View allAll Photos Tagged Capability

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Chatsworth's gardens were designed by the famous landscape designer Capability Brown. The gardens are just starting to green up and are full of spring flowers. April 2017.

An infantry Marine posts security during the 2015 Air Show’s Marine Air-Ground Task Force demonstration aboard Marine Corps Air Station Miramar, California, Oct. 2, 2015. The MAGTF demonstrated the capabilities of several air and ground Marine Corps assets.

 

(U.S. Marine Corps photo by Sgt. Michele Hunt/Released)

 

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

The auto start and stop feature combined with the Kenworth Idle Management System for the Kenworth T680 76-inch sleeper enables truck operators to more effectively manage climate control and other hotel loads during truck downtime. The battery-based APU system for air conditioning is linked directly into the T680 ducting system. An optional fuel-fired heater provides full engine-off heating capability. The integrated system extends air conditioning performance and is appreciated by drivers who want cool comfort in their sleepers during their rest period.

From the sand dunes of Essaouira to the peaks of the Atlas Mountains, the all-new Range Rover demonstrates its full breadth of capability in Morocco.

A pre-booked visit to Westbury Court Garden in Gloucestershire. Was a rainy couple of hours. The garden was quite small, but the rain eventually stopped.

  

Westbury Court Garden is a Dutch water garden in Westbury-on-Severn, Gloucestershire, England, 9 miles (14 km) southwest of Gloucester.

 

It was laid out in 1696–1705, a rare survival not to have been replaced in the 18th century by a naturalistic garden landscape as popularised by Capability Brown. It is situated facing the high street of the rural village, extending on low-lying water meadows adjacent to the River Severn; the flat watery ground makes the site well suited to a Dutch-style garden, of which Westbury is the outstanding survival in Britain.

  

I kept seeing the massive spire of the Church of St Mary, St Peter and St Paul from the garden.

 

Grade II* Listed Building

 

Church of St Peter and St Paul

  

Listing Text

 

SO 71 SW WESTBURY-ON-SEVERN WESTBURY VILLAGE

  

11/215 Church of St. Peter and

St. Paul

  

GV II*

 

Large parish church: early C14, restored 1862 and 1878. North

facade thin, roughly squared grey stone brought to courses, larger,

squared stone to quoins, ashlar to windows, south and most of west

faces smooth reddish render lined as ashlar, chancel south and east

well-squared stone approaching ashlar: roof late C20 machine-made

red clay tile. Nave, aisles, north and south porches, chancel,

organ chamber and vestry: tower detached (q.v.). North facade:

high porch in centre of unbuttressed aisle: chamfered, 2-centred

archway, with hoodmould: wrought-iron gates, 2 rails at about 1

metre up, St. Andrews cross between, spiral dog bars with

spearheads. Top rail follows arch with another to nearly similar

line below: main bars with spear and volute heads. To right of

porch one 2-light window, trefoil heads to lights, solid stone

panel to flat hoodmould. To left one similar 3-light window and

one 3-light with flying ogee heads to lights below pointed head.

Gable parapets to porch, aisle, nave and chancel with cross-gablet

apex with stone cross to each: only porch has projecting moulded

kneelers. 2-bay chancel with large, central buttress: 2-light

windows with cinquefoil ogee heads to lights, quatrefoil over, and

hoodmould. West face, 3 gables, square-set buttress to nave only,

with splayed plinth. Ridges and windows to aisles offset towards

centre: windows 2-light, ogee heads, with recessed spandrels to

flat hoodmould. Nave wide 2-centred moulded doorway with

hoodmould and double boarded doors with applied timber tracery.

Above a flat cinquefoiled ogee-headed niche containing a calvary:

3-light Perpendicular window with hoodmould above.

Interior plastered: 7-bay nave arcade, alternate octagonal and

lobed pillars, with moulded caps and bases: hoodmoulds to plain

moulded arches, with small carved heads as stops. Quatrefoil

clerestory windows in alternate bays. Archbraced collar trusses

off corbels, crown post but no longitudinal timber. Aisles

exposed collar rafters; scissor-braced trusses to chancel, all

roofs C19. Tall Early English style arch to chancel, with leaf

capitals: similar on south and from south aisle to organ chamber.

Old cross-boarded door to vestry. 8-lobed piscina reset in south

chancel window sill. Carved reredos (1878) stone and alabaster

extended as blind arcading across east wall: aumbry to match on

left. Plain 6-sided 1862 stone pulpit, blind quatrefoils above

plinth: octagonal C19 stone font, with crosses, symbols of

evangelists and dove on bowl, over trefoil-headed blind arcading on

stem. An older octagonal stone bowl set on octagonal stem dated

1583, with royal arms, on a splayed base. A number of good C18

and early C19 wall monuments in chancel and at west end of aisles,

including one to T. Sinderby with violin and score in white marble

by J. Pearce of Frampton. 1686 monument in north porch, and

benefactions board. A number of good late C17 and C18 headstones

in churchyard not separately listed. Church restored 1862 by

Medland and Maberley, 1864 and 1876-78. (Victoria County History,

Gloucestershire, Vol X, 1972; D. Verey, Gloucestershire, The Vale

and the Forest of Dean, 1970).

  

Listing NGR: SO7171513886

 

This text is from the original listing, and may not necessarily reflect the current setting of the building.

A visit to Berrington Hall near Leominster in Herefordshire.The dome was being restored so part of the building was under scaffolding inside and out (including up the main staircase).

  

Berrington Hall is a country house located about 3 miles (4.8 km) north of Leominster, Herefordshire, England. During the 20th century it was the seat of the Cawley family.

 

It is a neoclassical country house building that Henry Holland designed in 1778-81 for Thomas Harley. It has a somewhat austere exterior, but the interiors are subtle and delicate. Berrington Hall is home to the Elmar Digby furniture collection, paintings by, amongst others, Thomas Luny (1759–1837), and the Charles Paget Wade costume collection from Snowshill, which can be viewed by appointment. The 'below stairs' areas and servants' quarters that are open to the public include a Victorian laundry and Georgian dairy. Berrington has been in the care of the National Trust since 1957 and is, along with its gardens, open to the public.

 

Berrington features Capability Brown's last landscape design. A notable feature is the ha-ha wall, which was subject to extensive renovation in the late 20th century by local craftsmen. Berrington Pool, a lake and island, is a Site of Special Scientific Interest.

  

Berrington had been in the possession of the Cornewall family since 1386, but was sold in 1775 to Thomas Harley, a banker and government contractor who in 1767 had been Lord Mayor of London. He commissioned the rebuilding in 1778-1781 of the present Berrington Hall in place of the previous old house. He made it available to his daughter Anne and her new husband George Rodney, the son of Admiral Rodney. After Harley's death the house descended in the Rodney family for 95 years.

 

In 1901 the Manchester businessman Frederick Cawley MP, later Baron Cawley, purchased the estate. In 1957 the 3rd Lord Cawley transferred it to the Treasury, which passed in on to the National Trust. Lady Crawley was allowed to remain in occupation until her death in 1978.

 

It was classified as a Grade I listed building in 1959.

  

Grade I Listed Building

 

Berrington Hall and Adjoining Outbuildings

  

Listing Text

 

EYE, MORETON &

SO 56 SW ASHTON CP

 

7/2 Berrington Hall and

adjoining outbuildings

11.6.59

GV I

Country house. 1778 - 1781 by Henry Holland for Thomas Harley. Alterations

of c1890 - 1900 involved the addition of a tower at the rear of the house,

this was removed in 1968 and the pediment to this face was reinstated. Set

in parkland laid out by Capability Brown. Brick core, faced with sandstone

ashlar with dressings of the same material, hipped Welsh slate roofs.

Rectangular plan main house with central entrance and stairwell, axial

stacks. Main entrance faces south-west, quadrant walls connect the main

block with the three outbuildings which form a courtyard to the rear (these

adjoining walls have been altered and one has been removed). Main house:

two storeys, attics and basements, south-west entrance front: seven bays

with plinth, dentilled cornice, blocking course and balustraded parapet,

steps up to central projecting tetrastyle Ionic portico; frieze is decorated

only to central part by a floral type design which replaces the original one

of putti, ox heads and garlands, pediment has a lunette window. Dormer windows

to attics with glazing bar sash windows, glazing bar sash windows to first

floor with semi-circular heads and decorative glazing to those flanking the

portico. Square-headed glazing bar sash windows to ground floor, the semi-

circular headed basement windows have rusticated surrounds. Central tall

and narrow semi-circular headed doorway with panelled door has keystone

depicting Roman head flanked by narrow side lights with reliefs depicting

urns above. The north-west front is of five bays with a pediment over the

central three bays. The north-east front to the courtyard entrance is of

2:3:2 bays with central pedimented slightly forward break, semi-circular

headed glazing bar sash windows to upper floor, square-headed windows to

ground floor with central three openings set in semi-circular headed surrounds,

right-hand opening now forms a doorway and has a six-panelled door. The out-

buildings enclosing the courtyard are of two storeys. The range to the north-

east is of nine bays with central pedimented archway flanked by pairs of Doric

pilasters, clock face in pediment, string course to flanking bays with 6-pane

square-headed windows to upper floor and semi-circular headed windows with

decorative glazing to ground floor. The ranges enclosing the courtyard to

the north-west and south-east are also of nine bays, each with similar windows

to the upper and lower floors, the central window to each range having a moulded

architrave, semi-circular headed window and doorway openings to ground floors.

To the outer walls of these flanking ranges (ie facing the gardens) are central

niches with coffered semi-domes with ball cresting above. The south-western

ends of both ranges have a blank semi-circular headed arch flanked by oculi.

Interior: the main house retains many of its original features on both main

floors, with decorative surrounds to doorways, decorative plastered ceilings

and marble fireplaces. The entrance hall has trophies in roundels above the

doors and a central circular ceiling panel is carried to the corners on spandrels,

pedimented surround to doorway opposite the entrance; polychrome marble patterned

floor. The Drawing Room retains original elaborate pelmets above the three

windows, marble fireplace with caryatids and griffon frieze. Delicately patterned

ceiling with painted roundels depicting scenes and characters from classical

mythology and with putti and sea horses; entwined roundels to outer border

which flank central theme. The boudoir has an alcove with segmental arch and

a screen of two blue scagliola columns. The Dining Room has a good marble

fireplace with carved panels to the jambs, decorative plastered and painted

ceiling with central painted roundel and swagged and wreathed plastered

surround. Pedimented bookcases to the library with continuous "greekkey"

type frieze. Decorative painted panels to ceiling depicting authors from

Chaucer to Addison. Central staircase hall is lit by delicately iron ribbed

glass domed lantern, opposite the staircase is a coffered archway; staircase

and landings carried on screens of scagliola columns, decorative dolphin

frieze to the entablature. The staircase has bronze lyre-shaped balustrading.

The outbuilding to the north-west formed the laundry and retains many of its

fittings. A tiled dairy has been restored in the south-east range and the

north-east range contains part stabling. (National Trust, 1986, Berrington Hall:

BoE, p 72).

  

Listing NGR: SO5093063660

 

This text is from the original listing, and may not necessarily reflect the current setting of the building.

  

These courtyard views from inside of the hall.

 

From rooms on the upper floor.

  

clock

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background

The Imperial Japanese Army Air Force's fighter force, especially the Nakajima Ki-43, had been underestimated in its capability, numbers and the strategy of its commanders. Within a few months, Japanese forces had conquered vast areas of the Pacific and South East Asia. During these campaigns, the ill-prepared Allied air forces in the Pacific suffered devastating losses.

 

Because of political and cultural ties between the United Kingdom and Australia, British manufacturers were the main source of RAAF aircraft. However, the British aircraft industry had long been hard-pressed to meet the needs of the RAF. Although United States companies had enormous aircraft manufacturing capacity, their output was now intended first and foremost for US air units. Even if aircraft built overseas did become available, they would be shipped long distances in wartime conditions, with consequent delays and losses. As a consequence, CAC came into its own with the development of the Boomerang fighter, which was not operational before late 1942.

 

Following the outbreak of war with Japan, 51 Hurricane Mk IIs were sent as a stop-gap in crates to Singapore, with 24 pilots, the nucleus of five squadrons. They arrived on 3 January 1942, by which time the Allied fighter squadrons in Singapore, flying Brewster Buffalos, had been overwhelmed in the Malayan campaign. Even though the Hurricanes were a significant progress, they suffered in performance.

 

Because of inadequate early warning systems, Japanese air raids were able to destroy 30 Hurricanes on the ground in Sumatra, most of them in one raid on 7 February. After Japanese landings in Singapore, on 10 February, only 18 serviceable Hurricanes remained out of the original 99. After Java was invaded, some of the pilots were evacuated by sea to Australia. 31 Hurricane airframes, which had been on the wayby ship, not been assembled and lacked Merlin engines, were directed to Australia in the wake of events.

 

From these unfinished machines, the Hurricane Mk. VI was quickly devised: the airframes were mated with P&W Twin Wasp engines, which were produced under license at the CAC plant in Lidcombe, Sydney, for the RAAF's Boomerang and Bristol Beaufort. It was clear from the start that these Twin Wasp-powered machines would rather be stop-gaps and no true fighters, rather fighter bombers and more suited for the ground attack role. Hence, like the latest fighters at the time, planning for the Mk. VI included automatic cannons. As no such weapons were manufactured locally, a British-made Hispano-Suiza 20 mm which an Australian airman had collected as a souvenir in the Middle East was reverse engineered – and four of them replaced the eight and partly twelve 0.303 machine guns of the original Mk. IIB machines. Additionally, the pilot received extra armor plating, and the wings were reinforced for external ordnance.

 

The RAAF Mk. VI Hurricanes carried A60-02 through -32 registrations. As a side note, A60-01 was a single Hurricane Mk.I serialled V-7476. This aircraft served with No.2 and 3 Communications Flights RAAF and was used on occasion for experimental work at RAAF Base Laverton on the outskirts of Melbourne. The aircraft was scrapped in 1945.

The Hurricane Mk. VIs actively took part in Pacific operations with RAAF’s No. 4 Squadron and No. 5 Squadron, being joined by Boomerangs in early 1943. They were operated in New Guinea and during the Solomon Islands Campaign as well as the Borneo Campaign, mostly in the close support role and with marked success.

 

Flying in pairs (one to observe the ground, the other to observe the air around them), their tasks included bombing, strafing, close infantry support and artillery spotting. When attacking larger enemy formations, the Hurricanes often operated in conjunction with the smaller and much more agile Boomerang fighter. In this role, a Boomerang would get in close to confirm the identity of the target and mark it with a 20 lb (9 kg) smoke bomb with the "cooperating" Hurricane, Beaufort or Havoc delivering the major ordnance in a quick run and from a safer distance. The partnership between RAAF planes and Royal New Zealand Air Force Corsair fighter bombers during the Bougainville Campaign was said to be particularly effective.

 

The Australian Hurricane Mk. VIs soldiered on until early 1945, when they were finally retired. The Twin Wasp engines were used for spares, all airframes were scrapped, no plane survived the war.

  

General characteristics:

Crew: 1

Length: 32 ft 3 in (9.84 m)

Wingspan: 40 ft 0 in (12.19 m)

Height: 13 ft 1½ in (4.0 m)

Wing area: 257.5 ft² (23.92 m²)

Empty weight: 5,745 lb (2,605 kg)

Loaded weight: 7,670 lb (3,480 kg)

Max. takeoff weight: 8,710 lb (3,950 kg)

 

Maximum speed: 331 mph (531 km/h)

Range: 650 mi (1.045 km)

Service ceiling: 36,000 ft (10,970 m)

Rate of climb: 2,303 ft/min (11.7 m/s)

Wing loading: 29.8 lb/ft² (121.9 kg/m²)

Power/mass: 0.15 hp/lb (0.25 kW/kg)

 

Engine: 1× Pratt & Whitney R-1830 Twin Wasp radial engine, 1,200 hp (895 kW)

 

Armament: 4× 20 mm (0.787 in) Hispano or CAC cannons; 2x 45-gallon (205 l) drop tanks or 2× 250 or 500 lb (110 or 230 kg) bombs

 

The kit and its assembly

The Hurricane Mk. VI is a whif, even though with little effort but a good story behind it. The original idea to mate a Hurricane with a radial engine came when I found a drawing of a Russian Hurricane, mated with a Schwezow ASch-82 engine. It looked… interesting. Not certain if this had been done for sure, but a great inspiration.

While browsing through the scrap heap I later found a Twin Wasp engine – that fueled the idea of a respective conversion. The Russian option was dead, but when I checked contemporary planes I came across the small Boomerang, and the historical facts were perfect for an obscure Australian Hurricane variant.

