offroad vehicles. The Range Rover has set the benchmark for premium offroad (now known as SUV) vehicle types. And, the original Land Rover (recently known as 'Defender') has set the benchmark for capable offroad attributes since its inception in 1948.

 

One thing the Defender isn't is comfortable, stylish, safe or pretty much anything you would use to describe a newly engineered car. Problem is, Land Rover has not been able to identify and produce a replacement vehicle design.

 

A few years ago Land Rover produced a series of concepts, under the title DC 100 (Defender Concept 100) looking at a modern interpretation of the core Land Rover values: offroad capability & robustness.

 

The version shown here was a followup concept, based on the three door DC 100 design.

 

The production version of this vehicle had been due in 2016/17, but at this stage there is no confirmation regarding the vehicle or the production date.

 

What we are left with are some interesting concepts glimpsing the thoughts of one of the original offroad capable product companies.

 

More info can be found at the following wikipedia link:

 

en.wikipedia.org/wiki/Land_Rover_DC100

 

This Lego miniland-scale Land Rover DC 100 Concept - has been created for Flickr LUGNuts' 105th Build Challenge, titled - 'The Great Outdoors!' - a challenge for any vehicle designed for outdoor adventuring.

  

The Rolls-Royce Griffon engine was designed in answer to Royal Naval specifications for an engine capable of generating good power at low altitudes. Concepts for adapting the Spitfire to take the new engine had begun as far back as October 1939; Joseph Smith felt that "The good big 'un will eventually beat the good little 'un." and Ernest Hives of Rolls-Royce thought that the Griffon would be "a second power string for the Spitfire". The first of the Griffon-engined Spitfires flew on 27 November 1941.

 

Although the Griffon-engined Spitfires were never produced in the large numbers of the Merlin-engined variants they were an important part of the Spitfire family, and in their later versions kept the Spitfire at the forefront of piston-engined fighter development. This article describes the Griffon-powered Spitfire variants.

 

The majority of Spitfires from the Mk VIII used C, D and E wing types. Unless otherwise noted, all Griffon-engined Spitfire variants used the strengthened Dunlop AH10019 "four spoke" pattern mainwheels. With the increasing use of hard-surfaced runways in the post-war years, many Spitfires were either manufactured or re-fitted with, larger mainwheels which were of a "three spoke" pattern. These were used on modified undercarriage legs which had reduced "toe-in" for the axles, which reduced tyre scrub.

 

Also known as the "Universal wing" the new design was standard on the majority of Spitfires built from mid-1942. This wing was structurally modified to reduce labour and manufacturing time plus it was designed to allow mixed armament options, A type, B type or four 20 mm Hispano cannon.

 

The undercarriage mountings were redesigned and the undercarriage doors were bowed in cross section allowing the legs to sit lower in the wells, eliminating the upper-wing blisters over the wheel wells and landing gear pivot points. Stronger undercarriage legs were raked 2 inches (5.08 cm) forward, making the Spitfire more stable on the ground and reducing the likelihood of the aircraft tipping onto its nose.[2] During production of the Mk VIII and Mk IX, a new undercarriage leg was introduced which had external v-shaped "scissor-links" fitted to the front of the leg; this also led to small changes in the shape of the undercarriage bay and leg fairings. Several versions of the Spitfire, including Mk XIV and Mk XVIII had extra 13 gallon integral fuel tanks in the wing leading edges, between the wing-root and the inboard cannon bay.

 

The Hispano Mk.II cannons were now belt fed from box magazines allowing for 120 rpg (the Chattelleraul system). The fairings over the Hispano barrels were shorter and there was usually a short rubber stub covering the outer cannon port. Redesigned upper wing gun bay doors incorporated "teardrop" shaped blisters to clear the cannon feed motors and the lower wings no longer had the gun bay heating vents outboard of the gunbays. To provide room for the belt feed system of the cannon, the inner machine gun bays were moved outboard between ribs 13 and 14. As the Spitfire was no longer to be used as a night fighter, the retractable landing lights were no longer fitted.

 

D Type

 

These were specifically made for the Photo-Reconnaissance Spitfires, including the PR XIX; no armament was fitted and the "D" shaped leading edges of the wings ahead of the main spar, were converted into integral fuel tanks, each carrying 66 gallons. To avoid the expansion of fuel in hot weather damaging the wing, pressure relief valves, incorporating small external vent pipes, were fitted near the wing tips.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Lockheed XFV (sometimes erroneously referred to as the "Salmon", even though this was actually the name of one of its test pilots and not an official designation) was an American experimental tailsitter prototype aircraft built by Lockheed in the early 1950s to demonstrate the operation of a vertical takeoff and landing (VTOL) fighter for protecting convoys.

 

The Lockheed XFV originated as a result of a proposal issued by the U.S. Navy in 1948 for an aircraft capable of vertical takeoff and landing (VTOL) aboard platforms mounted on the afterdecks of conventional ships. Both Convair and Lockheed competed for the contract, but in 1950 the requirement was revised with a call for a research aircraft capable of eventually evolving into a VTOL ship-based convoy escort fighter. On 19 April 1951, two prototypes were ordered from Lockheed under the designation XFO-1 (company designation was Model 081-40-01). Soon after the contract was awarded, the project designation changed to XFV-1 when the Navy's code for Lockheed was changed from O to V.

 

The XFV was powered by a 5,332 hp (3,976 kW) Allison YT40-A-6 turboprop engine, composed of two Allison T38 power sections driving three-bladed contra-rotating propellers via a common gearbox. The aircraft had no landing gear, just small castoring wheels at the tips of the tail surfaces which were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. The wings were diamond-shaped and relatively thin, with straight and sharp leading edges – somewhat foretelling the design of Lockheed’s Mach-2-capable F-104 Starfighter.

 

To begin flight testing, a temporary non-retractable undercarriage with long braced V-legs was attached to the fuselage, and fixed tail wheels attached to the lower pair of fins. In this form, the aircraft was trucked to Edwards AFB in November 1953 for ground testing and taxiing trials. During one of these tests, at a time when the aft section of the large spinner had not yet been fitted, Lockheed chief test pilot Herman "Fish" Salmon managed to taxi the aircraft past the liftoff speed, and the aircraft made a brief hop on 22 December 1953. The official first flight took place on 16 June 1954.

Full VTOL testing at Edwards AFB was delayed pending the availability of the 7,100 shp Allison T54, which was earmarked to replace the T40 and power eventual serial production aircraft. But the T54 faced severe development delays, esp. its gearbox. Another problem that arose with the new engine was that the propeller blade tips would reach supersonic speed and therefore compressibility problems.

After the brief unintentional hop, the prototype aircraft made a total of 32 flights. The XFV-1 was able to make a few transitions in flight from the conventional to the vertical flight mode and back, and had briefly held in hover at altitude, but the T40 output was simply not enough to ensure proper and secure VTOL operations. Performance remained limited by the confines of the flight test regime. Another issue that arose through the advancements of jet engine designs was the realization that the XFV's top speed would be eclipsed by contemporary fighters. Additionally, the purely manual handling of the aircraft esp. during landing was very demanding - the XFV could only be controlled by highly experienced pilots.

 

Both Navy and the Marines Corps were still interested in the concept, though, so that, in early 1955, the decision was made to build a limited pre-production series of the aircraft, the FV-2, for operational field tests and evaluation. The FV-2 was the proposed production version (Model 181-43-02), primarily conceived and optimized as a night/all-weather interceptor for point defense, and officially baptized “Solstice”. The FV-2 was powered by the T54-A-16 turboprop, which had eventually overcome its teething troubles and offered a combined power output equivalent of 7,500 shp (5,600 kW) from the propellers and the twin-engines’ residual thrust. Outwardly the different engine was recognizable through two separate circular exhausts which were introduced instead of the XFV’s single shallow ventral opening. The gearbox had been beefed up, too, with additional oil coolers in small ventral fairings behind the contraprops and the propeller blades were aerodynamically improved to better cope with the higher power output and rotation speed. Additionally, an automatic pitch control system was introduced to alleviate the pilot from the delicate control burdens during hover and flight mode transition.

 

Compared with the XFV, the FV-2 incorporated 150 lb (68 kg) of cockpit armor, along with a 1.5 in (38 mm) bullet-proof windscreen. A Sperry Corporation AN/APS-19 type radar was added in the fixed forward part of the nose spinner under an opaque perspex radome. The AN/APS-19 was primarily a target detection radar with only a limited tracking capability, and it had been introduced with the McDonnell F2H-2N. The radar had a theoretical maximum detection range of 60 km, but in real life air targets could only be detected at much shorter distances. At long ranges the radar was mainly used for navigation and to detect land masses or large ships.