 

The rest was quickly done: the basic kit is a Hurricane Mk. IIC (Trop) from Hobby Boss, the Twin Wasp comes from a wrecked Matchbox PB4Y Privateer. The original Merlin was simply cut away and replaced by the "new" and relatively small radial engine. A surprisingly easy task, even though I had to widen the area in front of the cockpit by about 1mm to each side. With some putty and a new exhaust pipe with flame dampers, the surgical part was quickly done. A pilot was added, too, in order to distract from the rather bleak cockpit.

 

To make the plane look more interesting and suitable for a display on the ground, the flaps were lowered (scratch-built) and vertical and horizontal stabilizer were moved away from OOB neutral position. Additionally, the cooler under the fuselage was omitted, what creates together with the radial engine a very different side view. This "Aussie'cane" looks stout but disturbingly realistic, like a Boomerang’s big brother!

 

Only other changes/additions are a pilot figure and two wing hardpoints, holding bombs. The rest is OOB.

  

Painting

I have always been a fan of all-green RAAF WWII planes, so I chose such a simple livery. Inspiration came from real-life 4. Squadron Boomerangs, so I adopted the “QE” code and tried to mimic the overall look.

Interior surfaces were kept in Humbrol 78 ('Cockpit Green', dry-painted with light grey). The plane was painted with “Foilage Green” on all outer surfaces - a tone which seems to be heavily debated. Most sources claim FS 34092 (Humbrol 149) as a nowaday's replacement, but to me, this color is just too green and blue-ish. IMHO, “Foilage Green” has a rather yellow-ish hue - Humbrol 75 ("Bronze Green") would be better, if it wasn't too dark.

 

After some trials I settled for Humbrol 105 ("Army Green"). I think it is a sound compromise. It resembles FS 34096, but is (much) less grey-ish and offers that yellow hue I was looking for. Heavy weathering was done, esp. at the panel lines with dry-painted FS 34096 (Testors) and some panels "bleached" with Humbrol 86 ("Light live Green"). After deacls had been applied, some dry brushing with olive drab and light grey added to the worn and faded look, as well as flaked paint around the engine and the wings' leading egdes and soot stains at exhausts and guns. I wanted to emphasize the harsh climate conditions and duties of this fictional machine.

 

Only other colors are typical white quick recognition markings on tail and wings, painted with a mix of Humbrol 130 and 196 for a very light grey, with some white dry painting on th eleading edges.For a final clear coat, I used a matte varnish which still has a light gloss to it - “Foilage Green” and RAAF finishes were AFAIK supposed to be semi-matte and of higher quality that USAF paintjobs.

 

Markings come mostly from the scrap box. The RAAF insignia were taken from a Vultee Vengeance aftermarket sheet by Kanga Decals, which also provided the mid sea grey codes. The Australian registration numbers were improvised with single white letters from TL Modellbau decal sheets.

 

All in all I am happy with the result - a simple measure, a good story and even a very simple livery that allows room for imagination and painting effects. A nice lil' whif, the "Aussie'cane" Mk. VI.

NASA Administrator Charles Bolden, left, announces the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida looks on at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

Harewood House, near Leeds, West Yorkshire.

 

Harewood House is a Grade 1 Country House near Leeds in West Yorkshire.

 

It was designed by architects John Carr and Robert Adam and built between 1759 and 1771 for wealthy plantation and slave owner Edwin Lascelles - the 1st Baron Harewood, and is still home to the Lascelles family.

 

The 1000 acre grounds were designed by Capability Brown.

 

The house is one of the ten 'Treasure Houses of England'.

3 Commando Brigade Cold Weather Warfare capability training in the high North region of Norway. Picture: POA(Phot) Dave Gallagher

3 Commando Brigade is developing its Cold Weather Warfare capability after ten years of campaigning in Iraq and Afghanistan.

The training is taking place in the High North region of Norway and is strategically important to the United Kingdom.

Norway is the largest external supplier of energy to the UK and as the polar icecap melts, activity in the wider region, including commercial shipping, resource exploitation, fishing and tourism, is set to increase. It is in our interest that we work with the Norwegians and that we have the skills that would be necessary if we needed to conduct military operations in the region.

 

SH150005

180305-N-TH560-129 MANILA BAY, Philippines (March 5, 2018) Sailors and Marines arrive to the amphibious assault ship USS Bonhomme Richard (LHD 6) via a Philippine water taxi while the ship is anchored in Manila Bay during a scheduled port visit. Bonhomme Richard is in Manila to strengthen relations with Philippine partners while operating in the Indo-Pacific region as part of a regularly scheduled patrol and provides a rapid-response capability in the event of a regional contingency or natural disaster. (U.S. Navy photo by Mass Communication Specialist 2nd Class Jeanette Mullinax/Released)

Staff Sgt. Helmut Woodberry of the Illinois Air National Guard’s 126th Communications Flight works on a radio frequency control unit in a Joint Incident Site Communications Capability site at Muniz Air National Guard Base, Puerto Rico. The Air National Guard is working with many federal, territory and local agencies in response to Hurricane Maria. (U.S. Air National Guard photo by Tech. Sgt. Dan Heaton)

A Strategic Airlift Capability/Heavy Airlift Wing Boeing C-17A Globemaster III parked on the apron of Eindhoven Air Base with a MMF A330-200MRTT taking off in the background

Architectural gem Chatsworth House near Bakewell in the Derbyshire Peak District is one of Britain's finest stately homes in the classical Palladian style. Designed by the architects William Talman and Thomas Archer, the 4th Earl and later 1st Duke of Devonshire had Chatsworth rebuilt between 1687 and 1707, replacing a former Elizabethan mansion. Later under the 4th Duke, Lancelot 'Capability' Brown was commissioned to design Chatsworth's magnificent gardens whilst James Paine designed a new wing to the north of the house. Chatsworth has featured in many TV programmes and films including in recent times 'The Duchess' (2008) with Keira Knightley and 'Pride and Prejudice' (2004).

www.chatsworth.org

www.iknow-peakdistrict.co.uk

While the F-16A had proven a success, its lack of long-range missile and true all-weather capability hampered it, especially in projected combat against the Warsaw Pact over Central Europe. General Dynamics began work on the upgraded F-16C/D version, with the first Block 25 F-16C flying in June 1984 and entering USAF service that September.

 

Externally, the only ways to tell apart the F-16C from the F-16A is the slightly enlarged base of the tail and a UHF radio antenna at the base of the tail. The intake is also slightly larger, though later marks of the F-16A also have this feature. Internally, however, the F-16C is a significantly different aircraft. The earlier APG-66 radar was replaced by the APG-68 multimode radar used by the F/A-18, which gave the F-16C the same capability to switch between ground-attack and dogfight mode and vastly improved all-weather capability. Cockpit layout was also changed in response to pilots’ requests, with a larger Heads-Up Display and movement of the radar display to eye level rather than between the pilot’s legs on the F-16A. The F-16C would also have the capability to carry the AIM-120 AMRAAM, though it would not be until 1992 that the missile entered service. Other small upgrades were made throughout the design, including the engine.

 

The Block 25 initial production was superseded by the Block 30 F-16C in 1987, which gave it better navigation systems, and the capability to carry the either the General Electric F110 or the Pratt and Whitney F100 turbofan. The Block 40/42 “Night Falcon” followed in 1988, equipped with LANTIRN night attack pods, followed by the Block 50/52, which was a dedicated Wild Weasel variant. In USAF service, the latter are semi-officially known as F-16CG and F-16CJ variants.

 

The F-16C had replaced the F-16A in nearly all overseas USAF units by the First Gulf War in 1991, and as a result, the aircraft was among the first deployed to the theater in August 1990. During the war, the F-16C was used mainly in ground attack and strike sorties, due to delays in the AIM-120, but it performed superbly in this role. USAF F-16s finally scored kills in the F-16C, beginning in 1992, when an Iraqi MiG-23 was shot down over the southern no-fly zone; the victory was also the first with the AMRAAM. Four Serbian G-4 Super Galebs were shot down over Bosnia in 1994. F-16Cs had replaced the F-16A entirely in regular and Reserve USAF service by 1997, and further service was seen over Kosovo, Iraq, Afghanistan, and Libya by 2012. Subsequent upgrades to USAF F-16Cs with GPS allow them to carry advanced precision weapons such as JSOW and JDAM.

 

Whatever the variant, the F-16 is today the most prolific combat aircraft in existence, with 28 nations operating the type (17 of which operate F-16Cs). Over 4450 have been built, with more in production; the F-16C is also license-produced by Turkey and South Korea. It also forms the basis for the Mitsubishi F-2 fighter for Japan, though the F-2 is significantly different, with a longer nose and larger wing. Though the USAF projects that the F-16C will be replaced by the F-35 beginning in 2020, it will likely remain in service for a very long time.

 

The 120th Fighter Wing (Montana ANG) was naturally in attendance for the Missoula, Montana airshow in 2004. Two of their F-16s were in attendance, including 86-0278, a former 8th FW example that was assigned to the 120th in 2001; it was named "City of Bozeman," though the name was carried on the ventral fins and isn't visible in this shot. It saw combat over Iraq in 2008. Just after 0278 returned from the Middle East, the 120th reequipped with F-15s and 0278 was transferred to the 158th FW (Vermont ANG) and then to the 113th Wing (DC ANG), guarding the nation's capital.

 

This view shows the 120th's distinctive tail markings: the mountains represent Montana's Rocky Mountains, while the skull was the personal artist's mark of famous Western painter Charles M. Russell, a native of Great Falls, where the 120th is based. The title "Vigilantes" tail stripe was changed from the F-106's "Big Sky Country," and carries the number 3-7-77--the traditional calling card of the vigilantes, Montana's first semi-organized law enforcement, formed in 1864.

 

This is one of the few shots I have from the 2004 Missoula airshow, which was the hottest I have ever been to: it was 100 degrees air temperature, and easily 110 on the tarmac.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

After the success of the Soviet Union’s first carrier ship, the Moskva Class (Projekt 1123, also called „Кондор“/„Kondor“) cruisers in the mid 1960s, the country became more ambitious. This resulted in Project 1153 Orel (Russian: Орёл, Eagle), a planned 1970s-era Soviet program to give the Soviet Navy a true blue water aviation capability. Project Orel would have resulted in a program very similar to the aircraft carriers available to the U.S. Navy. The ship would have been about 75-80,000 tons displacement, with a nuclear power plant and carried about 70 aircraft launched via steam catapults – the first Soviet aircraft carrier that would be able to deploy fixed-wing aircraft.

Beyond this core capability, the Orel carrier was designed with a large offensive capability with the ship mounts including 24 vertical launch tubes for anti-ship cruise missiles. In the USSR it was actually classified as the "large cruiser with aircraft armament".

 

Anyway, the carrier needed appropriate aircraft, and in order to develop a the aircraft major design bureaus were asked to submit ideas and proposals in 1959. OKB Yakovlev and MiG responded. While Yakovlev concentrated on the Yak-36 VTOL design that could also be deployed aboard of smaller ships without catapult and arrester equipment, Mikoyan-Gurevich looked at navalized variants of existing or projected aircraft.

 

While land-based fighters went through a remarkable performance improvement during the 60ies, OKB MiG considered a robust aircraft with proven systems and – foremost – two engines to be the best start for the Soviet Union’s first naval fighter. “Learning by doing”, the gathered experience would then be used in a dedicated new design that would be ready in the mid 70ies when Project 1153 was ready for service, too.

 

Internally designated “I-SK” or “SK-01” (Samolyot Korabelniy = carrier-borne aircraft), the naval fighter was based on the MiG-19 (NATO: Farmer), which had been in production in the USSR since 1954.

Faster and more modern types like the MiG-21 were rejected for a naval conversion because of their poor take-off performance, uncertain aerodynamics in the naval environment and lack of ruggedness. The MiG-19 also offered the benefit of relatively compact dimensions, as well as a structure that would carry the desired two engines.

 

Several innovations had to be addresses:

- A new wing for improved low speed handling

- Improvement of the landing gear and internal structures for carrier operations

- Development of a wing folding mechanism

- Integration of arrester hook and catapult launch devices into the structure

- Protection of structure, engine and equipment from the aggressive naval environment

- Improvement of the pilot’s field of view for carrier landings

- Improved avionics, esp. for navigation

 

Work on the SK-01 started in 1960, and by 1962 a heavily redesigned MiG-19 was ready as a mock-up for inspection and further approval. The “new” aircraft shared the outlines with the land-based MiG-19, but the nose section was completely new and shared a certain similarity to the experimental “Aircraft SN”, a MiG-17 derivative with side air intakes and a solid nose that carried a. Unlike the latter, the cockpit had been moved forward, which offered, together with an enlarged canopy and a short nose, an excellent field of view for the pilot.

On the SK-01 the air intakes with short splitter plates were re-located to the fuselage flanks underneath the cockpit. In order to avoid gun smoke ingestion problems (and the lack of space in the nose for any equipment except for a small SRD-3 Grad gun ranging radar, coupled with an ASP-5N computing gun-sight), the SK-01’s internal armament, a pair of NR-30 cannon, was placed in the wing roots.

 

The wing itself was another major modification, it featured a reduced sweep of only 33° at ¼ chord angle (compared to the MiG-19’s original 55°). Four wing hardpoints, outside of the landing gear wells, could carry a modest ordnance payload, including rocket and gun pods, unguided missiles, iron bombs and up to four Vympel K-13 AAMs.

Outside of these pylons, the wings featured a folding mechanism that allowed the wing span to be reduced from 10 m to 6.5 m for stowage. The fin remained unchanged, but the stabilizers had a reduced sweep, too.

 

The single ventral fin of the MiG-19 gave way to a fairing for a massive, semi-retractable arrester hook, flanked by a pair of smaller fins. The landing gear was beefed up, too, with a stronger suspension. Catapult launch from deck was to be realized through expandable cables that were attached onto massive hooks under the fuselage.

 

The SK-01 received a “thumbs up” in March 1962 and three prototypes, powered by special Sorokin R3M-28 engines, derivatives of the MiG-19's RB-9 that were adapted to the naval environment, were created and tested until 1965, when the type – now designated MiG-SK – went through State Acceptance Trials, including simulated landing tests on an “unsinkalble carrier” dummy, a modified part of the runway at Air Base at the Western coast of the Caspian Sea. Not only flight tests were conducted at Kaspiysk, but also different layouts for landing cables were tested and optimized as well. Furthermore, on a special platform at the coast, an experimental steam catapult went through trials, even though no aircraft starts were made from it – but weights hauled out into the sea.

 

Anyway, the flight tests and the landing performance on the simulated carrier deck were successful, and while the MiG-SK (the machine differed from the MiG-19 so much that it was not recognized as an official MiG-19 variant) was not an outstanding combat aircraft, rather a technology carrier with field use capabilities.

The MiG-SK’s performance was good enough to earn OKB MiG an initial production run of 20 aircraft, primarily intended for training and development units, since the whole infrastructure and procedures for naval aviation from a carrier had to be developed from scratch. These machines were built at slow pace until 1968 and trials were carried out in the vicinity of the Black Sea and the Caspian Sea.

 

The MiG-SK successfully remained hidden from the public, since the Soviet Navy did not want to give away its plans for a CTOL carrier. Spy flights of balloons and aircraft recognized the MiG-SK, but the type was mistaken as MiG-17 fighters. Consequently, no NATO codename was ever allocated.

 

Alas, the future of the Soviet, carrier-borne fixed wing aircraft was not bright: Laid down in in 1970, the Kiev-class aircraft carriers (also known as Project 1143 or as the Krechyet (Gyrfalcon) class) were the first class of fixed-wing aircraft carriers to be built in the Soviet Union, and they entered service, together with the Yak-38 (Forger) VTOL fighter, in 1973. This weapon system already offered a combat performance similar to the MiG-SK, and the VTOL concept rendered the need for catapult launch and deck landing capability obsolete.

 

OKB MiG still tried to lobby for a CTOL aircraft (in the meantime, the swing-wing MiG-23 was on the drawing board, as well as a projected, navalized multi-purpose derivative, the MiG-23K), but to no avail.

Furthermore, carrier Project 1153 was cancelled in October 1978 as being too expensive, and a program for a smaller ship called Project 11435, more V/STOL-aircraft-oriented, was developed instead; in its initial stage, a version of 65,000 tons and 52 aircraft was proposed, but eventually an even smaller ship was built in the form of the Kuznetsov-class aircraft carriers in 1985, outfitted with a 12-degree ski-jump bow flight deck instead of using complex aircraft catapults. This CTOL carrier was finally equipped with navalized Su-33, MiG-29 and Su-25 aircraft – and the MiG-SK paved the early way to these shipboard fighters, especially the MiG-29K.