Like the older AN/APS-6, the AN/APS-19 operated in a "Spiral Scan" search pattern. In a spiral scan the radar dish spins rapidly, scanning the area in front of the aircraft following a spiral path. As a result, however targets were not updated on every pass as the radar was pointing at a different angle on each pass. This also made the radar prone to ground clutter effects, which created "pulses" on the radar display. The AN/APS-19 was able to lock onto and track targets within a narrow cone, out to a maximum range of about 1 mile (1.5 km), but to do so the radar had to cease scanning.

 

The FV-2’s standard armament consisted of four Mk. 11 20 mm cannon fitted in pairs in the two detachable wingtip pods, with 250 rounds each, which fired outside of the wide propeller disc. Alternatively, forty-eight 2¾ in (70 mm) folding-fin rockets could be fitted in similar pods, which could be fired in salvoes against both air and ground targets. Instead of offensive armament, 200 US gal. (165 imp. gal./750 l) auxiliary tanks for ferry flights could be mounted onto the wing tips.

 

Until June 1956 a total of eleven FV-2s were built and delivered. With US Navy Air Development Squadron 8 (also known as VX-8) at NAS Atlantic City, a dedicated evaluation and maintenance unit for the FV-2 and the operations of VTOL aircraft in general was formed. VX-2 operated closely with its sister unit VX-3 (located at the same base) and operated the FV-2s alongside contemporary types like the Grumman F9F-8 Cougar, which at that time went through carrier-qualification aboard the USS Midway. The Cougars were soon joined by the new, supersonic F-8U-1 Crusaders, which arrived in December 1956. The advent of this supersonic navy jet type rendered the FV-2’s archaic technology and its performance more and more questionable, even though the VTOL concept’s potential and the institutions’ interest in it kept the test unit alive.

 

The FV-2s were in the following years put through a series of thorough field tests and frequently deployed to land bases all across the USA and abroad. Additionally, operational tests were also conducted on board of various ship types, ranging from carriers with wide flight decks to modified merchant ships with improvised landing platforms. The FV-2s also took part in US Navy and USMC maneuvers, and when not deployed elsewhere the training with new pilots at NAS Atlantic City continued.

 

During these tests, the demanding handling characteristics of the tailsitter concept in general and the FV-2 in specific were frequently confirmed. Once in flight, however, the FV-2 handled well and was a serious and agile dogfighter – but jet aircraft could easily avoid and outrun it.

Other operational problems soon became apparent, too: while the idea of a VTOL aircraft that was independent from runways or flight bases was highly attractive, the FV-2’s tailsitter concept required a complex and bulky maintenance infrastructure, with many ladders, working platforms and cranes. On the ground, the FV-2 could not move on its own and had to be pushed or towed. However, due to the aircraft’s high center of gravity it had to be handled with great care – two FV-2s were seriously damaged after they toppled over, one at NAS Atlantic City on the ground (it could be repaired and brought back into service), the other aboard a ship at heavy sea, where the aircraft totally got out of control on deck and fell into the sea as a total loss.

To make matters even worse, fundamental operational tasks like refueling, re-arming the aircraft between sorties or even just boarding it were a complicated and slow task, so that the aircraft’s theoretical conceptual benefits were countered by its cumbersome handling.

 

FV-2 operations furthermore revealed, despite the considerably increased power output of the T54 twin engine that more than compensated for the aircraft’s raised weight, only a marginal improvement of the aircraft’s performance; the FV-2 had simply reached the limits of propeller-driven aircraft. Just the rate of climb was markedly improved, and the extra power made the FV-2’s handling safer than the XFV’s, even though this advancement was only relative because the aircraft’s hazardous handling during transition and landing as well as other conceptual problems prevailed and could not be overcome. The FV-2’s range was also very limited, esp. when it did not carry the fuel tanks on the wing tips, so that the aircraft’s potential service spectrum remained very limited.

 

Six of the eleven FV-2s that were produced were lost in various accidents within only three years, five pilots were killed. The T54 engine remained unreliable, and the propeller control system which used 25 vacuum tubes was far from reliable, too. Due to the many problems, the FV-2s were grounded in 1959, and when VX-8 was disestablished on 1 March 1960, the whole project was cancelled and all remaining aircraft except for one airframe were scrapped. As of today, Bu.No. 53-3537 resides disassembled in storage at the National Museum of the United States Navy in the former Breech Mechanism Shop of the old Naval Gun Factory on the grounds of the Washington Navy Yard in Washington, D.C., United States, where it waits for restoration and eventual public presentation.

 

As a historic side note, the FV-2’s detachable wing tip gun pods had a longer and more successful service life: they were the basis for the Mk.4 HIPEG (High Performance External Gun) gun pods. This weapon system’s main purpose became strafing ground targets, and it received a different attachment system for underwing hardpoints and a bigger ammunition supply (750 RPG instead of just 250 on the FV-2). Approximately 1.200 Mk. 4 twin gun pods were manufactured by Hughes Tool Company, later Hughes Helicopter, in Culver City, California. While the system was tested and certified for use on the A-4, the A-6, the A-7, the F-4, and the OV-10, it only saw extended use on the A-4, the F-4, and the OV-10, esp. in Vietnam where the Mk. 4 pod was used extensively for close air support missions.

  

General characteristics:

Crew: 1

Length/Height: 36 ft 10.25 in (11.23 m)

Wingspan: 30 ft 10.1 in (9.4 m)

Wing area: 246 sq ft (22.85 m²)

Empty weight: 12,388 lb (5,624 kg)

Gross weight: 17,533 lb (7,960 kg)

Max. takeoff weight: 18,159 lb (8,244 kg)

 

Powerplant:

1× Allison T54-A-16 turboprop with 7,500 shp (5,600 kW) output equivalent,

driving a 6 blade contra-rotating propeller

 

Performance:

Maximum speed: 585 mph (941 km/h, 509 kn

Cruise speed: 410 mph (660 km/h, 360 kn)

Range: 500 mi (800 km, 430 nmi) with internal fuel

800 mi (1,300 km, 700 nmi) with ferry wing tip tanks

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 12,750 ft/min (75.0 m/s)

Wing loading: 73.7 lb/sq ft (360 kg/m²)

 

Armament:

4× 20 mm (.79 in) Mk. 11 machine cannon with a total of 1.000 rounds, or

48× 2.75 in (70 mm) rockets in wingtip pods, or

a pair of 200 US gal. (165 imp. gal./750 l) auxiliary tanks on the wing tips

  

The kit and its assembly:

Another submission to the “Fifties” group build at whatifmodellers-com, and a really nice what-if aircraft that perfectly fits into the time frame. I had this Pegasus kit in The Stash™ for quite a while and the plan to build an operational USN or USMC aircraft from it in the typical all-dark-blue livery from the early Fifties, and the group build was a good occasion to realize it.

 

The Pegasus kit was released in 1992, the only other option to build the XFV in 1:72 is a Valom kit which, as a bonus, features the aircraft’s fixed landing gear that was used during flight trials. The Pegasus offering is technically simple and robust, but it is nothing for those who are faint at heart. The warning that the kit requires an experienced builder is not to be underestimated, because the IP kit from the UK comes with white metal parts and no visual instructions, just a verbal description of the building steps. The IP parts (including the canopy, which is one piece, quite thick but also clear) and the decals look good, though.

 

The IP parts feature flash and uneven seam lines, sprue attachment points are quite thick. The grey IP material had on my specimen different grades of hard-/brittleness, the white metal parts (some of the propeller blades) were bent and had to be re-aligned. No IP parts would fit well (there are no locator pins or other physical aids), the cockpit tub was a mess to assemble and fit into the fuselage. PSR on any seam all around the hull. But even though this sound horrible, the kit goes together relatively easy – thanks to its simplicity.

 

I made some mods and upgrades, though. One of them was an internal axis construction made from styrene tubes that allow the two propeller discs to move separately (OOB, you just stack and glue the discs onto each other into a rigid nose cone), while the propeller tip with its radome remained fixed – just as in real life. However, due to the parts’ size and resistance against each other, the props could not move as freely as originally intended.

Separate parts for the air intakes as well as the wings and tail surfaces could be mounted with less problems than expected, even though - again – PSR was necessary to hide the seams.

  

Painting and markings:

As already mentioned, the livery would be rather conservative, because I wanted the aircraft to carry the uniform USN scheme in all-over FS 35042 with white markings, which was dropped in 1955, though. The XFV or a potential serial production derivative would just fit into this time frame, and might have carried the classic all-blue livery for a couple of years more, especially when operated by an evaluation unit. Its unit, VX-8, is totally fictional, though.

 

The cockpit interior was painted in Humbrol 80 (simulating bright zinc chromate primer), and to have some contrasts I added small red highlights on the fin pod tips and the gun pods' anti-flutter winglets. For some more variety the radome became earth brown with some good weathering, simulating an opaque perspex hood, and I added white (actually a very light gray) checkerboard markings on the "propeller rings", a bit inspired by the spinner markings on German WWII fighters. Subtle, but it looks good and breaks the otherwise very simple livery.