 

General characteristics:

Crew: One

Length: 13.28 m (43 ft 6 in)

Wingspan: 10.39 m (34 ft)

Height: 3.9 m (12 ft 10 in)

Wing area: 22.6 m² (242.5 ft²)

Empty weight: 5.172 kg (11,392 lb)

Max. take-off weight: 7,560 kg (16,632 lb)

 

Powerplant:

2× Sorokin R3M-28 turbojets afterburning turbojets, rated at 33.8 kN (7,605 lbf) each

 

Performance:

Maximum speed: 1,145 km/h (618 knots, 711 mph) at 3,000 m (10,000 ft)

Range: 2,060 km (1,111 nmi, 1,280 mi) with drop tanks

Service ceiling: 17,500 m (57,400 ft)

Rate of climb: 180 m/s (35,425 ft/min)

Wing loading: 302.4 kg/m² (61.6 lb/ft²)

Thrust/weight: 0.86

 

Armament:

2x 30 mm NR-30 cannons in the wing roots with 75 RPG

4x underwing pylons, with a maximum load of 1.000 kg (2.205 lb)

  

The kit and its assembly:

This kitbash creation was spawned by thoughts concerning the Soviet Naval Aviation and its lack of CTOL aircraft carriers until the 1980ies and kicked-off by a CG rendition of a navalized MiG-17 from fellow member SPINNERS at whatifmodelers.com, posted a couple of months ago. I liked this idea, and at first I wanted to convert a MiG-17 with a solid nose as a dedicated carrier aircraft. But the more I thought about it and did historic research, the less probable this concept appeared to me: the MiG-17 was simply too old to match Soviet plans for a carrier ship, at least with the real world as reference.

 

A plausible alternative was the MiG-19, esp. with its twin-engine layout, even though the highly swept wings and the associated high start and landing speeds would be rather inappropriate for a shipborne fighter. Anyway, a MiG-21 was even less suitable, and I eventually took the Farmer as conversion basis, since it would also fit into the historic time frame between the late 60ies and the mid-70ies.

 

In this case, the basis is a Plastyk MiG-19 kit, one of the many Eastern European re-incarnations of the vintage KP kit. This cheap re-issue became a positive surprise, because any former raised panel and rivet details have disappeared and were replaced with sound, recessed engravings. The kit is still a bit clumsy, the walls are very thick (esp. the canopy – maybe 2mm!), but IMHO it’s a considerable improvement with acceptable fit, even though there are some sink holes and some nasty surprises (in my case, for instance, the stabilizer fins would not match with the rear fuselage at all, and you basically need putty everywhere).

 

Not much from the Plastyk kit was taken over, though: only the fuselage’s rear two-thirds were used, some landing gear parts as well as fin and the horizontal stabilizers. The latter were heavily modified and reduced in sweep in order to match new wings from a Hobby Boss MiG-15 (the parts were cut into three pieces each and then set back together again).

 

Furthermore, the complete front section from a Novo Supermarine Attacker was transplanted, because its short nose and the high cockpit are perfect parts for a carrier aircraft. The Attacker’s front end, including the air intakes, fits almost perfectly onto the round MiG-19 forward fuselage, only little body work was necessary. A complete cockpit tub and a new seat were implanted, as well as a front landing gear well and walls inside of the (otherwise empty) air intakes. The jet exhausts were drilled open, too, and afterburner dummies added. Simple jobs.

 

On the other side, the wings were trickier than expected. The MiG-19 kit comes with voluminous and massive wing root fairings, probably aerodynamic bodies for some area-ruling. I decided to keep them, but this caused some unexpected troubles…

The MiG-15 wings’ position, considerably further back due to the reduced sweep angle, was deduced from the relative MiG-19’s landing gear position. A lot of sculpting and body work followed, and after the wings were finally in place I recognized that the aforementioned, thick wing root fairings had reduced the wing sweep – basically not a bad thing, but with the inconvenient side effect that the original wing MiG-15 fences were not parallel to the fuselage anymore, looking rather awkward! What to do? Grrrr…. I could not leave it that way, so I scraped them away and replaced with them with four scratched substitutes (from styrene profiles), moving the outer pair towards the wing folding mechanism.

 

Under the wings, four new pylons were added (two from an IAI Kfir, two from a Su-22) and the ordnance gathered from the scrap box – bombs and rocket pods formerly belonged to a Kangnam/Revell Yak-38.

The landing gear was raised by ~2mm for a higher stance on the ground. The original, thick central fin was reduced in length, so that it could become a plausible attachment point for an arrester hook (also from the spares box), and a pair of splayed stabilizer fins was added as a compensation. Finally, some of the OOB air scoops were placed all round the hull and some pitots, antennae and a gun camera fairing added.

  

Painting and markings:

This whif was to look naval at first sight, so I referred to the early Yak-38 VTOL aircraft and their rather minimalistic paint scheme in an overall dull blue. The green underside, seen on many service aircraft, was AFAIK a (later) protective coating – an obsolete detail for a CTOL aircraft.

 

Hence, all upper surfaces and the fuselage were painted in a uniform “Field Blue” (Tamiya XF-50). It’s a bit dark, but I have used this unique, petrol blue tone many moons ago on a real world Kangnam Forger where it looks pretty good, and in this case the surface was furthermore shaded with Humbrol 96 and 126 after a black in wash.

For some contrast I painted the undersides of the wings and stabilizers as well as a fuselage section between the wings in a pale grey (Humbrol 167), seen on one of the Yak-38 prototypes. Not very obvious, but at least the aircraft did not end up in a boring, uniform color.

 

The interior was painted in blue-gray (PRU Blue, shaded with Humbrol 87) while the landing gear wells became Aluminum (Humbrol 56). The wheel discs became bright green, just in order to keep in style and as a colorful contrast, and some di-electric panels and covers became very light grey or bright green. For some color contrast, the anti-flutter weight tips on the stabilizers as well as the pylons’ front ends were painted bright red.

 

The markings/decals reflect the early Soviet Navy style, with simple Red Stars, large yellow tactical codes and some high contrast warning stencils, taken from the remains of a Yak-38 sheet (American Revell re-release of the Kangnam kit).

Finally, after some soot stains with graphite around the gun muzzles and the air bleed doors, the kit was sealed with a coat of semi-matt acrylic varnish and some matt accents (anti-glare panel, radomes).

  

A simple idea that turned out to be more complex than expected, due to the wing fence troubles. But I am happy that the Attacker nose could be so easily transplanted, it changes the MiG-19’s look considerably, as well as the wings with (much) less sweep angle.

The aircraft looks familiar, but you only recognize at second glance that it is more than just a MiG-19 with a solid nose. The thing looks pretty retro, reminds me a bit of the Supermarine Scimitar (dunno?), and IMHO it appears more Chinese than Soviet (maybe because the layout reminds a lot of the Q-5 fighter bomber)? It could even, with appropriate markings, be a Luft ’46 design?

Solders from Bravo Company, 1st Battalion, 294th Infantry Regiment, Guam Army National Guard, prepare to advance on a hilly, rugged terrain in an Exportable Combat Training Capability (XCTC) training lane June 11 at Camp Roberts, California. More than 2,000 National Guardsmen from Guam, Hawaii, Arizona and California are participating in the training. U.S. Army National Guard photo/Staff Sgt. Eddie Siguenza)

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright x-rays from the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. This groundbreaking instrument, designed to deliver a suite of unprecedented x-ray imaging capabilities for the Hard X-ray Nanoprobe (HXN) beamline, brings researchers one step closer to the ultimate goal of nanometer resolution at NSLS-II.

 

The microscope manipulates novel nanofocusing optics called multilayer Laue lenses (MLL) — incredibly precise lenses grown one atomic layer at a time — which produce a tiny x-ray beam that is currently about 10 nanometers in size. Focusing an x-ray beam to that level means being able to see the structures on that length scale, whether they are proteins in a biological sample, or the inner workings of a fuel cell catalyst.

 

Pictured: microscope designers Yong Chu and Evgeny Nazaretski.

Posted via email to ☛ HoloChromaCinePhotoRamaScope‽: http://cdevers.posterous.com/false-color-osprey-on-boston-common.

 

Pictures kept coming out like this until, Fonzie-stylee, I gave the camera a good solid whack on the side. Yes, that really fixed it.

 

• • • • •

 

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Croome Court is a mid 18th century Neo-Palladian mansion surrounded by an extensive landscaped parkland at Croome D'Abitot, near Pershore in south Worcestershire. The mansion and park were designed by Lancelot "Capability" Brown for George Coventry, 6th Earl of Coventry, and was Brown's first landscape design and first major architectural project. Some of the internal rooms of the mansion were designed by Robert Adam.

 

The mansion house is owned by Croome Heritage Trust, and is leased to the National Trust who operate it, along with the surrounding parkland, as a tourist attraction. The National Trust own the surrounding parkland, which is also open to the public.

 

Location[edit]

Croome Court is located near to Croome D'Abitot, in Worcestershire,[1] near Pirton, Worcestershire.[2] The wider estate was established on lands that were once part of the royal forest of Horewell.[3] Traces of these older landscapes, such as unimproved commons and ancient woodlands, can be found across the former Croome Estate.[4]

 

House[edit]

 

Croome Court South Portico

History[edit]

The foundations and core of Croome Court, including the central chimney stack structure, date back to the early 1640s.[5] Substantial changes to this early house were made by Gilbert Coventry, 4th Earl of Coventry.[6]

 

In 1751, George Coventry, the 6th Earl, inherited the estate, along with the existing Jacobean house. He commissioned Lancelot "Capability" Brown, with the assistance of Sanderson Miller, to redesign the house and estate.[7][1] It was Brown's "first flight into the realms of architecture" and a "rare example of his architectural work",[8] and it is an important and seminal work.[9] It was built between 1751 and 1752, and it and Hagley Hall are considered to be the finest examples of Neo-Palladian architecture in Worcestershire. Notable Neo-Palladian features incorporated into Croome Court include the plain exterior and the corner towers with pyramidal roofs (a feature first used by Inigo Jones in the design of Wilton House in Wiltshire).[1] Robert Adam worked on the interior of the building from 1760 onwards.[10]

 

The house has been visited by George III,[2][11] as well as Queen Victoria[7] during summers when she was a child, and George V (then Duke of York).[11]

 

A jam factory was built by the 9th Earl of Coventry, near to Pershore railway station, in about 1880, to provide a market for Vale of Evesham fruit growers in times of surplus. Although the Croome connection with jam making had ceased, during the First World War, the building was leased by the Croome Estate Trust to the Huddersfield Fruit Preserving Company as a pulping station.[12]

 

The First World War deeply affected Croome, with many local casualties, although the house was not requisitioned for the war effort. This is possibly because it was the home of the Lord Lieutenant of the County, who needed a residence for his many official engagements.[13]

 

During the Second World War Croome Court was requisitioned by the Ministry of Works and leased for a year to the Dutch Government as a possible refuge for Queen Wilhelmina of the Netherlands; to escape the Nazi occupation of the Netherlands. However, evidence shows that they stayed two weeks at the most, perhaps because of the noise and fear created by the proximity of Defford Aerodrome. They later emigrated to Canada.[14]

 

In 1948 the Croome Estate Trust sold the Court, along with 38 acres (15 ha) of land, to the Roman Catholic Archdiocese of Birmingham, and the mansion became St Joseph's Special School, which was run by nuns[15] from 1950[11] until 1979.[15]

 

The house was listed on 11 August 1952; it is currently Grade I listed.[10]

 

In 1979 the hall was taken over by the International Society for Krishna Consciousness (Hare Krishna movement), who used it as their UK headquarters and a training college[16] called Chaitanya College,[15] run by 25 members of the movement.[16] During their tenure they repainted the Dining Room.[17] In 1984 they had to leave the estate for financial reasons. They held a festival at the hall in 2011.[16]

 

From 1984 onwards various owners tried to use the property as a training centre; apartments; a restaurant and conference centre; and a hotel and golf course,[15] before once more becoming a private family home,[2][15] with outbuildings converted to private houses.[15]

 

The house was purchased by the Croome Heritage Trust, a registered charity,[18] in October 2007,[19] and it is now managed by the National Trust as a tourist attraction. It opened to the public in September 2009, at which point six of the rooms had restored, costing £400,000, including the Saloon. It was estimated that another £4 million[2][20] to £4.8 million would be needed to restore the entire building. Fundraising activities for the restoration included a 2011 raffle for a Morgan sports car organised by Lord and Lady Flight. After the restoration is complete, a 999-year lease on the building will be granted to the National Trust.[21] An oral history project to record recollections about Croome was funded by the Heritage Lottery Fund.[15] As of 2009, the service wing was empty and in need of substantial repair.[22]

 

Exterior[edit]

The mansion is faced with Bath stone,[7] limestone ashlar, and has both north and south facing fronts. It has a basement and two stories, with three stories in the end pavilions. A slate roof, with pyramid roofs over the corner towers, tops the building, along with three pair-linked chimneys along the axis of the house.[10]

 

Both fronts have 11 bays, split into three central sets of three each, and one additional bay each side. The north face has a pedimented centre, with two balustraded staircases leading to a Roman Doric doorcase. The south face has a projecting Ionic tetrastyle portico and Venetian windows. It has a broad staircase, with cast stone sphinxes on each side, leading to a south door topped with a cornice on consoles. The wings have modillion cornice and balustrade.[10]

 

A two-story L-shaped service wing is attached to the east side of the mansion. It is made of red brick and stone, with slate roofs.[10] It was designed by Capability Brown in 1751-2.[22] On the far side of the service wing, a wall connects it to a stable court.[10]

 

Interior[edit]

The interior of the house was designed partially by Capability Brown, with plasterwork by G. Vassalli, and partially by Robert Adam, with plasterwork by J. Rose Jr. It has a central spine corridor. A stone staircase, with iron balusters, is at the east end.[10]

 

The entrance hall is on the north side of the building, and has four fluted Doric columns, along with moulded doorcases. To the east of the entrance hall is the dining room, which has a plaster ceiling and cornice, while to the west is a billiard room, featuring fielded panelling, a plaster cornice, and a rococo fireplace. The three rooms were probably decorated around 1758-59 by Capability Brown.[10] The dining room was vibrantly repainted by the Hare Krishnas in the 1970s-80s.[17]

 

The central room on the south side is a saloon, probably by Brown and Vassalli. It has an elaborate ceiling, with three panels, deep coving, and a cornice, along with two Ionic fireplaces, and Palladian doorcases.[10] George III was entertained by George Coventry, the 6th Earl, in the house's Saloon.[2] A drawing room is to the west of the saloon, and features rococo plasterwork and a marble fireplace.[10]

 

To the east of the saloon is the Tapestry Room.[10] This was designed in 1763-71, based on a design by Robert Adam, and contained tapestries and furniture covers possibly designed by Jacques Germain Soufflot, and made by Manufacture Nationale des Gobelins.[23] Around 1902 the ninth Earl sold the tapestries and seating to a Parisian dealer. In 1949 the Samuel H. Kress Foundation purchased the ceiling, floor, mantlepiece, chair rails, doors and the door surrounds, which were donated to the Metropolitan Museum of Art, New York, in 1958. In 1959 the Kress Foundation also helped the Metropolitan Museum acquire the chair and sofa frames, which they recovered using the original tapestry seats.[7][23] A copy of the ceiling was installed in place of the original.[10] As of 2016, the room is displayed as it would have looked after the tapestries had been sold, with a jug and ewer on display as the only original decoration of the room that remains in it. The adjacent library room is used to explain what happened to the tapestry room;[17] the former library was designed by Adam, and was dismantled except for the marble fireplace.[10]

 

At the west side of the building is a long gallery,[10] which was designed by Robert Adam and installed between 1761 and 1766. It is the best preserved of the original interior (little of the rest has survived in situ).[1] It has an octagonal panelled ceiling, and plaster reliefs of griffins. A half-hexagonal bay faces the garden. The room also contains a marble caryatid fireplace designed by J Wilton.[10] As of 2016, modern sculptures are displayed in empty niches along the Long Gallery

 

wikipedia

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Pasted from Wikipedia: Bell-Boeing V-22 Osprey

 

• • • • •

 

The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.

 

The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.

 

The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey's other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.

 

Contents

 

1 Development

•• 1.1 Early development

•• 1.2 Flight testing and design changes

•• 1.3 Controversy

•• 1.4 Recent development

2 Design

3 Operational history

•• 3.1 US Marine Corps

•• 3.2 US Air Force

•• 3.3 Potential operators

4 Variants

5 Operators

6 Notable accidents

7 Specifications (MV-22B)

8 Notable appearances in media

9 See also

10 References

11 External links

 

Development

 

Early development

 

The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]

 

The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a $1.714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]

 

The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate's decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]

 

Flight testing and design changes

 

The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey's first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]

 

Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program's second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]

 

In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]

 

Controversy

 

The V-22's development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for $2.5 billion in 1986, increased to a projected $30 billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, $27 billion have been spent on the Osprey program and another $27.2 billion will be required to complete planned production numbers by the end of the program.[2]

 

The V-22 squadron's former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]

 

The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon's testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]

 

It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft's survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]

 

With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article's data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]

 

Recent development

 

On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of $110 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of $70 million per aircraft in 2007,[3] but the Navy hopes to shave about $10 million off that cost after a five-year production contract starts in 2008.[41]

 

The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]

 

Design

 

The Osprey is the world's first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22's wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]

 

Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]

 

The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]

 

The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]

 

The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22's nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.

 

U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]

 

Operational history

 

US Marine Corps

 

Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]

 

The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]

 

On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey's first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey's self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]

 

The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq's western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]

 

The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]

 

Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy's smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]

 

A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]

 

The MV-22 saw its first offensive combat mission, Operation Cobra's Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]

 

US Air Force

 

The Air Force's first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW's fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]

 

The US Air Force's first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]

 

In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]

 

The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]

 

Potential operators

 

In 1999 the V-22 was studied for use in the United Kingdom's Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]

 

Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]

 

The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]

 

Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]

 

The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]

 

Variants

  

V-22A 

•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]

  

HV-22 

•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]

  

SV-22 

•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]

  

MV-22B 

•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps' CH-46E[57] and CH-53D.[94]

  

CV-22B 

•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]

 

Operators

 

 United States

 

United States Air Force

 

•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida

•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico

•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico

 

United States Marine Corps

 

•• VMM-161

•• VMM-162

•• VMM-261

•• VMM-263

•• VMM-264

•• VMM-266

•• VMM-365

•• VMMT-204 - Training squadron

•• VMX-22 - Marine Tiltrotor Operational Test and Evaluation Squadron

 

Notable accidents

 

Main article: Accidents and incidents involving the V-22 Osprey

 

From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.

 

• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]

 

• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]

 

• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]

 

• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]

 

Specifications (MV-22B)

 

Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]

 

General characteristics

 

Crew: Four (pilot, copilot and two flight engineers)

Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)

Length: 57 ft 4 in (17.5 m)

Rotor diameter: 38 ft 0 in (11.6 m)

Wingspan: 45 ft 10 in (14 m)

Width with rotors: 84 ft 7 in (25.8 m)

Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)

Disc area: 2,268 ft² (212 m²)

Wing area: 301.4 ft² (28 m²)

Empty weight: 33,140 lb (15,032 kg)

Loaded weight: 47,500 lb (21,500 kg)

Max takeoff weight: 60,500 lb (27,400 kg)

Powerplant:Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each

 

Performance

 

Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]

Cruise speed: 241 knots (277 mph, 446 km/h) at sea level

Range: 879 nmi (1,011 mi, 1,627 km)

Combat radius: 370 nmi (426 mi, 685 km)

Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)

Service ceiling: 26,000 ft (7,925 m)

Rate of climb: 2,320 ft/min (11.8 m/s)

Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)

Power/mass: 0.259 hp/lb (427 W/kg)

 

Armament

 

• 1× M240 machine gun on ramp, optional

 

Notable appearances in media

 

Main article: Aircraft in fiction#V-22 Osprey

 

See also

 

Elizabeth A. Okoreeh-Baah, USMC - first female to pilot a V-22 Osprey

 

Related development

 

Bell XV-15[106]

Bell/Agusta BA609

Bell Boeing Quad TiltRotor

 

Comparable aircraft

 

Canadair CL-84

LTV XC-142

 

Related lists

 

List of military aircraft of the United States

List of VTOL aircraft

 

References

 

Bibliography

 

• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.

• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.

 

External links

 

Wikimedia Commons has media related to: V-22 Osprey

 

Official Boeing V-22 site

Official Bell V-22 site

V-22 Osprey web, and www.history.navy.mil/planes/v-22.html

CV-22 fact sheet on USAF site

www.globalsecurity.org/military/systems/aircraft/v-22.htm

www.airforce-technology.com/projects/osprey/

Onward and Upward

"Flight of the Osprey", US Navy video of V-22 operations

Prior Park Landscape Garden, designed by Capability Brown and Alexander Pope. The Palladian Bridge added by Richard Jones to the original plans of John Wood designer of Prior Park (far in the distance.)

    

Bath, Somerset, UK.

    

All rights reserved. No use & distribution without express written permission. Strictly enforced.

 

Some background:

The VF-25 Messiah is one of the newest-generation variable fighters first used by humanity in 2059. The VF-25 was independently developed by Shinsei Industry / Macross Frontier Arsenal Original Development / L.A.I. from the YF-24 prototype as the potential successor to the VF-171 Nightmare Plus, the current main variable fighter of the New U.N. Spacy. The Messiah is armed with numerous offensive weapons that include a gatling gun, beam cannons, laser guns mounted in the head unit and a close-combat knife housed within the shield.

 

The VF-25 is built for multipurpose operation and can be customized according to the pilot and the characteristics of the mission. By exchanging multipurpose modules the variable fighter is able to operate as a fighter craft, an attack craft, a fighter-bomber, a reconnaissance craft and command craft for unmanned combat aerial vehicles.

 

For all previous generations of variable fighters it was nearly impossible for a Valkyrie to reach its full potential because there was no technology to overcome the limits of the pilot's body. The AVF Development Project in 2040 addressed this problem and it was overcome via the new Inertia Store Converter (ISC). This technology supports the pilot and reduces inertial forces upon the pilot such that the VF-25 can achieve mobility and combat capability that exceeds the limits of typical manned maneuvering.

 

Design Features include:

- 3-mode variable transformation

- Variable geometry wing with boundary layer control (BLC)

- Capable of attaining unassisted orbital velocity over an Earth-class planet

- ISC (Inertia Store Converter) from Shinsei Industry Macross Frontier Arsenal / LAI Company

- Active stealth system antennae

- Chaff/flare/smoke discharger system

- Thrust reverser equipped with three-dimensional maneuvering nozzles

- AA/AS/SF-06 integrated radar (mounted in nose)

- Linear actuators (provide faster electromagnetic transformation without contact between moving parts)

Another special feature in this new variable fighter is a cockpit designed to connect to the EX-Gear reinforced-exoskeleton (powered suit) designed to support the pilot. The cockpit furthermore offers a deployable auxiliary seat for a passenger.

Moreover, the power output, armaments, sensors and other systems have all been completely integrated which results in greatly enhanced performance. The VF-25 Messiah can also be fitted with an Armor Pack (no longer limited to Battroid mode only like the old VF-1 Valkyrie's Armored system) or a high-maneuverability Super Pack.

 

The VF-25 Messiah is currently in early deployment for field-testing in real combat scenarios with the Strategic Military Services (S.M.S.) and will later be deployed to the New U.N. Forces. The VF-25A is the mass produced version and other variants include the VF-25F Improved Air Combat Ability version, the VF-25G fitted with sniper weaponry, the VF-25S enhanced version for team leaders and the RVF-25 for enhanced electronic warfare operation.

 

The VF-25 saw interplanetary use with regular N.U.N.S. forces. After having shown its potential in the Varja conflict in 2059, one of the new type’s first major deployments took place in 2060 on Windermere IV, a planet in the Brisingr Global Cluster. Characterized by cold weather, Windermere IV is covered by snow most of the year. Its global government was similar to a medieval European monarchy of Earth. After war for independence, cease-fire was established in 2053, followed by an economic blockade of the Unified Government.

 

At the end of the first Windermere War of independence, a dimension weapon, which had been prohibited from use, was dropped in the Carlisle district, causing extensive damage to civilians and the NUN Armed Forces stationed there. From this tragedy, the NUN Armed Forces withdrew from Windermere. The War of Independence came to a de facto cease-fire.

  

General characteristics:

Crew: 1 (+1 optional)

Battroid Mode: height 15.59 meters (includes beam guns); 14.53 meters (without beam guns)

Fighter Mode: wingspan 15.5 meters (fully extended); height 4.03 meters; length 18.72 meters

Mass: empty 8.45 metric tons

Structure: SWAG energy conversion armor

 

Power Plant:

2x Shinsei Industry/P&W/RR FF-3001A Stage II thermonuclear reaction turbine engines,

each rated at 1,620 kN maximum thrust in space;

Many P&W HMM-9 High maneuverability thrusters all around the hull

 

Performance:

Maximum speed in Fighter Mode: Mach 5.0+ at 10,000 m,

limited through heat-resistance of the fuselage/structure

Maximum Airframe Design Load: 27.5G at maximum acceleration for 120 seconds

Thrust-to-weight ratio: (empty) 39.09

 

Standard armament:

2x fixed Mauler RÖV-127C coaxial 12.7mm beam guns (mounted center dorsal section in

Fighter/GERWALK mode, becomes head turret in Battroid mode)

1x Howard GU-17A new model 5-barrel 58mm gatling gun pod with retractable cover

to provide air cooling for the barrels (mounted ventral fuselage in Fighter mode,

in arm manipulator for GERWALK/Battroid modes)

1x standard bulletproof (anti-projectile) shield (mounted center rear dorsal fuselage in Fighter

mode, mounted on arm in GERWALK/Battroid modes); the shield is composed of the enhanced

energy conversion armor used in the APS-25A/MF25 Armored Pack

2x Remington ES-25A 25mm high-speed machine guns, or

2x Mauler RÖV-25 25mm beam machine guns (mounted left/right of intakes in Fighter/

GERWALK mode, on rotating hip mounts in Battroid mode)

1x Ka-Bar OTEC AK/VF-M9 Assault Knife, 1.65m, super strong material reinforced by pin-point

barrier system (mounted under left arm shield block)

 

1x pin-point barrier system

6x underwing hardpoints for anti-ship reaction missiles, fold speakers or other equipment

Optional armament:

SPS-25S/MF25 High-maneuverability Super FAST pack system (includes some additional armor), or

APS-25A/MF25 Armored pack (deployable in all modes)

1x Howard GU-17V loaded with MDE warhead specification for anti-Vajra combat

25 mm high-speed machine guns and super pack/full armor micro-missile warheads

are later refit with anti-Vajra MDE warhead specification

  

The kit and its assembly:

I have been wanting to add another Macross Valkyrie type to my VF-1 hordes, and the SF Group Build at whatifmodelers.com (running until Oct. 2017) was a good motivator to eventually tackle this subject – I had already two Bandai VF-25s stashed away over the years, but never found the nerve to start at least one of them, basically because I lacked a good idea for a livery.

 

My choice fell on the VF-25 since it looks (again, after some more progressive designs along the VF family) like a “normal” jet fighter. According to its creator Shoji Kawamori (who also designed the iconic VF-1 and the Patlabor mecha), the VF-25 was indeed a deliberate move away from the passive stealth style silhouette that dominates current real-world fighters. He also noted that since this was the first major Valkyrie that transforms in all modes with its Armored parts still attached, he gave the unarmored fighter a slim profile. Kawamori thinks the VF-25 resembles a slimmer VF-1 Valkyrie in Fighter mode, but transforms like a VF-19 Excalibur. Personally, it reminds me a lot of a slim Su-27 with VG wings?

 

Additional Trivia: The name “Messiah” was chosen from a mobile phone call-in contest ran by the official Japanese Macross Frontier website from March 10 to April 20, 2008. Winning entry was revealed on May 10, 2008. According to an article in the June 2008 issue of Kadokawa Shoten's Newtype magazine called "The Official Art of Macross Frontier", the name "Messiah" invokes the image of Alto's white model and the lyrics of the song "Shao Pai Lon" ("Little White Dragon") from original The Super Dimension Fortress Macross series.

 

Bandai’s 1:100 VF-25 kit comes in several color/decor variants and is “only” a snap-fit offering. Outwardly it appears to be very simple, even without a landing gear and with stickers instead of water slide decals. Enough to scare “serious” modelers away, I guess.

 

However, it is actually a good model kit – the overall representation of the VF-25 is very good, and for a 1:100 scale model the kit has ample detail and fine surface engravings. Fit is also very good, and the mostly white IP material of the “Alto Custom” variant which I got here makes painting easier.

The only drawback I found is the canopy: it is clear, fits perfectly to the hull, but it is tinted in deep purple! Replacing it is difficult, due to the cockpit frame’s complex shape, and the rather special color might crash with the livery?

 

The kit was built mostly OOB. The only changes/mods I made are a different pilot (the OOB figure is utterly small, almost only 1:144!), and I added an attachment “channel” through the underbelly gun right into the fuselage for my standard wire display design for in-flight models. Even though I considered it, I did not add any further ordnance and just kept the OOB gun pod under the belly, underlining the VF-25’s elegant lines.

 

Building the kit is – naturally – very easy and makes quick progress. If you want, you have a VF-25 model in less than an hour, I’d say, and with the OOB stickers it will not look bad either! When you carefully clip and clean the pre-colored parts, you get a very good model with almost no need for PSR!

  

Painting and markings:

This is where I added my personal note to the model. This VF-25F was supposed to become a “normal” in-service aircraft of the N.U.N.S., after the evaluations and trials carried out by SMS. Anyway, according to references (Softbank Publishing does a great sourcebook series covering almost every VF type!), most “official” VF-25s come along either garishly colorful, or they carry very subdued colors and markings, very US Navy style. Except for grey liveries (in various shades), camouflage seems uncommon.

 

However, I wanted to underline the VF-25’s fighter role and adapted a real-world paint scheme for the model. It is one of many experimental schemes that were tested in the late Seventies by the German Bundesluftwaffe on F-4F Phantom II’s, in this case on 37+51.

 

The wrap-around air superiority scheme consisted only of two tones, namely RAL 5014 (Taubenblau) and RAL 7038 (Achatgrau) – very simple, but also IMHO elegant and unusual. Maybe a bit reminiscent of the experimental air superiority scheme tested on the 2nd YF-16 prototype, which flew a couple of years before, but much more disruptive. More trivia: Due to the colors and the pattern, 37+51 was unofficially nicknamed “Wolkenmaus” (= Cloud Mouse), and many of the other Luftwaffe Phantoms with experimental paint schemes of that era received such handles, too.

 

The colors I used are just approximates for the original RAL tones, though, namely Humbrol 129 (FS 36440, Light Gull Grey) and 157 (RAF Azure Blue). Painting was straightforward and used the original 37+51 pattern as benchmark, done after the kit’s major assembly.

 

The only other colors on the hull are a slightly lighter grey for the nose radome (Humbrol 147, FS 36495) and Dark Sea Grey for the Messiah’s head (semi-buried in the spine), the gun pod and the air intakes. In order to integrate the purple canopy somewhat into the VF-25’s overall appearance, I painted some antennae/di-electric panels in violet, too. Still looks a bit weird, but since this is an anime/mecha kit I do not worry too much about color clashes. ;-)

 

The exhaust nozzles/feet received a finish with a mix of red brown (Humbrol 160) and Exhaust Metallizer from Modelmaster, plus some rubbing with grinded graphite for a metallic shine.

 

Being used in “hot” military duty, the model was weathered through an overall, light black ink wash and later panel shading with slightly lighter variants of the underlying basic tones. Together with the subdued markings, the overall look turned out to be pretty purposeful.

 

Since I did not want to use the stickers, and my decal reservoir did not cover any N.U.N.S. markings, I designed and printed most basic markings at home with the help of appropriate software and an ink jet printer. Despite some problems, this worked well, and since I would not use great and complex motives, and mostly only in all-black, this VF-25 eventually received truly individual markings.

  

My first non-VF-1 Valkyrie, and despite being just a snap-fit kit, this was an enjoyable build, and the experimental Luftwaffe paint scheme suits the VF-25 well. As a weird coincidence, I even found a plausible slot in the canonical Macross (Frontier) timeline – the snowy world Windermere IV is authentic, and the model’s grey-and-blue livery is a very good match for this environment.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The Israel Aircraft Industries Nesher (Hebrew: נשר, "Vulture" - often mistranslated as "Eagle") is the Israeli version of the Dassault Mirage 5 multi-role fighter aircraft. Most were later sold to the Argentine Air Force as Daggers, and later upgraded as Fingers.

 

Israel had to replace more than 60 aircraft lost during the Six Day War and the War of Attrition which followed. Before the war, Israel began co-development with Dassault to build the Mirage 5 and it was eventually built by Israel and named Raam in Hebrew (thunder).

 

Dassault Aviation had developed the Mirage 5 at the request of the Israelis, who were the main foreign customers of the Mirage III. The Israeli Air Force (IAF) wanted the next version to have less all-weather capability in exchange for improved ordnance carrying capacity and range as the weather in the Middle East is mostly clear.

 

In January 1969, the French government arms embargo on Israel (in response to the 1968 Israeli raid on Lebanon) prevented the first 30 Mirage 5 aircraft (which were already paid for by Israel) plus optional 20 from being delivered and cut off support for the existing Mirage IIICJ fleet.