Some post-panel-shading with a lighter blue was done all over the hull, the exhaust area and the gun ports were painted with iron (Revell 91) and treated with graphite for a more metallic shine.

Silver decal stripe material was used to create the CoroGuard leading edges and the fine lines at the flaps on wings and fins - much easier than trying to solve this with paint and brush...

 

The decals were puzzled together from various dark blue USN aircraft, including a F8F, F9F and F4U sheet. The "XH" code was created with single 1cm hwite letters, the different font is not obvious, thanks to the letter combination.

Finally, the model was sealed with semi-gloss acrylic varnish (still shiny, but not too bright), the radome and the exhaust area were painted with matt varnsh, though.

  

A cool result, despite the rather dubious kit base. The Pegasus kit is seriously something for experienced builders, but the result looks convincing. The blue USN livery suits the XFV/FV-2 very well, it looks much more elegant than in the original NMF - even though it would, in real life, probably have received the new Gull Gray/White scheme (introduced in late 1955, IIRC, my FV-2 might have been one of the last aircraft to be painted blue). However, the blue scheme IMHO points out the aircraft's highly aerodynamic teardrop shape, esp. the flight pics make the aircraft almost look elegant!

The opening of the Connaught Bridge Generating Station, on the Klang River in Selangor, in March 1953 was a real milestone int he history of what was then Malaya - now Malaysia. The power station, capable of being either coal or oil fired, was at 80,000kw by far the largest generating station at the time in the country and, as importantly, the project included elements of a new proposed Malayan 'National Grid' that linked existing stations such as the hydro-electric plant at Chenderoh with stations and locations along the East Coast centred on the Bungsar station in Kuala Lumpur that hitherto had supplied the bulk of the capital's power requirements. As the booklet notes it meant an end to the long post-war years of restriction of supply to both industrial and domestic consumers.

 

The station was originally planned in 1944 by the Malayan Planning Unit in London in anticipation of the return to Malaya after the end of the Japanses occupation. A provisional order for the equipment was placed in 1945, with additional equipment following in 1947. Meanwhile the site at Connaught Bridge alongside the Klang River was selected in 1946 with the contract to start construction given by the Federation's Government in 1949. The first phase of the station, plant and the double circuit 66kv interconnecting lines running the 23 miles to Kuala Lumpur, was ready for opening in March 1953. Full commissioning came in 1955. Initailly the output was linked to the Bangsar (KL) station and that of Ulu Langat hydro-electric station. Construction of the former had started in 1926 and was opened in 1927 by the Government electricity department and in 1933 they purchased the Ulu Langat station from the Sungei Besi Mines Ltd. KL's earlier supplies, from 1905, had been provided from a small hydro-electric plant on the Gombak River, 12 miles from the town, what had two 400kw Pelton wheel-alternators. This had been augmented in 1919 by a mixed steam and diesel engine plant at Gombak Lane in the centre of KL.

 

Elsewhere, Penang's Municipal Department was the first to supply electriicty within Malaya when it started in 1904 - the station on the mainland at Prai came into use in 1926. By this date electricity was available in Ipoh, Johore Bahru (and Singapore), Seremban and Malacca/Melaka. That at Johore Bahru under the Johore adminsitraion grew to include Muar, Batu Pahat, Kluang, Kota Tinggi and Segamat. In Perak supplies were largely in the hands of the Perak River Hydro-Electric Power Company who operated stations at Malim Nawar (1928) and Chenderoh (1929). In North Perak the Government supplied Taiping and in Province Wellesley Messrs. Huttenbach's bought bulk supply from Penang and supplied power to various towns, supplemented by diesel generating stations in Kedah, Perak and Negri Sembilan. Power came to Kota Bharu (Kelantan), Ruab, Bentong, Kuala Lipis and Kuantan between 1928 and 1931, and in 1938 and 1939 to Mentakab, Fraser's Hill and Kuala Kubu.

 

In 1946 the Malayan Union Government acquired most electriicty undertakings except those of private companies and Penang Corporation whilst it also fully acquired the undertkaing operated by the Malacca Electric Light Company in 1948 that it has previously run on a rental basis. On the 1 September 1949 the new Central Electricity Board of the Federation fo Malaya came into existance and took over all functions of the old Electricity Department.

 

The booklet is marvellously detailed and illustrated describing the site, the power station, ancilliary equipment and other works, such as staff accomodaton and housing, with photographs and plans. The latter include a map of the proposed Malayan Grid and the plans show the works designed by both the staff of the Central Electricity Board and the consulting engineers, Preece, Cardew and Rider, and civil engineers Coode and Partners. The station took cooling water from the Klang River and could be powered by either fuel oil (via a pipeline from Port Swettenham) and coal via connections with the Malayan Railways and the colliery at Batu Arang.

 

Needless to say much of the equipment was supplied from the UK - Parsons generators and transformers and switchgear from various manufacturers including British Thomson Houston.

 

The photos are great as they show named members of the operating staff at work which is unusual but that now provided a real social history to the economic history of electricity supply in Malaysia.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Lockheed XFV (sometimes erroneously referred to as the "Salmon", even though this was actually the name of one of its test pilots and not an official designation) was an American experimental tailsitter prototype aircraft built by Lockheed in the early 1950s to demonstrate the operation of a vertical takeoff and landing (VTOL) fighter for protecting convoys.

 

The Lockheed XFV originated as a result of a proposal issued by the U.S. Navy in 1948 for an aircraft capable of vertical takeoff and landing (VTOL) aboard platforms mounted on the afterdecks of conventional ships. Both Convair and Lockheed competed for the contract, but in 1950 the requirement was revised with a call for a research aircraft capable of eventually evolving into a VTOL ship-based convoy escort fighter. On 19 April 1951, two prototypes were ordered from Lockheed under the designation XFO-1 (company designation was Model 081-40-01). Soon after the contract was awarded, the project designation changed to XFV-1 when the Navy's code for Lockheed was changed from O to V.

 

The XFV was powered by a 5,332 hp (3,976 kW) Allison YT40-A-6 turboprop engine, composed of two Allison T38 power sections driving three-bladed contra-rotating propellers via a common gearbox. The aircraft had no landing gear, just small castoring wheels at the tips of the tail surfaces which were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. The wings were diamond-shaped and relatively thin, with straight and sharp leading edges – somewhat foretelling the design of Lockheed’s Mach-2-capable F-104 Starfighter.

 

To begin flight testing, a temporary non-retractable undercarriage with long braced V-legs was attached to the fuselage, and fixed tail wheels attached to the lower pair of fins. In this form, the aircraft was trucked to Edwards AFB in November 1953 for ground testing and taxiing trials. During one of these tests, at a time when the aft section of the large spinner had not yet been fitted, Lockheed chief test pilot Herman "Fish" Salmon managed to taxi the aircraft past the liftoff speed, and the aircraft made a brief hop on 22 December 1953. The official first flight took place on 16 June 1954.

Full VTOL testing at Edwards AFB was delayed pending the availability of the 7,100 shp Allison T54, which was earmarked to replace the T40 and power eventual serial production aircraft. But the T54 faced severe development delays, esp. its gearbox. Another problem that arose with the new engine was that the propeller blade tips would reach supersonic speed and therefore compressibility problems.

After the brief unintentional hop, the prototype aircraft made a total of 32 flights. The XFV-1 was able to make a few transitions in flight from the conventional to the vertical flight mode and back, and had briefly held in hover at altitude, but the T40 output was simply not enough to ensure proper and secure VTOL operations. Performance remained limited by the confines of the flight test regime. Another issue that arose through the advancements of jet engine designs was the realization that the XFV's top speed would be eclipsed by contemporary fighters. Additionally, the purely manual handling of the aircraft esp. during landing was very demanding - the XFV could only be controlled by highly experienced pilots.

 

Both Navy and the Marines Corps were still interested in the concept, though, so that, in early 1955, the decision was made to build a limited pre-production series of the aircraft, the FV-2, for operational field tests and evaluation. The FV-2 was the proposed production version (Model 181-43-02), primarily conceived and optimized as a night/all-weather interceptor for point defense, and officially baptized “Solstice”. The FV-2 was powered by the T54-A-16 turboprop, which had eventually overcome its teething troubles and offered a combined power output equivalent of 7,500 shp (5,600 kW) from the propellers and the twin-engines’ residual thrust. Outwardly the different engine was recognizable through two separate circular exhausts which were introduced instead of the XFV’s single shallow ventral opening. The gearbox had been beefed up, too, with additional oil coolers in small ventral fairings behind the contraprops and the propeller blades were aerodynamically improved to better cope with the higher power output and rotation speed. Additionally, an automatic pitch control system was introduced to alleviate the pilot from the delicate control burdens during hover and flight mode transition.