 

This was a setback for the Israeli Air Force, who needed the new Mirage to compensate for the losses of the Six Day War and was still using the Mirage IIIC. Israel then decided to produce the (Raam A and B project)[1] airframes as it had the necessary plans, although Israel did not officially obtain a manufacturing license.

 

Officially, Israel built the aircraft after obtaining a complete set of drawings. However, some sources claim Israel received 50 Mirage 5s in crates from the French Air Force (AdA), while the AdA took over the 50 aircraft originally intended for Israel.

 

Production began in 1969[5] with the first empty airframes with no weapons, electronics, seat, or engine included, delivered directly from Dassault Aviation. The first Raam A was delivered in May, 1971. In November, 1971 the plane was renamed Nesher.

 

The Neshers' airframe was identical to the Mirage 5, but there was an extensive refitting of Israeli avionics, a Martin-Baker zero-zero ejection seat, and improved provisions for a wider range of AAMs (Air-to-Air Missiles), including the Israeli Shafrir heat-seeking missile.The Nesher had simpler avionics than the Mirage IIIC but was slightly less maneuverable. However, it had longer range and bigger payload. The reduced maneuverability did not prevent the Nesher from performing well in air combat during the Yom Kippur war (see below).

 

The first Nesher prototype flew in September 1969, with production deliveries to the IAF beginning in May 1971 at Hatzor in May of 1971, with veteran test pilot Danny Shapira at the controls. In the months that followed, additional Nesher planes equipped this squadron, making up for the insufficient number of Mirage IIIs and raising the number of serviceable planes in the squadron. When the rate of production picked up at the Nesher assembly line at IAI, two new squadrons could be established, based solely on the Neshers. The first new squadron inaugurated 'Etzion Airbase at 'Bik'at Hayareakh' ('Valley of the Moon') near Eilat, in September of 1972, and the second was founded in March of 1973 at Hatzor.

 

When the Yom Kippur War broke out, in October of 1973, the IAF had 40 Nesher planes in its ranks, serving in the First Combat Squadron and in the two new squadrons.

Although they were originally intended for attack missions, in the course of the war the Neshers were primarily used in air-to-air combat. The IAF command decided to use the Phantoms, Skyhawks and Sa'ars against ground targets, and assigned the Mirages and Neshers the task of fighting enemy aircraft and establishing air superiority over the battle zones.

 

The Neshers proved to be good fighters and overcame their adversaries (MiGs and Sukhois) with relative ease. The first aerial victory of a Nesher took place on January 8, 1973, when 4 Neshers from the "First Fighter" squadron escorted F-4 Phantoms into Syria to attack a terrorist base. In an engagement with Syrian MiG-21s, 6 MiGs were shot down, two by the Neshers.

 

Neshers also took part in the Yom Kippur conflict later that year. One of the first air victoriy of the war was not an aircraft but an AS-5 Kelt air to ground missile launched against Tel-Aviv by an Egyptian Tu-16 Badger on the first day of the war, October 6th, 1973.

When Libyan Mirage 5s entered the fighting all Israeli Mirages and Neshers were marked with large yellow triangles bordered by a thick black frame to prevent a case of mistaken identity. At least two Mirage 5s were shot down by Neshers, as well as an Israeli Phantom shot down by mistake, the navigator and the pilot, a former Nesher squadron commander, parachuting to safety.

 

According to the statistics published after the war, there were 117 dogfights in the course of the Yom Kippur War (65 over Syria and 52 over Egypt). 227 enemy planes were shot down in these confrontations, and only six Israeli planes were shot down (they had been on interception missions, and were either hit by cannon fire or by sirface-to-air missiles). The Nesher squadron from Etzion was one of the leading squadrons, tallying 42 kills without a single plane lost.

 

The Neshers did not just go out on interception missions: they also carried out several attack sorties in the Golan Heights and on the southern front. The action was intense, with every pilot carrying out numerous sorties every day.

 

The war proved just how vital the Nesher's reinforcement of the IAF's order of battle had been, and convinced the defense community of the importance of continuing to develop fighters in the IAI. In 1975 the first Kfirs entered service, and the Nesher was gradually relegated to a less central role. All the Neshers were concentrated in two squadrons, and were transferred - in late 1976 - to Eitam Airbase, whicch had been newly dedicated in the northern Sinai.

 

Nesher production ended in February 1974 after fifty-one fighters (Nesher S) and ten Nesher two-seat trainers (Nesher T), and the type did not serve long with the IAF. In the late 70's there were already enough Kfirs in the IAF for completely replacing the Mirages and Neshers.

 

The Kfir was a significantly more advanced plane than the Nesher, boasting better performance as well as more sophisticated systems, and upgrading the Neshers was not deemed to be a worthwhile investment.

In 1981, the Kfir had supplanted the Nesher in Heyl Ha'avir, and the Neshers were renovated, for sale overseas. Neshers were sold to the Argentine Air Force in two batches, 26 in 1978 and 13 in 1980, under the name Dagger, comprising 35 Dagger A single-seat fighters and four Dagger B two-seat trainers. The Daggers then saw much action against the British in the Falklands War.

  

General characteristics:

Crew: one

Length incl. pitot: 15.65m (51 ft 3 in)

Wingspan: 8.22m (26 ft 11 in)

Height: 4.25m (13 ft 11 in)

Wing area: 34.8m² (373 sq. ft)

Empty weight: 6,600kg (14,535 lb)

Max. takeoff weight: 13,500kg (29,735 lb)

 

Powerplant:

SNECMA Atar 09 engine with 4,280 kg (9,430 lbf)dry thrust

and 6,200 kg (13,660 lbf) with afterburner

 

Performance:

Maximum speed: mach 2.1 (39,370ft)

Range: 1,300km (810 ml), clean and with internal fuel only

1,186km (736 ml) with 4700 litres of auxiliary fuel in drop tanks

plus 2 Air to Air missiles and 2600 lb of bombs

Service ceiling: 17,680 (55,775ft)

Rate of climb: 16,400ft/min (83.5 m/s)

 

Armament:

2× 30 mm (1.18 in) DEFA 552 cannons with 125 rounds per gun under the air intakes

Five pylons for a wide range of up to 4.200kg (9,250 lb) of disposable stores

 

The kit and its assembly:

This short notice build towards the end of the 2016 "Cold War GB" at whatifmodelers.com was inspired by a CG rendition of an IAF F-4 in the unique brown/blue paint scheme, posted by fellow user SPINNERS a couple of days before. Seeing that design variant I wondered how a Kfir in this livery would look like...?

 

I had a C-2 Kfir in the stash, but also stumbled across a Heller Mirage IIIE/R/5BA kit without a real purpose in the stash and remembered the Kfir's predecessor, the Nesher, which was more or less a bluntly copied Mirage 5. Since the type was earlier and more appropriate for the brown/blue livery, I decided to convert the Heller Mirage into a Nesher, since it comes pretty close.

 

The Heller kit is old and rather basic by today's standards. You get fine but raised panel lines, only a rough interior, mediocre fit and a brittle plastic that catches scratches and dents when you only look at it.

 

Anyway, creating a Nesher from the Heller kit is not really complicated. Two major mods have to be made: the fin has to be enlarged or replaced, and the nose needs a special pitot installation.

 

The Nesher carried the bigger Mirage III/5 fin, and the Heller kit only bears the short version. Since I had a donation PM Model Nesher/Dagger kit in store (horrible kit, it rather resembles a mutated Mirage III but neither the israeli nor the Argentinian aircraft!) I just transplanted the fin. This appeared easier than adding a fin fillet, and having just the right donation part at hand made the decision even easier. :D

 

The nose is the Mirage 5's, but the tip was slightly modified and the pitot needed a separate fairing/attachment under the nose tip. The latter was created from a piece of round styrene and blended with the lower front fuselage.

 

After the major body work was done, some antennae/sensors were replaced or added, a Panzer IV’s sprocket wheel as an afterburner interior (just to have something inside the gaping exhaust hole) as well as launch rails under the outer wings for a pair of Shafrir-2s. The sleek drop tanks come OOB from the Heller kit – it only offers a pair of bigger tanks with fins, but no offensive ordnance at all.

In the cockpit I used a Martin Baker ejection seat from an Italeri Kfir, a slightly better option than the OOB part.

  

Painting and markings:

This is the actual whif aspect about this build, which is just the fictional application of a real world IAF scheme that was in use about 10 years before the Yom Kippur War. In real life the Nesher just came too late to carry the murky brown/blue pattern, because it was phased out in 1967, after the Six Days War. But putting it onto a more modern aircraft creates interesting results!

 

The scheme is based upon the original grey/green French pattern, just with the colors replaced with RAL 8000 (Grüngrau) or Field Drab (FS 30215) and RAL 5008 (Graublau), the authentic upper surface tones for this strange camouflage.

 

I’ve already built a (real world) IAF Ouragan in this style, so I had some practice and good references at hand. Model Master 1702 (alternatively: Humbrol 142) is a good option for the brown/tan tone, even though it is a bit too dark for my taste. "Israeli Armor Grey" from ModelMaster is a more approriate tone - it's lighter and actually an equivalent for RAL 8000, which is also used on Israeli tanks!

 

For the greyish-green dark blue I used Humbrol 77 (Navy Blue) which comes IMHO close. The undersides were painted in a pale grey, I used FS 36440 (Light Gull Grey, Humbrol 129 in this case). Some sources claim it to be RAL 7044 (Seidengrau), but the FS tone is practically identical.

 

All Neshers (even in later Argentinian service) had their nose painted black. There was no radar oder radome fitted, it was rather a deception in order to make enemies confuse the simple ground attack Neshers with the more potent (and radar-equipped) Mirage IIIs.

 

The kit received a light black ink wash and some dry-brushing for panel emphasis. The decals come mostly from the PM Model Nesher, including the large, yellow Yom Kippur War ID triangles which create a powerful contrast on the dark underground. Interesting result!

 

Anyway, while the decals might be the best thing about the PM kit, they have thier drawbacks, too. While they are 100% opaque the carrier film is thick, stiff and brittle, and they do not adhere well to the underground, despite decals softener and other tricks. :(

 

As a small detail I put the aircraft's tactical code on a silver background, as if the aircraft had originally been bare metal with the camouflage rather hastily applied. Since I had no IAF squadron markings left I added a yellow/black checkerboard pattern to the fin's rudder - the marking of the 113 Tayaset "Ha'Tsira'a (The Wasps), which actually operated the Nesher in the Yom Kippur conflict, just with a different camouflage.

 

Finally, the kit received some smoke/exhaust marks with graphite and was sealed with a coat of matt acrylic varnish. To make matters worse, the Revell varnish turned white, so I had to repair that damage as good as I could, and the finish now is far from what I had originally hoped for, despite the general troubles with the PM Model kit's decals.

  

A rather subtle whif, and even the aircraft itself is real (or at least a "realistic" model replica). Anyway, the paint scheme application changes things considerably, and the model ended - with the ID trinagles and the other bright markings - more colorful than expected. But the finish ended up rather poor, so that I am a bit disappointed.

Besides, a highly recommended source for this aircraft is Amos Dor's "IAI Nesher (From Mirage to Kfir, pt. 2 of 3)" book from "The IAI Aircraft Series", AD Graphics/Milano, 2000. All the other publications from this series of books are also generally recommended for any IAF builds.

Temple Newsam (historically Temple Newsham), (grid reference SE357322) is a Tudor-Jacobean house in Leeds, West Yorkshire, England, with grounds landscaped by Capability Brown.

 

The estate lends its name to the Temple Newsam ward of Leeds City Council, in which it is situated, and lies to the east of the city, just south of Halton Moor, Halton, Whitkirk and Colton. It is one of nine sites in the Leeds Museums & Galleries group.

 

The house is a Grade I listed building, defined as a "building of outstanding or national architectural or historic interest". The stables are Grade II* listed ("particularly significant buildings of more than local interest"), and ten separate features of the estate are Grade II listed ("buildings of special architectural or historic interest"), including the Sphinx Gates and the Barn.[1] Temple Newsam House is one of Leeds Museums and Galleries sites.[2] It is also part of the research group, Yorkshire Country House Partnership.[3]

 

History

1066 to 1520

In the Domesday Book of 1086 the manor is listed as Neuhusam (meaning new houses) and was held by Ilbert de Lacy and his sons.[4] Before the Norman Conquest of 1066 it had been held by Dunstan and Glunier, Anglo-Saxon thanes.[4] In about 1155, Henry de Lacy gave it to the Knights Templar, who built Temple Newsam Preceptory on a site near the present house.[5] The Templars farmed the estate very efficiently, with 1100 animals.[6] In 1307 the Templars were suppressed, and Edward II granted the manor to Sir Robert Holland who held it until 1323 when he was deprived of his estates.[6] The Templars tried to retake the estate but they were forced to surrender and in 1327 it was granted to Mary de St Pol, the Countess of Pembroke, who held the manor for 50 years.[6] In 1377 by royal decree the estate reverted to Philip Darcy, 4th Baron Darcy de Knayth (1341–1398).[6] It then passed through several members of the Darcy family, until it was inherited by the 21-year old Thomas, Lord Darcy in 1488.[7] Between 1500 and 1520 a Tudor manor house, known as Temple Newsam House, was built on the site.[8] It has also been spelled "Newsham" in the past.[9]

 

An oil on panel painting by Hans Eworth of Henry Stuart and his brother Charles Stuart in a grand interior based on a print by Hans Vreedman de Vries

An oil on panel painting from 1563 by Hans Eworth of Henry Stuart and his brother Charles Stuart in a grand interior based on a print by Hans Vreedman de Vries which may reflect Temple Newsam's Great Chamber

1500 to 1650

In 1537 Thomas, Lord Darcy was executed for the part he played in the Pilgrimage of Grace and the property was seized by the Crown.[7] In 1544 Henry VIII gave it to his niece Lady Margaret Douglas (Countess of Lennox), and she lived there with her husband Matthew Stewart, 4th Earl of Lennox.[7] Their son Henry Stuart, Lord Darnley, who was born in the house in 1545 and educated there, married Mary, Queen of Scots, by whom he was the father of King James VI of Scotland and I of England.[10] A portrait of Henry and his brother was probably intended to represent the interior of Temple Newsam despite being based on a print of an ideal interior.[11] Following the marriage in 1565, Temple Newsam was seized by Queen Elizabeth I and was managed by an agent.[12]

 

In 1609 King James I, successor to Elizabeth, granted the estate to his Franco-Scottish second cousin Ludovic Stewart, 2nd Duke of Lennox (1574–1624), who was a favourite of the King and given many titles and estates, including farmland and coalmines in the local area.[13] Despite his opportunities, Ludovic was in constant debt and he mortgaged the estate in 1614 for the sum of £9,000 (around £860,000 in today's money).[14] In 1622 Lennox began the sale of the estate to Sir Arthur Ingram (c. 1565 – 1642), a Yorkshire-born London merchant, civil servant, investor in colonial ventures and arms dealer, for £12,000, which he paid in two instalments, the last in July 1624, after Lennox's death.[14] During the next 20 years the mansion was rebuilt, incorporating some of the previous house in the west wing.[8] The north and south wings were rebuilt and the east wing was demolished after a bad fire in 1635.[15] Arthur's son, also called Arthur, inherited the estate with its debts and continued the building and renovation work.[16] Six months after Charles I was beheaded in 1649, Arthur Ingram the younger was declared delinquent and he compounded his estates and retired to Temple Newsam.[17]

 

1650 to 1900

After the death of Arthur the younger's eldest son, Thomas, in 1660, Temple Newsam was inherited by Arthur's second son, Henry Ingram, 1st Viscount of Irvine (created a peer of Scotland as Baron Ingram and Viscount of Irvine in 1661 - although the family used the English form "Irwin").[18] In 1661, Henry married Lady Essex Montagu, daughter of Edward Montagu, 2nd Earl of Manchester, a favourite of Charles II.[18] The estate then passed through Henry's two sons and five grandsons, the last being Henry Ingram, 7th Viscount of Irvine.[18] The 4th Viscount brought back paintings from his Grand Tour of 1704-7.[19] Extant receipts from 1692 show women as well as men were employed to work the estate in haymaking.[20] In 1712, William Etty designed a new approach to the house, with a bridge and ponds.[21][22] In 1714, Temple Newsam was inherited by Rich Ingram, the 5th Viscount, and his wife Ann who spent a vast fortune furnishing the house and creating the East Avenue.[19] Between 1738 and 1746, Henry Ingram, 7th Viscount of Irvine remodelled the west and north wings of the house, creating new bedrooms and dressing rooms and the picture gallery.[23] A painting in Leeds City Art Gallery by Philippe Mercier of c. 1745 shows Henry and his wife standing in front of Temple Newsam House.[24]

 

A coloured engraving made in 1699 by J Kip after a drawing by Leonard Knyff showing an aerial view of the house and estate at Temple Newsam