 

Compared with the XFV, the FV-2 incorporated 150 lb (68 kg) of cockpit armor, along with a 1.5 in (38 mm) bullet-proof windscreen. A Sperry Corporation AN/APS-19 type radar was added in the fixed forward part of the nose spinner under an opaque perspex radome. The AN/APS-19 was primarily a target detection radar with only a limited tracking capability, and it had been introduced with the McDonnell F2H-2N. The radar had a theoretical maximum detection range of 60 km, but in real life air targets could only be detected at much shorter distances. At long ranges the radar was mainly used for navigation and to detect land masses or large ships.

Like the older AN/APS-6, the AN/APS-19 operated in a "Spiral Scan" search pattern. In a spiral scan the radar dish spins rapidly, scanning the area in front of the aircraft following a spiral path. As a result, however targets were not updated on every pass as the radar was pointing at a different angle on each pass. This also made the radar prone to ground clutter effects, which created "pulses" on the radar display. The AN/APS-19 was able to lock onto and track targets within a narrow cone, out to a maximum range of about 1 mile (1.5 km), but to do so the radar had to cease scanning.

 

The FV-2’s standard armament consisted of four Mk. 11 20 mm cannon fitted in pairs in the two detachable wingtip pods, with 250 rounds each, which fired outside of the wide propeller disc. Alternatively, forty-eight 2¾ in (70 mm) folding-fin rockets could be fitted in similar pods, which could be fired in salvoes against both air and ground targets. Instead of offensive armament, 200 US gal. (165 imp. gal./750 l) auxiliary tanks for ferry flights could be mounted onto the wing tips.

 

Until June 1956 a total of eleven FV-2s were built and delivered. With US Navy Air Development Squadron 8 (also known as VX-8) at NAS Atlantic City, a dedicated evaluation and maintenance unit for the FV-2 and the operations of VTOL aircraft in general was formed. VX-2 operated closely with its sister unit VX-3 (located at the same base) and operated the FV-2s alongside contemporary types like the Grumman F9F-8 Cougar, which at that time went through carrier-qualification aboard the USS Midway. The Cougars were soon joined by the new, supersonic F-8U-1 Crusaders, which arrived in December 1956. The advent of this supersonic navy jet type rendered the FV-2’s archaic technology and its performance more and more questionable, even though the VTOL concept’s potential and the institutions’ interest in it kept the test unit alive.

 

The FV-2s were in the following years put through a series of thorough field tests and frequently deployed to land bases all across the USA and abroad. Additionally, operational tests were also conducted on board of various ship types, ranging from carriers with wide flight decks to modified merchant ships with improvised landing platforms. The FV-2s also took part in US Navy and USMC maneuvers, and when not deployed elsewhere the training with new pilots at NAS Atlantic City continued.

 

During these tests, the demanding handling characteristics of the tailsitter concept in general and the FV-2 in specific were frequently confirmed. Once in flight, however, the FV-2 handled well and was a serious and agile dogfighter – but jet aircraft could easily avoid and outrun it.

Other operational problems soon became apparent, too: while the idea of a VTOL aircraft that was independent from runways or flight bases was highly attractive, the FV-2’s tailsitter concept required a complex and bulky maintenance infrastructure, with many ladders, working platforms and cranes. On the ground, the FV-2 could not move on its own and had to be pushed or towed. However, due to the aircraft’s high center of gravity it had to be handled with great care – two FV-2s were seriously damaged after they toppled over, one at NAS Atlantic City on the ground (it could be repaired and brought back into service), the other aboard a ship at heavy sea, where the aircraft totally got out of control on deck and fell into the sea as a total loss.

To make matters even worse, fundamental operational tasks like refueling, re-arming the aircraft between sorties or even just boarding it were a complicated and slow task, so that the aircraft’s theoretical conceptual benefits were countered by its cumbersome handling.

 

FV-2 operations furthermore revealed, despite the considerably increased power output of the T54 twin engine that more than compensated for the aircraft’s raised weight, only a marginal improvement of the aircraft’s performance; the FV-2 had simply reached the limits of propeller-driven aircraft. Just the rate of climb was markedly improved, and the extra power made the FV-2’s handling safer than the XFV’s, even though this advancement was only relative because the aircraft’s hazardous handling during transition and landing as well as other conceptual problems prevailed and could not be overcome. The FV-2’s range was also very limited, esp. when it did not carry the fuel tanks on the wing tips, so that the aircraft’s potential service spectrum remained very limited.

 

Six of the eleven FV-2s that were produced were lost in various accidents within only three years, five pilots were killed. The T54 engine remained unreliable, and the propeller control system which used 25 vacuum tubes was far from reliable, too. Due to the many problems, the FV-2s were grounded in 1959, and when VX-8 was disestablished on 1 March 1960, the whole project was cancelled and all remaining aircraft except for one airframe were scrapped. As of today, Bu.No. 53-3537 resides disassembled in storage at the National Museum of the United States Navy in the former Breech Mechanism Shop of the old Naval Gun Factory on the grounds of the Washington Navy Yard in Washington, D.C., United States, where it waits for restoration and eventual public presentation.

 

As a historic side note, the FV-2’s detachable wing tip gun pods had a longer and more successful service life: they were the basis for the Mk.4 HIPEG (High Performance External Gun) gun pods. This weapon system’s main purpose became strafing ground targets, and it received a different attachment system for underwing hardpoints and a bigger ammunition supply (750 RPG instead of just 250 on the FV-2). Approximately 1.200 Mk. 4 twin gun pods were manufactured by Hughes Tool Company, later Hughes Helicopter, in Culver City, California. While the system was tested and certified for use on the A-4, the A-6, the A-7, the F-4, and the OV-10, it only saw extended use on the A-4, the F-4, and the OV-10, esp. in Vietnam where the Mk. 4 pod was used extensively for close air support missions.

  

General characteristics:

Crew: 1

Length/Height: 36 ft 10.25 in (11.23 m)

Wingspan: 30 ft 10.1 in (9.4 m)

Wing area: 246 sq ft (22.85 m²)

Empty weight: 12,388 lb (5,624 kg)

Gross weight: 17,533 lb (7,960 kg)

Max. takeoff weight: 18,159 lb (8,244 kg)

 

Powerplant:

1× Allison T54-A-16 turboprop with 7,500 shp (5,600 kW) output equivalent,

driving a 6 blade contra-rotating propeller

 

Performance:

Maximum speed: 585 mph (941 km/h, 509 kn

Cruise speed: 410 mph (660 km/h, 360 kn)

Range: 500 mi (800 km, 430 nmi) with internal fuel

800 mi (1,300 km, 700 nmi) with ferry wing tip tanks

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 12,750 ft/min (75.0 m/s)

Wing loading: 73.7 lb/sq ft (360 kg/m²)

 

Armament:

4× 20 mm (.79 in) Mk. 11 machine cannon with a total of 1.000 rounds, or

48× 2.75 in (70 mm) rockets in wingtip pods, or

a pair of 200 US gal. (165 imp. gal./750 l) auxiliary tanks on the wing tips

  

The kit and its assembly:

Another submission to the “Fifties” group build at whatifmodellers-com, and a really nice what-if aircraft that perfectly fits into the time frame. I had this Pegasus kit in The Stash™ for quite a while and the plan to build an operational USN or USMC aircraft from it in the typical all-dark-blue livery from the early Fifties, and the group build was a good occasion to realize it.

 

The Pegasus kit was released in 1992, the only other option to build the XFV in 1:72 is a Valom kit which, as a bonus, features the aircraft’s fixed landing gear that was used during flight trials. The Pegasus offering is technically simple and robust, but it is nothing for those who are faint at heart. The warning that the kit requires an experienced builder is not to be underestimated, because the IP kit from the UK comes with white metal parts and no visual instructions, just a verbal description of the building steps. The IP parts (including the canopy, which is one piece, quite thick but also clear) and the decals look good, though.

 

The IP parts feature flash and uneven seam lines, sprue attachment points are quite thick. The grey IP material had on my specimen different grades of hard-/brittleness, the white metal parts (some of the propeller blades) were bent and had to be re-aligned. No IP parts would fit well (there are no locator pins or other physical aids), the cockpit tub was a mess to assemble and fit into the fuselage. PSR on any seam all around the hull. But even though this sound horrible, the kit goes together relatively easy – thanks to its simplicity.

 

I made some mods and upgrades, though. One of them was an internal axis construction made from styrene tubes that allow the two propeller discs to move separately (OOB, you just stack and glue the discs onto each other into a rigid nose cone), while the propeller tip with its radome remained fixed – just as in real life. However, due to the parts’ size and resistance against each other, the props could not move as freely as originally intended.

Separate parts for the air intakes as well as the wings and tail surfaces could be mounted with less problems than expected, even though - again – PSR was necessary to hide the seams.

  

Painting and markings:

As already mentioned, the livery would be rather conservative, because I wanted the aircraft to carry the uniform USN scheme in all-over FS 35042 with white markings, which was dropped in 1955, though. The XFV or a potential serial production derivative would just fit into this time frame, and might have carried the classic all-blue livery for a couple of years more, especially when operated by an evaluation unit. Its unit, VX-8, is totally fictional, though.

 

The cockpit interior was painted in Humbrol 80 (simulating bright zinc chromate primer), and to have some contrasts I added small red highlights on the fin pod tips and the gun pods' anti-flutter winglets. For some more variety the radome became earth brown with some good weathering, simulating an opaque perspex hood, and I added white (actually a very light gray) checkerboard markings on the "propeller rings", a bit inspired by the spinner markings on German WWII fighters. Subtle, but it looks good and breaks the otherwise very simple livery.

Some post-panel-shading with a lighter blue was done all over the hull, the exhaust area and the gun ports were painted with iron (Revell 91) and treated with graphite for a more metallic shine.

Silver decal stripe material was used to create the CoroGuard leading edges and the fine lines at the flaps on wings and fins - much easier than trying to solve this with paint and brush...

 

The decals were puzzled together from various dark blue USN aircraft, including a F8F, F9F and F4U sheet. The "XH" code was created with single 1cm hwite letters, the different font is not obvious, thanks to the letter combination.

Finally, the model was sealed with semi-gloss acrylic varnish (still shiny, but not too bright), the radome and the exhaust area were painted with matt varnsh, though.

  

A cool result, despite the rather dubious kit base. The Pegasus kit is seriously something for experienced builders, but the result looks convincing. The blue USN livery suits the XFV/FV-2 very well, it looks much more elegant than in the original NMF - even though it would, in real life, probably have received the new Gull Gray/White scheme (introduced in late 1955, IIRC, my FV-2 might have been one of the last aircraft to be painted blue). However, the blue scheme IMHO points out the aircraft's highly aerodynamic teardrop shape, esp. the flight pics make the aircraft almost look elegant!

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.

 

The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.

 

In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.

 

In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).

It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.

 

HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.

 

The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.

Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.

 

At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.

 

By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.

 

The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.

A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.

 

Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.

Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.

 

The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.

However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.

 

By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.

In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.

  

General characteristics:

Crew: 1

Length: 11.38 m (37 ft 4 in)

Wingspan: 9.39 m (30 ft 10 in)

Height: 4.30 m (14 ft 1 in)

Wing area: 17.66 m2 (190.1 sq ft)

Empty weight: 9,394 lb (4,261 kg)

Gross weight: 12,750 lb (5,783 kg)

Max takeoff weight: 9,101 kg (20,064 lb)

Fuel capacity: 1,360 kg (3,000 lb) internal

3,210 kg (7,080 lb) with 3 drop tanks

Powerplant:

1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust

 

Performance:

Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level

Maximum speed: Mach 1.2 (never exceed at altitude)

Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)

Carrier launch speed: 121 kn (139 mph; 224 km/h)

Approach speed: 125 kn (144 mph; 232 km/h)

Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit

Stall speed: 197 km/h (122 mph, 106 kn) flaps down

Range: 892 km (554 mi, 482 nmi) internal fuel only

Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)

Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks

Service ceiling: 15,250 m (50,030 ft)

G-limits: +8/-3

Rate of climb: 58.466 m/s (11,509.1 ft/min)

Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)

Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)

Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)

 

Armament:

2× 30 mm (1.181 in) Aden cannon with 150 rounds each

7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)

for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons

  

The kit and its assembly:

A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…

 

The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.

 

The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…

In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.

For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.

Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.

 

A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.

 

The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.

  

Painting and markings:

The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.

 

The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.

 

The kit was sealed with matt acrylic varnish from Italeri.

 

The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.

Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.

 

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X (sometimes referred to as VF-X1) was strictly a conventional/non-transformable jet aircraft, even though it incorporated many structural components and several key technologies that were vital for the transformable VF-1’s successful development that ran in parallel. Therefore, the VF-X was never intended as an air superiority fighter, but rather a flight-capable analogue test bed and proof of concept for the VF-1’s basic layout and major components. In this role, however, the VF-X made vital contributions to systems’ development that were later incorporated into the VF-1’s serial production and sped the program up considerably.

 

VF-X production started in early 2006, with four airframes built. The flight tests began in February 2007. The first prototype (“01”) was piloted and evaluated by ace pilot Roy Fokker, in order to explore the aircraft’s flight envelope, general handling and for external stores carriage tests. The three other VF-Xs successively joined the test program, each with a different focus. “02” was primarily tasked with the flight control and pilot interface program, “03” was allocated to the engine, vectoring thrust and steering systems development, and “04” was primarily involved in structural and fatigue tests.

 

In November 2007, the successful VF-X tests and the flights of the VF-X-1 (the first fully transformable VF-1 prototype, which had been under construction in parallel to the VF-X program) led to formal adoption of the “Valkyrie” variable fighter by the United Nations Government.

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict.

 

Introduced in 2008, the VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha, even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four sub-variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements. These included the GBP-1S "Armored Valkyrie” external armor and infantry weapons pack, so-called FAST Packs for "Super Valkyries” for orbital use, and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Strike Valkyrie” with additional firepower.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), and several upgrade programs were introduced.

The fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction.

  

General characteristics:

Accommodation: One pilot in a Marty & Beck Mk-7 zero/zero ejection seat

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

Empty weight: 13.25 metric tons

Standard T-O mass: 18.5 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)

4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

 

Performance:

Top speed: Mach 2.71 at 10,000 m; Mach 3.87 at 30,000+ m

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Armament:

None installed, but the VF-X had 4x underwing hard points for a wide variety of ordnance, plus a ventral hardpoint for a Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min or other stores like test instruments

  

The model and its assembly:

Another submission to the “Prototypes” group build at whatifmodelers.com in July 2020. Being a VF-1 fan (and have built maybe twenty o these simple Arii kits), adding a VF-X was, more or less, a must – even more so because I had a suitable Valkyrie Fighter kit at hand for the conversion. As a side note, I have actually built something quite similar from a VF-1D many years ago: a fictional, non-transformable advanced trainer, without knowing about the VF-X at all.

 

Thanks to the “Macross - Perfect Memory” source book, the differences between the transformable VF-1 and its early testbed were easy to identify:

- Fixed legs with faired ducts from the intakes on (thighs)

- Ankle recesses disappeared

- Less and slightly different panel lines on the back and on the nose

- ventral head unit deleted and a respective fairing installed instead

- Levelled underside (shoulder fairings of the folded arms were cut down)

- Leg attachment points on the nose deleted

- No small, circular vernier thrusters all around the hull

- Some new/different venting grills (created mostly with 0.5mm black decal stripes)

 

Beyond the changes, the VF-1A was basically built OOB. Thankfully, the VF-X already features the later VF-1’s vectored thrust nozzles/feet, so that no changes had to be made in this respect. A pilot figure was added to the cockpit for the beauty pics, and after the flight scenes had been shot, the canopy remained open on a swing arm for static display. For the same reason, the model was built with the landing gear extended.

 

As a test aircraft, the underwing pylons and their AMM-1 ordnance were left away and the attachment points hidden with putty. I also omitted the ventral gun pod and left the aircraft clean. However, for the flight scene pictures, I implanted an adapter for a display holder made from wire.

 

In order to emphasize the test vehicle character of the VF-X, I gave the model a scratched spin recovery parachute installation between the fins, using a real world F-22 testbed as benchmark. It consists of styrene profiles, quite a delicate construction. For the same reason I gave the VF-X a long sensor boom on the nose, which changes the Valkyrie’s look, too. Finally, some small blade antennae were added to the nose and to the spine behind the cockpit.

  

Painting and markings:

To be honest, I have no idea if there was only a single VF-X prototype in the Macross universe, or more. Just one appears in the TV series in episode #33, and lack of suitable information and my personal lack of Japanese language proficiency prevents any deeper research. However, this would not keep me from inventing a personal interpretation of the canonical VF-X, especially because I do not really like the original livery from the TV series: an overall light grey with some simple black trim and “TEST” written on the (fixed) legs. Yamato did an 1:60 scale toy of the VF-X, but it was/is just a VF-1 with a ventral fairing; they added some shading to the basic grey – but this does not make the aircraft more attractive, IMHO.

 

When I looked at the original conceptual drawing of the VF-X in the “Macross - Perfect Memory” source book, however, I was immediately reminded of the F-15 prototypes from the Seventies (and this program used a total of twelve machines!). These featured originally a light grey (FS 36375?) overall base, to which bright dayglo orange markings on wings, fins and fuselage were soon added – in a very similar pattern to the VF-X. I think the VF-X livery was actually inspired by this, the time frame matches well with the production of the Macross TV series, too, and that’s what I adapted for my model.

In order to come close to the F-15 prototype livery, I gave “my” VF-X an overall basic coat of RAL 7047 “Telegrau 4”, one of German Telekom’s corporate colors and a very pale grey that can easily be mistaken for white when you do not have a contrast reference.