1699 Engraving by J Kip after a drawing by Leonard Knyff

In the 1760s, Charles Ingram, 9th Viscount of Irvine, employed Capability Brown to re-landscape the park on the insistence of his wife, Frances Shepheard, daughter of Samuel Shepheard.[25] Reflecting her interest in pastoral landscape design, Frances is depicted as a shepherdess in a portrait by Benjamin Wilson at Temple Newsam.[25] Both Frances and Charles were actively involved in the design and implementation.[26] Some aspects of Brown's plan depicted in paintings by James Chapman and Michael Angelo Rooker were never completed such as a large lake near the house.[26] Extant financial records show that in 1759 women as well as men were employed as garden labourers.[20] After Charles died in 1778, Frances rebuilt the south wing in 1796; she lived at Temple Newsam until her death in 1807.[27] Charles and Frances's eldest daughter Isabella Ingram, (Marchioness of Hertford) (d.1834) who inherited Temple Newsam, was the mistress of the Prince of Wales (later King George IV) from 1806 to 1819. In 1806, George visited Temple Newsam and presented Isabella with Chinese wallpaper, which she hung in the small Drawing Room next to the Great Hall in around 1820, embellished with cut out birds from Audubon's The Birds of America (now worth £7.5 million).[28] Lady Hertford inherited the house in 1807; after her husband died in 1822 she spent the season in London, and the rest of the time at Temple Newsam where she involved herself in charitable works including distributing food and clothing to the local people.[29] She allowed the servants to hold an annual supper and ball at Temple Newsam.[29] Reports of poachers were made during 1826 and 1827.[30] During the last years of Isabella's life, the canal, railway and roads encroached on the estate as well as coal mining; and she dealt with the companies setting these up.[29] In 1820 the novelist Sir Walter Scott published Ivanhoe featuring a Templar preceptory named Temple Stowe, believed to have been modelled on Temple Newsam; the name is preserved in local road names such as Templestowe Crescent.[31] At her death in 1834, Isabella left Temple Newsam to her widowed sister, Frances Ingram Shepheard, wife of Lord William Gordon, who died in 1841.[32]

  

Temple Newsam House from Morris's Country Seats (1880)

In 1841 the estate was inherited by Hugo Charles Meynell Ingram (d. 1869), son of Elizabeth Ingram, sister of Frances Ingram (Lady Gordon), who made no alterations to the estate.[33] In 1868, the Prince of Wales stayed at Temple Newsam during his visit to Leeds to open the Fine Art Exhibition in the New Infirmary; temporary triumphal arches were erected on the estate.[34] Following Hugo Charles's death, his son Hugo Meynell-Ingram (d.1871) inherited Temple Newsam; two years later, at his death, his wife Emily Meynell Ingram (d.1904) inherited the estate.[33] Emily spent a large part of her widowhood at Temple Newsam; she developed it considerably by replacing the sash windows and remodelling the dining room, great staircase and Lord Darnley's room.[33] Emily bequeathed Temple Newsam to her nephew Edward Wood, 1st Earl of Halifax.[8]

 

20th century

In 1909, 610 acres (2.5 km2) of the estate at Knostrop were compulsorily purchased by Leeds Corporation to build a sewage plant.[35] During the First World War (1914–17) the south wing of the house was turned into a hospital by Edward Wood and his wife Dorothy. Edward Wood fought in France as part of the Yorkshire Hussars, whilst Dorothy oversaw the running of the hospital as part of the Mayors War Committee.[36] In 1922 Edward Wood sold the park and house to Leeds Corporation for a nominal sum, placing covenants over them to ensure their preservation for the future.[35]

 

On 19 October 1923, Temple Newsam was opened to the public along with a golf course.[37] In the Derby Daily Telegraph newspaper, Temple Newsam was compared to Hampton Court.[37] Despite many people visiting the house and using the golf course, the Corporation lost money during the first decade mostly due to poor farming practices.[37] In July 1932, the Great Yorkshire Show was held at Temple Newsam and was a great success.[37] Preparations for war were made as early as April 1939, and in August, small items were being packed up for storage.[37] In September 1939, Temple Newsam was closed to the public and items were moved there for storage from Leeds City Art Gallery.[37] It was decided that objects would be displayed, and the house was officially reopened in November 1939, when it was again likened to Hampton Court in the press.[37]

 

Architecture

Photograph of entrance porch of Temple Newsam House, Leeds, showing at top the word 'FATHER', below a mullioned window, below a raised portico with coat of arms above a doorway flanked by two Ionic columns on each side.

Entrance Porch 17th century

Photograph of the west front of Temple Newsam

Centre of Temple Newsam west front

Remains of the early 16th century house were retained in the new building, including the brickwork and bay windows in the centre of the west front.[38] The plan of the new house was a conservative E-shape.[38] The Long Gallery and entrance hall in the south wing followed Elizabethan and early Jacobean styles.[38] The entrance porch has Classical columns but they are of Flemish design, rather than following correct Italian design.[38] There are Tudor doorways and timberwork in the cellars, which are largely Tudor in date.[39] Tudor features have also been discovered beneath later layers of decoration, including Lord Darcy's crest scratched into the plaster in the Blue Damask room.[40] An inventory of 1565 indicates that the hall, great chamber (later the dining room), gallery and chapel (later the kitchen) were probably where they are now.[40] There is a Tudor doorway in the north wing which was probably the entrance to the original chapel.[41]

 

In the 17th century, the south and north wings were rebuilt and the east wing demolished, replaced by a low wall with an arched gateway, giving the house a fashionable 'half-H' appearance.[39] It is possible that the man who made plans for the alteration was Bernard Dinninghof of York.[41] There is also some resemblance to designs by Inigo Jones.[42] Round the top of the house, letters appear in a balustrade, declaring the piety and loyalty of Sir Arthur Ingram: 'ALL GLORY AND PRAISE BE GIVEN TO GOD THE FATHER THE SON AND HOLY GHOST ON HIGH PEACE ON EARTH GOOD WILL TOWARDS MEN HONOUR AND TRUE ALLEGIANCE TO OUR GRACIOUS KING LOVING AFFECTION AMONGST HIS SUBJECTS HEALTH AND PLENTY BE WITHIN THIS HOUSE.'[38] The chapel in the north wing retains some 17th century features, such as armorial stained glass, probably by Henry Gyles and a carved wooden pulpit by Thomas Ventris, made around 1636, with geometric patterns, pilasters and friezes.[38] The walls had panels of Old Testament figures, painted by John Carleton.[38] An inventory dated 1667 records that the House had 66 rooms and 11 outhouses.[39] An engraving by Kip and Knyff dated 1699 is an accurate representation of the house, showing the varying height of the house and some buildings that were later demolished, including the arched gateway flanked by two small lodges and a detached garden building dating from the mid 1670s.[23]

 

Photograph of stone and brick Sphinx gate piers at Temple Newsam, c. 1760 by Lancelot Brown based on designs published by Lord Burlington in 1738 and used at Chiswick

Sphinx gate piers, c. 1760

Photograph of the mid-18th century stable block at Temple Newsam showing the pediment

Stable Block at Temple Newsam, added by Henry, 7th Lord Irwin

In 1718, the steward of Temple Newsam suggested an underground service passage to link the north and south wings to the 5th Viscount, who agreed.[43] This tunnel linked the original kitchens in the south wing to the rest of the house.[44] In 1738, Henry, 7th Viscount Irwin wrote to his mother describing the neglected state of the house with windows coming away and cracked brickwork.[23] The house was almost entirely remodelled by Henry.[38] He wanted to follow Palladian design and used craftsmen from York to do so.[45] He widened the gallery, improved the ceiling and windows and created additional rooms.[23] The gallery, completed around 1746, has fine Rococo carvings with overmantle paintings of classical scenes by Antonio Joli.[19] There are also elaborate gilded Rococo ornamental candle holders.[19] The gallery ceiling has detailed stucco work including a medallion of King George I.[19] The ceilings in the new Saloon and Library, made from the old Long Gallery, were decorated by Thomas Perritt and Joseph Rose.[45] The doorcases are elaborately carved, probably by Richard Fisher.[45] Two chimney pieces in the Saloon were based on designs by William Kent.[45] The distinctive sphinx gate piers by Lancelot Brown constructed in 1768 were based on designs published by Lord Burlington in 1738 and used at Chiswick.[45][1] The main rooms in the west wing were redecorated and the windows were replaced with sliding sash windows.[45] A large pedimented stable block was built to the north of the house, in 1742 and probably designed by Daniel Garratt, also in the Palladian style.[45][46] A painting by Mercier of around 1749, also shows a planned block to the south and a low wall connecting the north and south wings which were never completed.[23][21]

 

In 1796, Frances Shepheard employed a Mr Johnson to alter and reface the south wing in a style which tried to copy that of Sir Arthur Ingram's original house.[45] Her approach was a departure from the designs for the wing commissioned by her dead husband from John Carr and Robert Adam, as well as the landscaping by Capability Brown who was also consulted about rebuilding the south wing.[45] The wing was made two storeys high throughout with a suite of reception rooms on the ground floor with state bedchambers above.[27] In the 1790s, the kitchens were moved to the north wing and the original kitchen became a brushing room where servants brushed down nobles returning from hunting parties.[44]

 

At the end of the 19th century, Emily Meynell Ingram replaced the sash windows with stone mullions and leaded lights and rebuilt the north porch adding the Meynell Ingram coat of arms over the doorway.[27] She redecorated several rooms and had the great oak staircase installed.[27] The dining room, great staircase and Lord Darnley's room were remodelled in Elizabethan style.[33] In 1877, Emily converted the library at the east end of the gallery into a chapel.[47]

 

Coalmining on the estate

Estate records show the existence of coal pits in and around the park in the seventeenth century and Bell Wood to the south of the house would have had bell pits for coal extraction. A colliery at Halton village was leased to a number of different individuals from 1660 through to at least the 1790s. The leases generally required the leaseholder to supply coals to Temple Newsam house.[48]

 

In 1815, William Fenton, one of the 'Coal Kings' of Yorkshire,[49] began the sinking of a mine shaft on the estate at Thorpe Stapleton. The colliery was named Waterloo to commemorate the famous battle of that year.[50] Waterloo Colliery was operated as a royalty concession with contracted 'rents' for coal extracted going to the Temple Newsam landowner. Fenton also had a village built for his workers on land between the River Aire and the Aire and Calder navigation. The village was initially called Newmarket but then became Irwin Square on ordnance survey maps[51] and Ingram Place on census lists, but it was commonly simply known as Waterloo. The Yorkshire, Lancashire and England cricketer Albert Ward was born here in 1865. The village had two rows of cottages and a school building. It was connected to the colliery by a wooden footbridge over the river.[52] Deep coal mining on the estate ended with the closure of the Temple Pit of Waterloo Main Colliery in 1968.

  

Temple Newsam House

Opencast mining on the estate began in May 1942. Seven sites were exploited to the south of the house almost entirely destroying Capability Brown's landscape. One site reached within 330 feet (100 m) of the South Terrace. It continued at the Gamblethorpe site as far as Dawson's Wood, in full view of the house, until 1987.[53] No trace of the opencast remains now as the parkland was re-landscaped.

 

In 2019 there was a temporary exhibition about coal mining at Temple Newsam which was called 'Blot on the Landscape'.[54]

 

House and estate today

The house and estate are owned by Leeds City Council and open to the public. The house has undergone substantial restoration to its exterior. There is an established programme of restoring rooms back to known previous configurations, reversing the numerous intrusive installations and modifications that took place during the building's "art museum" phase.

 

The wider estate is made up of woods (the second largest part of the Forest of Leeds).[55] There are sporting facilities for football, golf, running, cycling, horse-riding and orienteering. There is an innovative children's playground opened in 2011 which caters for both disabled and able-bodied children.[56] Pegasus Wood, to the south of the house, commemorates veterans of the Normandy Landing at Pegasus Bridge in 1944.[57]

 

Photograph of brick barn at the Home Farm, Temple Newsam

Great Barn, Home Farm, Temple Newsam

The Home Farm, open to the public, has a barn built in 1694 and is the largest working rare breeds farm in Europe, and only one of 16 nationally approved by the Rare Breeds Survival Trust. Breeds include Gloucester, Kerry, Irish Moiled, Red Poll, White Park, British White, Beef Shorthorn, Vaynol and Belted Galloway cattle; Kerry Hill; Whitefaced Woodland and Portland sheep, and Golden Guernsey goats.[58] The farm was targeted by arsonists twice in 2011 with damage caused to buildings, and some animals killed.[59]

 

There are extensive gardens, with a celebrated rhododendron walk and six national plant collections: Aster novi-belgii (Michaelmas daisies), Phlox paniculata, Delphinium elatum (Cultivars), Solenostemon scutellarioides (sys. Coleus blumei), Primula auricula and Chrysanthemum (Charm and Cascade cultivars).[60] Within the Walled Garden there are 800 yards of herbaceous borders.[61]

 

Collections

There are substantial holdings of fine and decorative art which are designated by the Department of Culture, Media and Sport (DCMS) as being of national significance.[62]

 

Of most significant historical and cultural interest is the Chippendale Society collection of Chippendale works that are on permanent loan.[63] In his book "Britain's Best Museums and Galleries", Mark Fisher (a former DCMS minister) gave the museum an excellent review. When interviewed on Front Row, Radio 4, November 2004 Fisher placed Temple Newsam House in the top three non-national museums in the country, along with Birmingham's Barber Institute and the Dulwich Picture Gallery.[64]

Highclere Castle /ˈhaɪklɪər/ is a country house in the Jacobethan style, with a park designed by Capability Brown. The 5,000-acre (2,000 ha) estate is in Hampshire, England, United Kingdom, about 5 miles (8.0 km) south of Newbury, Berkshire. It is the county seat of the Earl of Carnarvon, a branch of the Anglo-Welsh Herbert family.[2]

 

Highclere Castle was a filming location for the British comedy series Jeeves and Wooster, which starred Hugh Laurie and Stephen Fry, and award-winning period drama Downton Abbey.[3] The castle and gardens are open to the public during July and August and at times during the rest of the year.

In 2021, The Air Force Research Laboratory and ABL Space Systems partnered with operators from the 2nd Space Launch Squadron and 412th Test Wing at Edwards Air Force Base, California to demonstrate how launch systems can be operated rapidly by small teams from nontraditional sites. AFWERX, part of AFRL, brought together players from across the national security space enterprise for this rapid rocket launch concept of operations demonstration. The complete test campaign, from training to full operations with cryogenic rocket propellants, validated the strong training base and capability of U.S. Air Force and U.S. Space Force active-duty personnel in conducting liquid rocket CONOPS and fielding of novel deployable systems.

Mini Camera with 4K Video Record Capability

Xiaomi Yi 4K Action Camera 2 is a miniature camera that created for those who need the best video recording quality. The camera is powered Ambarella Chip A9SE75 which is the latest version of the mini camera. Xiaomi Yi can record 4K video with format...

 

goproherocamcorder.com/xiaomi-yi-action-camera-ii-4k/

A visit to Charlecote Park for an afternoon visit to this National Trust property in Warwickshire. Near Stratford-upon-Avon. A deer park with a country house in the middle of it.

  

Charlecote Park (grid reference SP263564) is a grand 16th-century country house, surrounded by its own deer park, on the banks of the River Avon near Wellesbourne, about 4 miles (6 km) east of Stratford-upon-Avon and 5.5 miles (9 km) south of Warwick, Warwickshire, England. It has been administered by the National Trust since 1946 and is open to the public. It is a Grade I listed building.

 

The Lucy family owned the land since 1247. Charlecote Park was built in 1558 by Sir Thomas Lucy, and Queen Elizabeth I stayed in the room that is now the drawing room. Although the general outline of the Elizabethan house remains, nowadays it is in fact mostly Victorian. Successive generations of the Lucy family had modified Charlecote Park over the centuries, but in 1823, George Hammond Lucy (High Sheriff of Warwickshire in 1831) inherited the house and set about recreating the house in its original style.

 

Charlecote Park covers 185 acres (75 ha), backing on to the River Avon. William Shakespeare has been alleged to have poached rabbits and deer in the park as a young man and been brought before magistrates as a result.

 

From 1605 to 1640 the house was organised by Sir Thomas Lucy. He had twelve children with Lady Alice Lucy who ran the house after he died. She was known for her piety and distributing alms to the poor each Christmas. Her eldest three sons inherited the house in turn and it then fell to her grandchild Sir Davenport Lucy.

 

In the Tudor great hall, the 1680 painting Charlecote Park by Sir Godfrey Kneller, is said to be one of the earliest depictions of a black presence in the West Midlands (excluding Roman legionnaires). The painting, of Captain Thomas Lucy, shows a black boy in the background dressed in a blue livery coat and red stockings and wearing a gleaming, metal collar around his neck. The National Trust's Charlecote brochure describes the boy as a "black page boy". In 1735 a black child called Philip Lucy was baptised at Charlecote.