 

The cockpit received a medium grey finish, the ejection seat became black with brown cushions; the pilot figure is a 1:100 seated passenger from an architecture supplies, painted like an early VF-1 pilot in a white/blue suit. The jet nozzles/feet were painted with Revell 91 (Iron) and later treated with grinded graphite for a more metallic finish. The landing gear became classic white (I used Revell 301, which is a very pure tone, as contrast to the RAL 7047 on the hull), the air intake ducts and the internal sections of the VG wings were painted with dark grey (Revell 77).

 

For some diversity I took inspiration from the Yamato VF-X toy and added slightly darker (Humbrol 166, RAF Light Aircraft Grey) areas to the hull and the legs. Next, the panel lines were emphasized through a thinned black ink wash, but I did no panel post shading so that the VF-X would not look too dirty or worn.

 

Onto this basis I applied the orange dayglo markings. On the wings and fins, these were painted – they were applied with spray paint from a rattle can, involving lots of masking. The leading edges on wings and fins were created with grey decal sheet material, too. At this stage, some surface details and more fake panel lines were added with a soft pencil.

The orange cheatline under the cockpit is a personal addition; I found that some more orange had to be added to the nose for visual balance, and I eventually went for the simple, trimmed stripe (TL Modellbau material) instead of trying to apply decal sheet material around the jagged air intakes (F-15 prototype style). The black “TEST”, “VFX” and “U.N. Spacy” markings were designed at the computer and printed on clear inkjet decal paper. Even though the “real” VF-X does not feature the UNS “kite” insignia, I decided to add them to the model. These come from the OOB sheet, which also provided most (slightly yellowed) stencils.

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri).

  

A rather different VF-1 project (and it is – to my astonishment – #28 in my 1:100 VF-1 Fighter mode collection!!!), with more changes to the basic model kit than one might expect at first sight. VF-X and VF-1 differ considerably from each other, despite identical outlines! However, I like the outcome, and I think that going a different route from the canonical grey/black livery paid out, the bright orange markings really make this VF-X stand out, and it looks IMHO more like a testbed than the “real” aircraft from the TV series.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.

 

The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.

 

From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.

 

The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.

 

After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.

 

The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.

 

Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.

The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.

The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.

 

The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.

After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.

  

General characteristics:

Crew: 1

Length: 31 ft 10 in (9.70 m)

Wingspan: 36 ft 10 in (11.23 m)

Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical

Wing area: 242.1 ft² (22.5 m²)

Empty weight: 5,564 lb (2,524 kg)

Gross weight: 7,415 lb (3,363 kg)

 

Powerplant:

1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,

delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller

 

Performance:

Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)

Cruise speed: 272 mph (438 km/h, 236 kn)

Range: 493 mi (793 km) on internal fuel at cruising speed

965 mi (1,553 km) with 90 gal drop tank

Service ceiling: 42,500 ft (12,954 m)

Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)

Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds

 

Armament:

4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard

Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb

(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers

  

The kit and its assembly:

This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.

 

With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.

 

With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.

  

Painting and markings:

The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.

 

Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!

Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.

 

I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.

 

The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.

The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.

 

The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.

  

A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Douglas A-4 Skyhawk is a single-seat subsonic carrier-capable light attack aircraft developed for the United States Navy and United States Marine Corps in the early 1950s. The delta-winged, single turbojet-engine Skyhawk was designed and produced by Douglas Aircraft Company, and later by McDonnell Douglas. The Skyhawk was a relatively light aircraft, with a maximum takeoff weight of 24,500 pounds (11,100 kg) and had a top speed of 670 miles per hour (1,080 km/h). The aircraft's five hardpoints supported a variety of missiles, bombs, and other munitions, including nuclear bombs, with a bomb load equivalent to that of a World War II–era Boeing B-17 bomber.

 

Since its introduction, the Skyhawk had been adopted by countries beyond the United States and saw a very long career, with many baseline variants and local adaptations. Israel was, starting in 1966, the largest export customer for Skyhawks, and a total of 217 A-4s were eventually procured, plus another 46 that were transferred from U.S. units in Operation Nickel Grass to compensate for large losses during the Yom Kippur War.

The Skyhawk was the first U.S. warplane to be offered to the Israeli Air Force, marking the point where the U.S. took over from France as Israel's chief military supplier. A special version of the A-4 was developed for the IAF, the A-4H. This was an A-4E with improved avionics and an uprated J52-P-8A engine with more thrust from the A-4F that had replaced the Wright J65 in earlier Skyhawk variants. Armament consisted of twin DEFA 30 mm cannon in place of the rather unreliable Colt Mk.12 20 mm cannons. Later modifications included the avionics hump and an extended tailpipe, implemented in Israel by IAI to provide greater protection against heat-seeking surface-to-air missiles.

 

Deliveries began after the Six-Day War, and A-4s soon formed the backbone of the IAF's ground-attack force. In Heyl Ha'avir (Israels Air Force/IAF) service, the A-4 Skyhawk was named as the Ayit (Hebrew: עיט, for Eagle). A total of 90 A-4Hs were delivered and became the IAF’s primary attack plane in the War of Attrition between 1968 and 1970. They cost only a quarter of a Phantom II and carried half of its payload, making them highly efficient attack aircraft, even though losses were high and a number of A-4Es were imported to fill the gaps.

In early 1973, the improved A-4N Skyhawk for Israel entered service, based on the A-4M models used by the U.S. Marine Corps, and it gradually replaced the simpler and less capable A-4Hs, which were still operated in 2nd line duties. Many of the A-4Hs and A-4Es were subsequently stored in reserve in flying condition, for modernization or for sale, and two countries made purchases from this overstock: Indonesia and Uruguay.

 

Due to the declining relationship between Indonesia and the Soviet Union, there was a lack of spare parts for military hardware supplied by the Communist Bloc. Soon, most of them were scrapped. The Indonesian Air Force (TNI-AU) acquired ex-Israeli A-4Es to replace its Il-28 Beagles and Tu-16 Badgers in a covert operation with Israel, since both countries did not maintain diplomatic relationships. A total of thirty-two A-4s served the Indonesian Air Force from 1982 until 2003.

 

Uruguay was the other IDF customer, even though a smaller one. The Uruguayan Air Force was originally created as part of the National Army of Uruguay but was established as a separate branch on December 4, 1953, becoming the youngest, and also the smallest branch of the Armed Forces of Uruguay.

 

Since the end of the 1960s and the beginning of the 1970s, the Air Force was involved in the fight against the guerrilla activity that was present in the country, focusing against the MLN-T (Movimiento de Liberación Nacional – Tupamaros or Tupamaros – National Liberation Movement), that later triggered a participation in the country's politics.

On February 8, 1973, President Juan María Bordaberry tried to assert his authority over the Armed Forces by returning them to their normal duties and appointing a retired Army general, Antonio Francese, as the new Minister of National Defense. Initially, the Navy of Uruguay supported the appointment, but the National Army and Uruguayan Air Force commanders rejected it outright. On February 9 and 10, the Army and Air Force issued public proclamations and demanded his dismissal and changes in the country's political and economic system. Bordaberry then gave up to the pressure, and on February 12, at the Cap. Juan Manuel Boiso Lanza Air Base, Headquarters of the General Command of the Air Force, the National Security Council (Consejo de Seguridad Nacional) was created. The Commander-in-Chief of the Air Force was one of its permanent members, and the Armed Forces of Uruguay from now on were effectively in control of the country, with Bordaberry just participating in a self-coup.

 

During this period of time, the Air Force took control of the country's airdromes, some aircraft that were seized from the subversion, appointed some of its general officers to led the flag carrier PLUNA, reinforced the combat fleet with Cessna A-37B Dragonfly and FMA IA-58A Pucará attack aircraft in 1976 and 1981, modernized the transport aircraft with the purchase of five Embraer C-95 Bandeirante in 1975 and five CASA C-212 Aviocar and one Gates Learjet 35A in 1981, introduced to service two brand new Bell 212 helicopters, and achieved another milestone, with the first landing of a Uruguayan aircraft in Antarctica, on January 28, 1984, with a Fairchild-Hiller FH-227D.

 

Since the end of the military government, the Air Force returned to its normal tasks, and always acting under the command of the President and in agreement with the Minister of National Defense, without having entered the country's politics again, whose participation, in addition, has been forbidden in almost all activities for the Armed Forces. Towards the late Eighties, the Uruguayan Air Force underwent a fundamental modernization program: Between 1989 and 1999 a total number of 48 aircraft were acquired, including twelve Skyhawks (ten single seaters and two trainers), followed by three Lockheed C-130B Hercules in 1992, to carry out long-range strategic missions, six Pilatus PC-7U Turbo Trainers, also acquired in 1992 for advanced training (replacing the aging fleet of Beechcraft T-34 Mentors in Santa Bernardina, Durazno, that had been in service with the Air Force since 1977), two Beechcraft Baron 58 and ten Cessna U-206H Stationair in 1998 (with Uruguay becoming the first operator of this variant, used for transport, training and surveillance). Two Eurocopter AS365N2 Dauphin for search and rescue and transport followed, also in 1998, and 13 Aermacchi SF-260 in 1999, to fully replace the aging fleet of T-34 training aircraft and become the new basic trainer of the Uruguayan Air Force within the Military School of Aeronautics (Escuela Militar de Aeronáutica) in Pando, Canelones. Furthermore, on April 27, 1994, through Decree No. 177/994 of the Executive Power, a new Air Force Organization was approved, and the Tactical Regiments and Aviation Groups disappeared to become Air Squadrons, leading to the current structure of the Uruguayan Air Force.

 

The Skyhawks were procured as more capable complement and partial replacement for the FAU’s Cessna A-37B Dragonfly and FMA IA-58A Pucará attack aircraft fleet. Being fast jets, however, they would also be tasked with limited airspace defense duties and supposed to escort and provide aerial cover for the other attack types in the FAU’s inventory. The Skyhawks were all former IDF A-4H/TA-4Hs. They retained their characteristic tail pipe extensions against IR-guided missiles (primarily MANPADS) as well as the retrofitted avionics hump, but there were many less visible changes, too.

 

After several years in storage, a full refurbishment had taken place at Israel Aircraft Industries (IAI). The single seaters’ original Stewart-Warner AN/APG-53A navigation and fire control radar was retained, but some critical avionics were removed before export, e. g. the ability to carry and deploy AGM-45 Shrike anti-radar-missiles or the rather unreliable AGM-12 Bullpup, as well as the Skyhawk’s LABS (toss-bombing capability) that made it a potential nuclear bomber. On the other side avionics and wirings to carry AIM-9B Sidewinder AAMs on the outer pair of underwing pylons were added, so that the FAU Skyhawks could engage into aerial combat with more than just their onboard guns.

The A-4Hs’ 30 mm DEFA cannons were removed before delivery, too, even though their characteristic gondola fairings were retained. In Uruguay they were replaced with 20 mm Hispano-Suiza HS.804 autocannons, to create communality with the FAU’s Pucará COIN/attack aircraft and simplify logistics. MER and TER units (Multiple/Triple Ejector Racks), leased from Argentina, boosted the Skyhawks’ ordnance delivery capabilities. A Marconi ARL18223 360° radar warning receiver and a Litton LTN-211 GPS navigation system were introduced, too. Despite these many modifications the FAU’s A-4Hs retained their designation and, unofficially, the former Israeli “Eagles” were aptly nicknamed “Águila” by their new crews and later by the public, too.

 

Upon introduction into service the machines received a disruptive NATO-style grey/green camouflage with off-white undersides, which they should retain for the rest of their lives – except for a single machine (648), which was painted in an experimental all-grey scheme. However, like the FAU Pucarás, which received grim looking but distinctive nose art during their career, the Skyhawks soon received similar decorations, representing the local ‘Jabalí’ (wild boars).

 

During the Nineties, the Uruguayan Skyhawks were frequently deployed together with Pucarás along the Brazilian border: Brazilian nationals were detected removing cattle from Uruguayan territory! Dissuasive missions were flown by the Pucarás departing from Rivera to Chuy in eastern Uruguay, covering a span of more than 200 nm (368 km) along the Uruguay/Brazil border, relaying the location of the offending persons to Uruguay’s Army armored units on the ground to take dissuading action. The Skyhawks flew high altitude escorts and prevented intrusion of the Uruguayan airspace from Brazil, and they were frequently called in to identify and repel intruders with low-level flypasts.

 

The Skyhawks furthermore frequently showed up around the Uruguayan city Masoller as a visible show of force in a longstanding border and territory dispute with Brazil, although this had not harmed close diplomatic and economic relations between the two countries. The disputed area is called Rincón de Artigas (Portuguese: Rincão de Artigas), and the dispute arose from the fact that the treaty that delimited the Brazil-Uruguay border in 1861 determined that the border in that area would be a creek called Arroyo de la Invernada (Portuguese: Arroio da Invernada), but the two countries disagree on which actual stream is the so-named one. Another disputed territory is a Brazilian island at the confluence of the Quaraí River and the Uruguay River. None of these involvements led to armed conflict, though.

 

The Uruguayan Skyhawk fired in anger only over their homeland during drugbusting raids and for interception of low performance, drug trafficking aircraft which were increasingly operating in the region. However, the slower IA 58 Pucará turned out to be the better-suited platform for this task, even though the Skyhawks more than once scared suspicious aircraft away or forced them to land, sometimes with the use of gunfire. At least one such drug transport aircraft was reputedly shot down over Uruguayan territory as its pilot did not reply or react and tried to escape over the border into safe airspace.

 

These duties lasted well into the Nineties, but Uruguay’s small Skyhawk fleet was relatively expensive to operate so that maintenance and their operations, too, were dramatically cut back after 2000. The airframes’ age also showed with dramatic effect: two A-4Hs were lost independently in 2001 and 2002 due to structural fatigue. Active duties were more and more cut back and relegated back to the A-37s and IA 58s. In October 2008, it was decided that the Uruguayan A-4 Skyhawk fleet would be withdrawn and replaced by more modern aircraft, able to perform equally well in the training role and, if required, close support and interdiction missions on the battlefield. The last flight of an FAU A-4 took place in September 2009.

 

This replacement program did not yield any fruits, though. In May 2013 eighteen refurbished Sukhoi Su-30 MKI multirole air superiority fighters were offered by the Russian Federation and Sukhoi in remarkably favorable condition that included credit facilities and an agreement branch for maintenance. These conditions were also offered for the Yak-130 Mitten. By December 2013 Uruguayan personnel had test flown this plane in Russia. In the meantime, a number of A-37B Dragonfly were purchased from the Ecuadorian Air Force in January 2014 to fill the FAU’s operational gaps. Also, the Uruguayan and Swiss governments discussed a possible agreement for the purchase of ten Swiss Air Force Northrop F-5Es plus engines, spare parts and training, but no actual progress was made. The Uruguayan Air Force also used to show interest on the IA-58D Pucará Delta modernization program offered by Fábrica Argentina de Aviones, but more recently, among some of the possible aircraft that the Air Force was considering, there were the Hongdu JL-10 or the Alenia Aermacchi M-346 Master. But despite of how necessary a new attack aircraft is for the FAU, no procurements have been achieved yet.

  

General characteristics:

Crew: 1

Length: 40 ft 1.5 in (12.230 m)

Wingspan: 27 ft 6 in (8.38 m)

Height: 15 ft 2 in (4.62 m)

Wing area: 260 sq ft (24 m²)

Airfoil: root: NACA 0008-1.1-25; tip: NACA 0005-.825-50

Empty weight: 9,853 lb (4,469 kg)

Gross weight: 16,216 lb (7,355 kg)

Max takeoff weight: 24,500 lb (11,113 kg)

 

Powerplant:

1× Pratt & Whitney J52-P-8A turbojet engine, 9,300 lbf (41 kN) thrust

 

Performance:

Maximum speed: 585 kn (673 mph, 1,083 km/h) at sea level

Range: 1,008 nmi (1,160 mi, 1,867 km)

Ferry range: 2,194 nmi (2,525 mi, 4,063 km)

g limits: +8/-3

Rate of climb: 5,750 ft/min (29.2 m/s)

Wing loading: 62.4 lb/sq ft (305 kg/m²)

Thrust/weight: 0.526

 

Armament:

2× 20 mm (0.79 in) Hispano-Suiza HS.804 autocannon with 100 RPG

5× hardpoints with a total capacity of 8,500 lb (3,900 kg)

  

The kit and its assembly:

The third build in my recent “Uruguayan What-if Trip”, and a rather spontaneous idea. When I searched for decals for my Uruguayan Sherman tank, I came across a decal sheet from an Airfix IA 58 Pucará (2008 re-boxing), which included, beyond Argentinian markings, a Uruguayan machine, too. This made me wonder about a jet-powered successor, and the omnipresent Skyhawk appeared like a natural choice for a light attack aircraft – even though I also considered an IAI Kfir but found its Mach 2 capability a bit overdone.

Checking history I found a suitable time frame during the Nineties for a potential introduction of the A-4 into Uruguayan service, and this was also the time when Indonesia indirectly bought 2nd hand A-4E/Hs from Israel. This was a good match and defined both the background story as well as the model and its details.

 

The model kit is an Italeri A-4E/F (Revell re-boxing), built mostly OOB with a short/early fin tip (the kit comes with an optional part for it, but it is too short and I used the alternative A-4M fin tip from the kit and re-shaped its leading edge) and the bent refueling probe because of the radar in the nose (the original straight boom interfered with it). I just implanted an extended resin tailpipe (from Aires, see below), used the OOB optional brake parachute fairing and scratched fairings for the A-4H’s former DEFA guns (which were placed, due to their size, in a lower position than the original 20 mm guns and had an odd shape) from styrene rods.