 

The lands immediately adjoining the house were further landscaped by Capability Brown in about 1760. This resulted in Charlecote becoming a hostelry destination for notable tourists to Stratford from the late 17th to mid-18th century, including Washington Irving (1818), Sir Walter Scott (1828) and Nathaniel Hawthorn (c 1850).

 

Charlecote was inherited in 1823 by George Hammond Lucy (d 1845), who married Mary Elizabeth Williams of Bodelwyddan Castle, from who's extensive diaries the current "behind the scenes of Victorian Charlecote" are based upon. GH Lucy's second son Henry inherited the estate from his elder brother in 1847. After the deaths of both Mary Elizabeth and Henry in 1890, the house was rented out by Henry's eldest daughter and heiress, Ada Christina (d 1943). She had married Sir Henry Ramsay-Fairfax, (d 1944), a line of the Fairfax Baronets, who on marriage assumed the name Fairfax-Lucy.

 

From this point onwards, the family began selling off parts of the outlying estate to fund their extensive lifestyle, and post-World War II in 1946, Sir Montgomerie Fairfax-Lucy, who had inherited the residual estate from his mother Ada, presented Charlecote to the National Trust in-lieu of death duties. Sir Montgomerie was succeeded in 1965 by his brother, Sir Brian, whose wife, Lady Alice, researched the history of Charlecote, and assisted the National Trust with the restoration of the house.

  

Charlecote Park House is a Grade I Listed Building

 

Charlecote Park

  

Listing Text

  

CHARLECOTE

 

SP2556 CHARLECOTE PARK

1901-1/10/19 Charlecote Park

06/02/52

(Formerly Listed as:

Charlecote Park House)

 

GV I

 

Formerly known as: Charlecote Hall.

Country house. Begun 1558; extended C19. Partly restored and

extended, including east range, 1829-34 by CS Smith;

north-east wing rebuilt and south wing extended 1847-67 by

John Gibson. For George and Mary Elizabeth Lucy.

MATERIALS: brick, that remaining from original building has

diapering in vitrified headers, but much has been replaced in

C19; ashlar dressings; tile roof with brick stacks with

octagonal ashlar shafts and caps.

PLAN: U-plan facing east, with later west range and south

wing.

EXTERIOR: east entrance front of 2 storeys with attic;

3-window range with long gabled projecting wings. Ashlar

plinth, continuous drip courses and coped gables with finials,

sections of strapwork balustrading between gables; quoins.

2-storey ashlar porch has round-headed entrance with flanking

pairs of Ionic pilasters and entablature, round-headed

entrance has panelled jambs, impost course and arch with lion

mask to key and 2 voussoirs, strapwork spandrels and stained

glass to fanlight over paired 4-panel doors; first floor has

Arms of Elizabeth I below projecting ovolo-moulded

cross-mullion window, with flanking pairs of Composite

detached columns; top balustrade with symmetrical balusters

supports Catherine wheel and heraldic beasts holding spears;

original diapered brick to returns.

3-light mullioned and transomed window to each floor to left,

that to first floor with strapwork apron. Large canted bay

window to right of 1:3:1 transomed lights with pierced

rosettes to parapet modelled on that to gatehouse (qv) and

flanked by cross-mullioned windows, all with moulded reveals

and small-paned sashes; C19 gables have 3-light

ovolo-mullioned windows with leaded glazing.

Wings similar, with 2 gables to 5-window inner returns,

ovolo-moulded cross-mullioned windows. Wing to south has much

diaper brickwork and stair window with strapwork apron.

East gable ends have 2-storey canted bay windows dated 1852 to

strapwork panels with Lucy Arms between 1:3:1-light transomed

windows; 3-light attic windows, that to north has patch of

reconstructed diaper brickwork to left.

Octagonal stair turrets to outer angles with 2-light windows,

top entablatures and ogival caps with wind vanes, that to

south mostly original, that to north with round-headed

entrance with enriched key block over studded plank door.

North side has turret to each end, that to west is wholly C19;

3 gables with external stacks with clustered shafts between;

cross-mullioned windows and 3-light transomed stair window on

strapwork apron; 2-light single-chamfered mullioned windows to

turrets.

Single-storey east range of blue brick has 2 bay windows with

octagonal pinnacles with pepper-pot finials and arcaded

balustrades over 1:4:1-light transomed windows; central panel

with Lucy Arms in strapwork setting has date 1833; coped

parapet with 3 gables with lights; returns similar with

3-light transomed windows.

Range behind has 3 renewed central gables and 2 lateral stacks

each with 6 shafts; gable to each end, that to south over

Tudor-arched verandah with arcaded balustrade to central arch

and above, entrance behind arch to left with half-glazed door,

blocked arch to right; first floor with cross-mullioned window

and blocked window, turret to right is wholly C19. South

return has cross-mullioned window to each floor and external

stack with clustered shafts.

South-west wing of 2 storeys; west side is a 7-window range;

recessed block to north end has window to each floor, the next

4 windows between octagonal pinnacles; gabled end breaks

forward under gable with turret to angle; rosette balustrade;

stacks have diagonal brick shafts, gable has lozenge with Lucy

Arms impaling Williams Arms (for Mary Elizabeth Lucy).

Cross-mullioned windows, but 2 southern ground-floor windows

are 3-light and transomed.

South end 4-window range between turrets has cross-mullioned

windows, but each end of first floor has bracketed oriel with

strapwork apron with Lucy/Williams Arms in lozenge and dated

1866, rosette balustrade with to each end a gable with 2-light

single-chamfered mullioned window with label, and 3 similar

windows to each turret, one to each floor.

East side has 3-window range with recessed range to right.

South end has Tudor-arched entrance and 3-light transomed

window, cross-mullioned window and 3-light transomed window to

first floor and gable with lozenge to south end; gable to

full-height kitchen to north has octagonal pinnacles flanking

4-light transomed window and gable above with square panel

with Lucy/Williams Arms to shield; recessed part to north has

loggia with entrance and flanking windows, to left a

single-storey re-entrant block with cross-mullioned windows;

first floor has 5 small sashed windows. South side of

south-east wing has varied brickwork with mullioned and

transomed windows, 2 external stacks and 2 gables with 3-light

windows.

INTERIOR: great hall remodelled by Willement with wood-grained

plaster ceiling with 4-centred ribs and Tudor rose bosses;

armorial glass attributed to Eiffler, restored and extended by

Willement; wainscoting and panelled doors; ashlar fireplace

with paired reeded pilasters and strapwork to entablature, and

fire-dogs; white and pink marble floor, Italian, 1845.

Dining room and library in west wing have rich wood panelling

by JM Willcox of Warwick and strapwork cornices, and strapwork

ceilings with pendants; wallpaper by Willement; dining room

has richly carved buffet, 1858, by Willcox and simple coloured

marble fireplace, the latter with bookshelves and fireplace

with paired pilasters and motto to frieze of fireplace, paired

columns and strapwork frieze to overmantel with armorial

bearings; painted arabesques to shutter backs.

Main staircase, c1700, but probably extensively reconstructed

in C19, open-well with cut string, 3 twisted balusters to a

tread, carved tread ends and ramped handrail;

bolection-moulded panelling in 2 heights, the upper panels and

panelled ceiling probably C19.

Morning room to south of hall has Willement decoration: white

marble Tudor-arched fireplace with cusped panels; plaster

ceiling with bands.

Ebony bedroom, originally billiard room, and drawing room to

north-east wing have 1856 scheme with cornices and

Jacobean-style plaster ceilings; white marble C18-style

fireplaces, that to Ebony Bedroom with Italian inserts with

Lucy crest. Drawing room has gilded and painted cornice and

ceiling, and large pier glasses.

Rooms to first floor originally guest bedrooms: doors with

egg-and-dart and eared architraves; C18-style fireplaces, that

to end room, originally Ebony Bedroom, has wood Rococo-style

fireplace with Chinoiserie panel; 1950s stair to attic.

South-east wing has c1700 stair, probably altered in C19, with

symmetrical balusters with acanthus, closed string; first

floor has wall and ceiling paintings: land and sea battle

scenes painted on canvas, male and female grisaille busts.

First floor has to west the Green Room, with Willement

wallpaper and simple Tudor-arched fireplace with

wallpaper-covered chimney board; adjacent room has marble

fireplace.

Death Room and its dressing room to east end have wallpaper of

gold motifs on white, painted 6-panel doors and architraves,

papier-mache ceilings; bedroom has fireplace with marble

architrave. Adjacent room has bolection-moulded panelling with

c1700 Dutch embossed leather. Stair to attic has c1700

balusters with club-form on acorn. Attics over great hall and

north-east and south-east wings have lime-ash floors and

servants' rooms, each with small annex and corner fireplace;

some bells.

South wing has kitchen with high ceiling and 2

segmental-arched recesses for C19 ranges; Tudor-arched recess

with latticed chamber for smoked meats over door.

Servants' hall has dark marble bolection-moulded fireplace and

cornice; scullery has bread oven, small range, pump and former

south window retaining glass.

First floor has to south end a pair of rooms added for Mary

Elizabeth Lucy in her widowhood; bedroom to east with deep

coved cornice and Adam-style fireplace, sitting room to west

similar, with gold on white wallpaper, white marble fireplace

with painted glass armorial panels and 1830s-40s carpet; door

to spiral timber turret staircase.

Nursery has fireplace with faceted panels and C19 Delft tiles;

probably 1920s wallpaper.

Other rooms with similar fireplaces and coloured glazed tiles.

While dating back to the C16, the house is one of the best

examples of the early C19 Elizabethan Revival style. Property

of National Trust.

(The Buildings of England: Pevsner, N & Wedgwood, A:

Warwickshire: Harmondsworth: 1966-: 227-9; The National Trust

Guide to Charlecote Park: 1991-; Wainwright C: The Romantic

Interior).

 

Listing NGR: SP2590656425

 

This text is from the original listing, and may not necessarily reflect the current setting of the building.

  

A look around the inside of the house / hall.

  

spiral staircase - goes upstairs.

SAC 01 Strategic Airlift Capability Boeing C-17A Globemaster III - cn F-207 landing @TRD/ENVA 27.02.16

Croome Court is a mid 18th century Neo-Palladian mansion surrounded by an extensive landscaped parkland at Croome D'Abitot, near Pershore in south Worcestershire. The mansion and park were designed by Lancelot "Capability" Brown for George Coventry, 6th Earl of Coventry, and was Brown's first landscape design and first major architectural project. Some of the internal rooms of the mansion were designed by Robert Adam.

 

The mansion house is owned by Croome Heritage Trust, and is leased to the National Trust who operate it, along with the surrounding parkland, as a tourist attraction. The National Trust own the surrounding parkland, which is also open to the public.

Himley Hall

Himley Hall is an early 17th-century country house situated on the B4176, in Staffordshire, England. near to the town of Dudley and City of Wolverhampton. It is a Grade II* listed building. Its park and garden, which were extended in the 1770s by Lancelot "Capability" Brown, are Grade II listed with the National Register of Historic Parks and Gardens

 

The Hall traces its history back to a medieval moated manor house. For over four centuries it served as a secondary home to the Lords of Dudley and their knights. Its occupants included Dud Dudley, whose 17th-century experiments in smelting iron ore with coal were carried out nearby. In 1645, King Charles I encamped in the grounds on his way to defeat at the Battle of Naseby during the English Civil War.

 

In 1628, the Ward family inherited the title Lords of Dudley through through marriage.Humble Ward was the son of the jeweller and goldsmith to the court of King Charles I. Following damage to Dudley Castle during the Civil War, Himley Hall became the principal family home.

 

The current hall dates from the 18th century (1700's) and was designed by architect William Atkinson and involved the demolition of the original manor house to make way for the great Palladian mansion, and the relocation of the village of Himley in 1764. In 1774 John Ward Jnr. inherited from his father and commissioned Capability Brown to redesign the 180 acres (730,000 m2) of parkland, involving he addition of a lake, fed by a series of waterfalls from a higher chain of smaller pools

 

The family relocated from Himley Hall to Witley Court at Great Witley in Worcestershire. (EH) because of Himleys proximity to the Black Country

 

In 1934, the Duke and Duchess of Kent honeymooned at Himley and in 1936 .the Prince of Wales (later Edward VIII) spent his last weekend there before his abdication.

 

After WW2 the Estate was sold to the newly formed National Coal Board as a headquarters for its staff, during conversion a fire broke out gutting the South wing and this part of the house was rebuilt to a fresh design. With the decline of the West Midland coal fields, the house was again put up for sale, being purchased in 1966 by a joint purchase of Dudle and Wolverhampton Councils. The park was opened as a public leisure area. In 1988, Dudley bought Wolverhampton's share, gaining outright ownership

 

Many thanks for a fantabulous 37,116,500 views

 

Shot at the Black Country Car Show, Himley Hall 06.09.2015 Ref 106-864

The Citroën 2CV (French: "deux chevaux" i.e. "deux chevaux-vapeur" (lit. "two steam horses", "two tax horsepower") is an air-cooled front-engine, front-wheel-drive economy car introduced at the 1948 Paris Mondial de l'Automobile and manufactured by Citroën for model years 1948–1990.

 

Conceived by Citroën Vice-President Pierre Boulanger to help motorise the large number of farmers still using horses and carts in 1930s France, the 2CV has a combination of innovative engineering and utilitarian, straightforward metal bodywork — initially corrugated for added strength without added weight. The 2CV featured low cost; simplicity of overall maintenance; an easily serviced air-cooled engine (originally offering 9 hp); low fuel consumption; and an extremely long-travel suspension offering a soft ride and light off-road capability. Often called "an umbrella on wheels", the fixed-profile convertible bodywork featured a full-width, canvas, roll-back sunroof, which accommodated oversized loads and until 1955 reached almost to the car's rear bumper.

 

Manufactured in France between 1948 and 1989 (and in Portugal from 1989 to 1990), over 3.8 million 2CVs were produced, along with over 1.2 million small 2CV-based delivery vans known as Fourgonnettes. Citroën ultimately offered several mechanically identical variants including the Ami (over 1.8 million); the Dyane (over 1.4 million); the Acadiane (over 250,000); and the Mehari (over 140,000). In total, Citroën manufactured almost 7 million 2CV variants.

 

A 1953 technical review in Autocar described "the extraordinary ingenuity of this design, which is undoubtedly the most original since the Model T Ford". In 2011, The Globe and Mail called it a "car like no other". The motoring writer L. J. K. Setright described the 2CV as "the most intelligent application of minimalism ever to succeed as a car", and a car of "remorseless rationality".]

 

HISTORY

DEVELOPMENT

In 1934, family-owned Michelin, being the largest creditor, took over the bankrupt Citroën company. The new management ordered a new market survey, conducted by Jacques Duclos. France at that time had a large rural population which could not yet afford cars; Citroën used the survey results to prepare a design brief for a low-priced, rugged "umbrella on four wheels" that would enable four people to transport 50 kg of farm goods to market at 50 km/h, if necessary across muddy, unpaved roads. In fuel economy, the car would use no more than 3 l/100 km (95 mpg-imp). One design requirement was that the customer be able to drive eggs across a freshly ploughed field without breaking them.

 

In 1936, Pierre-Jules Boulanger, vice-president of Citroën and chief of engineering and design, sent the brief to his design team at the engineering department. The TPV (Toute Petite Voiture — "Very Small Car") was to be developed in secrecy at Michelin facilities at Clermont-Ferrand and at Citroën in Paris, by the design team who had created the Traction Avant.

 

Boulanger was closely involved with all decisions relating to the TPV, and was determined to reduce the weight to targets that his engineers thought impossible. He set up a department to weigh every component and then redesign it, to make it lighter while still doing its job.

 

Boulanger placed engineer André Lefèbvre in charge of the TPV project. Lefèbvre had designed and raced Grand Prix cars; his speciality was chassis design and he was particularly interested in maintaining contact between tyres and the road surface.

 

The first prototypes were bare chassis with rudimentary controls, seating and roof; test drivers wore leather flying suits, of the type used in contemporary open biplanes. By the end of 1937 20 TPV experimental prototypes had been built and tested. The prototypes had only one headlight, all that was required by French law at the time. At the end of 1937 Pierre Michelin was killed in a car crash; Boulanger became president of Citroën.

 

By 1939 the TPV was deemed ready, after 47 technically different and incrementally improved experimental prototypes had been built and tested. These prototypes used aluminium and magnesium parts and had water-cooled flat twin engines with front-wheel drive. The seats were hammocks hung from the roof by wires. The suspension system, designed by Alphonse Forceau, used front leading arms and rear trailing arms, connected to eight torsion bars beneath the rear seat: a bar for the front axle, one for the rear axle, an intermediate bar for each side, and an overload bar for each side. The front axle was connected to its torsion bars by cable. The overload bar came into play when the car had three people on board, two in the front and one in the rear, to support the extra load of a fourth passenger and fifty kilograms of luggage.