 

I also modified the ordnance: the OOB ventral drop tank was taken over but the kit’s original LAU-19 pods molded onto the inner wing pylons were cut off and moved to the outer stations. The inner pylons then received MERs with five Mk. 82 500 lb iron bombs each (left over from a Hasegawa Skyhawk kit) – typically for the Skyhawk, the inner front stations on the MERs (and on TERs, too) were left empty, because anything bigger than a 250 lb Mk. 81 bomb interfered with the landing gear covers.

 

Building posed no real problems; some PSR was necessary on many seams, though, but that’s standard for the Italeri Skyhawk kit. Just the extended tailpipe caused unexpected trouble: the very nice and detailed Aires resin insert turned out to be a whole 2mm(!) wider than the Skyhawk’s tail section, even though its height and shape was fine. I solved this pragmatically and, after several trials, glued the extended pipe between the fuselage halves, closed them with some force and filled the resulting wedge-shaped ventral gap that extended forward almost up to the wings’ trailing edge with putty. Under the paint this stunt is not obvious, and I suspect that the Italeri Skyhawk’s tail is simply too narrow?

 

Different/additional blade antennae were added under the front fuselage and behind the canopy as well as a tiny pitot in front of the windscreen (piece of thin wire) and fairings for the radar warning receivers were integrated into the fin’s leading edge and above the extended tail pipe, scratched from styrene sheet material. And, finally, a thin rod (made from heated styrene) was added for the Skyhawk’s steerable front wheel mechanism.

 

A good thing about the Italeri Skyhawk is that its clear part encompasses the whole canopy, including its frame. It comes as a single piece, though, but can be easily cut in two parts to allow an open cockpit display. The alternative Hasegawa A-4E/F has the flaw that the clear part is molded without the canopy frame, which has a rather complex shape, so that modding it into open position is a very complicated task.

  

Painting and markings:

Basically very simple: I relied upon FAU Pucarás as benchmark, which carry a rather unremarkable NATO-style livery in dark grey and dark green over very light grey, almost white undersides. This does not sound interesting, but it’s not a color combo typically seen on a Skyhawk, so that this already offers a subtle whiffy touch – and it suits the Skyhawk IMHO well.

 

To make the simple scheme more interesting, though, I decided to apply the camouflage in a more disruptive, higher resolution pattern, using the Kuwaiti A-4KU pattern as benchmark, just with replaced colors. On real-life pictures, the Uruguayan Pucarás as well as some early A-37s show a good contrast between the green and the grey, so that I chose Tamiya XF-62 (U.S. WWII Olive Drab) and Humbrol 156 (RAF Dark Camouflage Grey) as basic tones; the undersides were painted in Humbrol 147 (FS 36495), leaving a brightness margin for post-shading with an even lighter tone.

 

The landing gear as well as the air intakes’ interior were painted in white, the landing gear covers’ edges received a thin red edge. The cockpit interior became standard Dark Gull Grey.

For good contrast with the light undersides, the rocket launchers became light grey (Humbrol 127) drab. The MERs became classic white and the ten 250 lb bombs were painted in olive drab.

 

As usual, the kit received an overall light black ink washing and some post-panel shading, which also acts as a weathering measure. Esp. the Pucarás’ grey appears very bleached on many photos.

 

Roundels, fin flash and FAU taglines came from the aforementioned Airfix Pucará sheet, even though they turned out to be rather thick and not printed sharply. Most stencils were taken from an Airfix A-4Q Skyhawk, one of the new mold kits, which also came with Argentinian markings and stencils in Spanish. The respective sheet also provided a decal for the black anti-glare panel, even though it had to be cut in two halves to fit in front of the wider A-4E windshield, and the resulting gap was painted out with black. The tactical codes once belonged to a Kawasaki T-4 (Hasegawa). The soot-hiding squares above the gun muzzles are generic black decals. The only decal that was taken over from the Skyhawk’s OOB decal sheet were the rings around the arrester hook.

 

Overall, the FAU Skyhawk still looked rather dry. To add some excitement, I gave the aircraft a wild boar “face”, similar to the FAU Pucarás. The decoration originally belongs to an USAF A-10 and came from a HiDecal sheet. Unfortunately, this boar face was carried by a rather special A-10 with an experimental desert paint scheme consisting of Brown (FS 20140), Tan Special (FS 20400) and Sand (FS 20266) that was applied before deployment to Saudi Arabia in November 1990. This scheme did not catch on, though, and most A-10s retained their murky Europe One/Lizard scheme. Therefore, the artwork consists primarily of black and sand – white would have been better, stylistically. But I took what I could get and, as a kind of compensation, the sand color does not make the boar snout stand out too much. To my surprise, the four decals that create the wraparound hog face fitted quite well in size and around the Skyhawk’s rather pointed nose. I just left the nostrils away because they’d look odd together with the small black radome and a small ventral gap between the mouth halves had to be bridged with black paint and another piece of decal sheet that simulates a di-electric cover.

 

Finally, the model was sealed with matt acrylic varnish and ordnance as well as landing gear were mounted.

  

The third and for now the last build in my recent ‘Uruguayan whif’ model series. I like the grey-green Skyhawk a lot – it’s not spectacular and looks very down-to-earth (except for the nose art, maybe), but it’s very believable. The NATO style livery is rather unusual for the A-4, it was AFAIK not carried by any real in-service Skyhawk, but it suits the aircraft well.

Colosseum

Following, a text, in english, from the Wikipedia the Free Encyclopedia:

The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.

Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).

Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]

The Colosseum is also depicted on the Italian version of the five-cent euro coin.

The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]

The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.

In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.

The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]

The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).

Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]

Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.

The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.

In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.

The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.

Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.

During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.

In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.

The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.

Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).

Exterior

Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.

The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.

The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.

Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]

The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]

Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.

Interior

According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.

The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.

Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.

Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.

The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]

The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]

Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.

The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.

Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.

Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.

Right next to the Colosseum is also the Arch of Constantine.

he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.

During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]

Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.

The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]

The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.

In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.

It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.

Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.

At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.

 

Coliseu (Colosseo)

A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:

 

O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.

O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.

Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.

O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.

Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.

Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.

Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.

Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.

O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".

A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.

Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.

O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.

 

Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.

O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.

Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.

The Muli is extreme capable off-road, due to its new suspension/steering system.

Originally developed by Kuka, the Muli features four Robotic arms, actuated by new mechanical artificial muscles to move across the terrain. This greatly increases the vehicles reliability and maintenance-cycles.

capable of causing death and destruction. Or give life as in operation manna.

The VL- 650 Partisan is a light military, single-engine, low-wing single-seat aircraft capable of performing fighter, close air support, and counter insurgency (COIN) missions.

 

Please watch this and many other fantastic creations here: www.flickr.com/photos/einon/

 

The pilot is accommodated in an enclosed, heated and ventilated cockpit with adjustable seats. The cockpit canopy slides backwards to open. The landing gear retracts backwards under the wings. Rubber dampers provide shock absorption, and hydraulic brakes are used for wheel braking.

 

The aircraft was specially designed for low-altitude missions against day and night visible ground targets in a broad area. Its readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions. Therefore, the Partisan can also take-off from short unprepared runways, even ones covered in deep snow when fitted with skis. The aircraft is also slightly armoured, being capable to survive shell impacts up to 20mm.

The Partisan was intended for close ground force support, and it can also be used for training of pilots in visual day/night flights, aiming, missile firing and bombing of ground targets.

Permanent armament comprises two wing-mounted 20mm cannons and one 37mm anti-tank engine mounted cannon. It can also use rockets, guided and unguided bombs, external guns and air to air missiles.

 

General characteristics

Crew: 1

Length: 8.03 m

Wingspan: 10.54 m

Height: 3.10 m

Wing area: 21.0 m²

Empty weight: 1030 kg

Max. takeoff weight: 4224 kg

Powerplant: 1 × V-435 Turboprop; (2 000hp)

Performance

Maximum speed: 695 km/h at 1,500 m (5,000 ft)

Cruise speed: 310 km/h

Stall speed: 40 km/h

Range: 800 km

Armament

Guns: One 37mm cannon engine mounted; Two 20mm guns on the wings.

Guns: 2 externals pods with two 12,7mm (0´50) machine guns.

Rockets: 2 FS-1000 rocket pods with 18 90mm rockets each or 2 rocket pods with 4 152mm rockets each or 4 simple 152mm anti-tank guided rockets.

Missiles: 2 defensive air to air AA-2020 Valkyria missiles;

Bombs: Maximum – 2 500kg guided or unguided bombs.

 

Hope you like it!

Please watch this and many other fantastic creations here: www.flickr.com/photos/einon/

Please fav or comment!

 

Eínon

1 2 ••• 20 21 23 25 26 ••• 79 80