 

In mid-1939 a pilot run of 250 cars was produced and on 28 August 1939 the car received approval for the French market. Brochures were printed and preparations made to present the car, renamed the Citroën 2CV, at the forthcoming Paris Motor Show in October 1939.

 

WORLD WAR II

On 3 September 1939, France declared war on Germany following that country's invasion of Poland. An atmosphere of impending disaster led to the cancellation of the 1939 motor show less than a month before it was scheduled to open. The launch of the 2CV was abandoned.

 

During the German occupation of France in World War II Boulanger personally refused to collaborate with German authorities to the point where the Gestapo listed him as an "enemy of the Reich", under constant threat of arrest and deportation to Germany.

 

Michelin (Citroën's main shareholder) and Citroën managers decided to hide the TPV project from the Nazis, fearing some military application as in the case of the future Volkswagen Beetle, manufactured during the war as the military Kübelwagen. Several TPVs were buried at secret locations; one was disguised as a pickup, the others were destroyed, and Boulanger spent the next six years thinking about further improvements. Until 1994, when three TPVs were discovered in a barn, it was believed that only two prototypes had survived. As of 2003 there were five known TPVs.

 

By 1941, after an increase in aluminium prices of forty percent, an internal report at Citroën showed that producing the TPV post-war would not be economically viable, given the projected further increasing cost of aluminium. Boulanger decided to redesign the car to use mostly steel with flat panels, instead of aluminium. The Nazis had attempted to loot Citroën's press tools; this was frustrated after Boulanger got the French Resistance to re-label the rail cars containing them in the Paris marshalling yard. They ended up all over Europe, and Citroën was by no means sure they would all be returned after the war. In early 1944 Boulanger made the decision to abandon the water-cooled two-cylinder engine developed for the car and installed in the 1939 versions. Walter Becchia was now briefed to design an air-cooled unit, still of two cylinders, and still of 375 cc. Becchia was also supposed to design a three-speed gearbox, but managed to design a four-speed for the same space at little extra cost. At this time small French cars like the Renault Juvaquatre and Peugeot 202 usually featured three-speed transmissions, as did Citroën's own mid-size Traction Avant - but the 1936 Italian Fiat 500 "Topolino" "people's car" did have a four-speed gearbox. Becchia persuaded Boulanger that the fourth gear was an overdrive. The increased number of gear ratios also helped to pull the extra weight of changing from light alloys to steel for the body and chassis. Other changes included seats with tubular steel frames with rubber band springing and a restyling of the body by the Italian Flaminio Bertoni. Also, in 1944 the first studies of the Citroën hydro-pneumatic suspension were conducted using the TPV/2CV.

 

The development and production of what was to become the 2CV was also delayed by the incoming 1944 Socialist French government, after the liberation by the Allies from the Germans. The five-year "Plan Pons" to rationalise car production and husband scarce resources, named after economist and former French motor industry executive Paul-Marie Pons, only allowed Citroën the upper middle range of the car market, with the Traction Avant. The French government allocated the economy car market, US Marshall Plan aid, US production equipment and supplies of steel, to newly nationalised Renault to produce their Renault 4CV. The "Plan Pons" came to an end in 1949. Postwar French roads were very different from pre-war ones. Horse-drawn vehicles had re-appeared in large numbers. The few internal combustion-engined vehicles present often ran on town gas stored in gasbags on roofs or wood/charcoal gas from gasifiers on trailers. Only one hundred thousand of the two million pre-war cars were still on the road. The time was known as "Les années grises" or "the grey years" in France.

 

PRODUCTION

Citroën unveiled the car at the Paris Salon on 7 October 1948. The car on display was nearly identical to the 2CV type A that would be sold the next year, but it lacked an electric starter, the addition of which was decided the day before the opening of the Salon, replacing the pull cord starter. The canvas roof could be rolled completely open. The Type A had one stop light, and was only available in grey. The fuel level was checked with a dip stick/measuring rod, and the speedometer was attached to the windscreen pillar. The only other instrument was an ammeter.In 1949 the first delivered 2CV type A was 375 cc, 9 hp, with a 65 km/h top speed, only one tail light and windscreen wiper with speed shaft drive; the wiper speed was dependent on the driving speed. The car was heavily criticised by the motoring press and became the butt of French comedians for a short while. One American motoring journalist quipped, "Does it come with a can opener?" The British Autocar correspondent wrote that the 2CV "is the work of a designer who has kissed the lash of austerity with almost masochistic fervour".

 

Despite critics, Citroën was flooded with customer orders at the show. The car had a great impact on the lives of the low-income segment of the population in France. The 2CV was a commercial success: within months of it going on sale, there was a three-year waiting list, which soon increased to five years. At the time a second-hand 2CV was more expensive than a new one because the buyer did not have to wait. Production was increased from 876 units in 1949 to 6,196 units in 1950.

 

Grudging respect began to emanate from the international press: towards the end of 1951 the opinion appeared in Germany's recently launched Auto, Motor und Sport magazine that, despite its "ugliness and primitiveness" ("Häßlichkeit und Primitivität"), the 2CV was a "highly interesting" ("hochinteressantes") car.

 

In 1950, Pierre-Jules Boulanger was killed in a car crash on the main road from Clermont-Ferrand (the home of Michelin) to Paris.

 

In 1951 the 2CV received an ignition lock and a lockable driver's door. Production reached 100 cars a week. By the end of 1951 production totalled 16,288. Citroën introduced the 2CV Fourgonnette van. The "Weekend" version of the van had collapsible, removable rear seating and rear side windows, enabling a tradesman to use it as a family vehicle on the weekend as well as for business in the week.

 

By 1952, production had reached more than 21,000 with export markets earning foreign currency taking precedence. Boulanger's policy, which continued after his death, was: "Priority is given to those who have to travel by car because of their work, and for whom ordinary cars are too expensive to buy." Cars were sold preferentially to country vets, doctors, midwives, priests and small farmers. In 1954 the speedometer got a light for night driving. In 1955 the 2CV side repeaters were added above and behind the rear doors. It was now also available with 425 cc (AZ), 12.5 hp and a top speed of 80 km/h. In 1957 a heating and ventilation system was installed. The colour of the steering wheel changed from black to grey. The mirrors and the rear window were enlarged. The bonnet was decorated with a longitudinal strip of aluminium (AZL). In September 1957, the model AZLP (P for porte de malle, "boot lid"), appeared with a boot lid panel; previously the soft top had to be opened at the bottom to get to the boot. In 1958 a Belgian Citroën plant produced a higher quality version of the car (AZL3). It had a third side window, not available in the normal version, and improved details.

 

In 1960 the production of the 375 cc engine ended. The corrugated metal bonnet was replaced by a 5-rib glossy cover.

 

The 2 CV 4 × 4 2CV Sahara appeared in December 1960. This had an additional engine-transmission unit in the rear, mounted the other way around and driving the rear wheels. For the second engine there was a separate push-button starter and choke. With a gear stick between the front seats, both transmissions were operated simultaneously. For the two engines, there were separate petrol tanks under the front seats. The filler neck sat in the front doors. Both engines (and hence axles) could be operated independently. The spare wheel was mounted on the bonnet. 693 were produced until 1968 and one more in 1971. Many were used by the Swiss Post as a delivery vehicle. Today they are highly collectable.

 

From the mid-1950s economy car competition had increased — internationally in the form of the 1957 Fiat 500 and 1955 Fiat 600, and 1959 Austin Mini. By 1952, Germany produced a price-competitive car - the Messerschmitt KR175, followed in 1955 by the Isetta - these were microcars, not complete four-door cars like the 2CV. On the French home market, from 1961, the small Simca 1000 using licensed Fiat technology, and the larger Renault 4 hatchback had become available. The R4 was the biggest threat to the 2CV, eventually outselling it.

 

1960s

In 1960 the corrugated Citroën H Van style "ripple bonnet" of convex swages was replaced (except for the Sahara), with one using six larger concave swages and looked similar until the end of production. The 2CV had suicide doors in front from 1948 to 1964, replaced with front hinged doors from 1965 to 1990.

 

In 1961 Citroën launched a new model based on the 2CV chassis, with a 4-door sedan body, and a reverse rake rear window: the Citroën Ami. In 1962 the engine power was increased to 14 hp and top speed to 85 km/h. A sun roof was installed. In 1963 the engine power was increased to 16 hp. An electric wiper motor replaced the drive on the speedo. The ammeter was replaced by a charging indicator light. The speedometer was moved from the window frame into the dash. Instead of a dip stick/measuring rod, a fuel gauge was introduced.

 

Director of publicity Claude Puech came up with humorous and inventive marketing campaigns. Robert Delpire of the Delpire Agency was responsible for the brochures. Ad copy came from Jacques Wolgensinger Director of PR at Citroën. Wolgensinger was responsible for the youth orientated "Raids", 2CV Cross, rallies, the use of "Tin-Tin", and the slogan "More than just a car — a way of life". A range of colours was introduced, starting with Glacier Blue in 1959, then yellow in 1960. In the 1960s 2CV production caught up with demand. In 1966 the 2CV got a third side window. From September 1966 a Belgian-produced variant was sold in Germany with the 602 cc engine and 21 hp Ami6, the 3 CV (AZAM6). This version was only sold until 1968 in some export markets.

 

In 1967 Citroën launched a new model based on the 2CV chassis, with an updated but still utilitarian body, with a hatchback (a hatchback kit was available from Citroën dealers for the 2CV, and aftermarket kits are available) that boosted practicality: the Citroën Dyane. The exterior is more modern and distinguished by the recessed lights in the fenders and bodywork. Between 1967 and 1983 about 1.4 million were built. This was in response to competition by the Renault 4. The Dyane was originally planned as an upmarket version of the 2CV and was supposed to supersede it, but ultimately the 2CV outlived the Dyane by seven years. Citroën also developed the Méhari off-roader.

 

From 1961, the car was offered, at extra cost, with the flat-2 engine size increased to 602 cc, although for many years the smaller 425 cc engine continued to be available in France and export markets where engine size determined car tax levels. This was replaced by an updated 435 cc engine in 1968.

 

1970s

In 1970 the car gained rear light units from the Citroën Ami 6, and also standardised a third side window in the rear pillar on 2CV6 (602 cc) models. From 1970, only two series were produced: the 2CV 4 (AZKB) with 435 cc and the 2CV 6 (Azka) with 602 cc displacement. All 2CVs from this date can run on unleaded fuel. 1970s cars featured rectangular headlights, except the Spécial model. In 1971 the front bench seat was replaced with two individual seats. In 1972 2CVs were fitted with standard three-point seat belts. In 1973 new seat covers, a padded single-spoke steering wheel and ashtrays were introduced.

 

The highest annual production was in 1974. Sales of the 2CV were reinvigorated by the 1974 oil crisis. The 2CV after this time became as much a youth lifestyle statement as a basic functional form of transport. This renewed popularity was encouraged by the Citroën "Raid" intercontinental endurance rallies of the 1970s where customers could participate by buying a new 2CV, fitted with a "P.O." kit (Pays d'Outre-mer — overseas countries), to cope with thousands of miles of very poor or off-road routes.

 

1970: Paris–Kabul: 1,300 young people, 500 2CVs, 16,500 km to Afghanistan and back.

1971: Paris–Persepolis: 500 2CVs 13,500 km to Iran and back.

1973: Raid Afrique, 60 2CVs 8000 km from Abidjan to Tunis, the Atlantic capital of Ivory Coast through the Sahara, (the Ténéré desert section was unmapped and had previously been barred to cars), to the Mediterranean capital of Tunisia.

 

The Paris to Persepolis rally was the most famous. The Citroën "2CV Cross" circuit/off-road races were very popular in Europe.

 

Because of new emission standards, in 1975 power was reduced from 28 hp to 25 hp. The round headlights were replaced by square ones, adjustable in height. A new plastic grille was fitted.

 

In July 1975, a base model called the 2CV Spécial was introduced with the 435 cc engine. Between 1975 and 1990 under the name of AZKB "2CV Spécial" a drastically reduced trim basic version was sold, at first only in yellow. The small, square speedometer (which dates back to the Traction Avant), and the narrow rear bumper was installed. Citroën removed the third side window, the ashtray, and virtually all trim from the car. It also had the earlier round headlights. From the 1978 Paris Motor Show the Spécial regained third side windows, and was available in red and white; beginning in mid-1979 the 602 cc engine was installed. In June 1981 the Spécial E arrived; this model had a standard centrifugal clutch and particularly low urban fuel consumption.

 

1980s

In 1981 a yellow 2CV6 was driven by James Bond (Roger Moore) in the 1981 film For Your Eyes Only. The car in the film was fitted with the flat-4 engine from a Citroën GS which more than doubled the power. In one scene the ultra light 2CV tips over and is quickly righted by hand. Citroën launched a special edition 2CV "007" to coincide with the film; it was fitted with the standard engine and painted yellow with "007" on the front doors and fake bullet hole stickers.

 

In 1982 all 2CV models got inboard front disc brakes.

 

In 1988, production ended in France after 40 years but continued at the Mangualde plant in Portugal. This lasted until 1990, when production of the 2CV ended. The 2CV outlasted the Visa, another of the cars which might have been expected to replace it, and was produced for four years after the start of Citroën AX production.

 

Portuguese-built cars, especially those from when production was winding down, have a reputation in the UK for being much less well made and more prone to corrosion than those made in France. According to Citroën, the Portuguese plant was more up-to-date than the one in Levallois near Paris, and Portuguese 2CV manufacturing was to higher quality standards.

 

As of October 2016, 3,025 remained in service in the UK.

 

SPECIAL EDITION SALOON MODELS

The special edition models began with the 1976 SPOT model and continued in the with the 1980 Charleston, inspired by Art-Deco two colour styles 1920s Citroën model colour schemes. In 1981 the 007 arrived. In 1983 the 2CV Beachcomber arrived in the United Kingdom; it was known as "France 3" in France or "Transat" in other continental European markets — Citroën sponsored the French America's Cup yacht entry of that year. In 1985 the two-coloured Dolly appeared, using the "Spécial" model's basic trim rather than the slightly better-appointed "Club" as was the case with the other special editions. In 1986 there was the Cocorico. This means "cock-a-doodle-doo" and tied in with France's entry in the 1986 World Cup. "Le Coq Gaulois" or Gallic rooster is an unofficial national symbol of France. In 1987 came the Bamboo, followed by the 1988 Perrier in association with the mineral water company.

 

The Charleston, having been presented in October 1980 as a one-season "special edition" was incorporated into the regular range in July 1981 in response to its "extraordinary success". By changing the carburetor to achieve 29 hp a top speed of 115 km/h was achieved. Other changes were a new rear-view mirror and inboard disc brakes at the front wheels. In the 1980s there was a range of four full models:

 

Spécial

Dolly (an improved version of the Spécial)

Club (discontinued in the early 1980s)

Charleston (an improved version of the Club)

 

In Germany and Switzerland a special edition called, "I Fly Bleifrei" — "I Fly Lead Free" was launched in 1986, that could use unleaded, instead of then normal leaded petrol and super unleaded. It was introduced mainly because of stricter emissions standards. In 1987 it was replaced by the "Sausss-duck" special edition.

 

EXPORT MARKETS

The 2CV was originally sold in France and some European markets, and went on to enjoy strong sales in Asia, South America, and Africa. During the post-war years Citroën was very focused on the home market, which had some unusual quirks, like puissance fiscale. The management of Michelin was supportive of Citroën up to a point, and with a suspension designed to use Michelin's new radial tyres the Citroën cars clearly demonstrated their superiority over their competitors' tyres. But they were not prepared to initiate the investment needed for the 2CV (or the Citroën DS for that matter) to truly compete on the global stage. Citroën was always under-capitalised until the 1970s Peugeot takeover. The 2CV sold 8,830,679 vehicles; the Volkswagen Beetle, which was available worldwide, sold 21 million units.

 

CONSTRUCTION

The level of technology in the 1948 2CV was remarkable for the era. While colours and detail specifications were modified in the ensuing 42 years, the biggest mechanical change was the addition of front disc brakes (by then already fitted for several years in the mechanically similar Citroën Dyane 6), in October 1981 (for the 1982 model year). The reliability of the car was enhanced by the minimalist simplification of the designers, being air-cooled (with an oil cooler), it had no coolant, radiator, water pump or thermostat. It had no distributor either, just a contact breaker system. Except for the brakes, there were no hydraulic parts on original models; damping was by tuned mass dampers and friction dampers.

 

The 1948 car featured radial tyres, which had just been commercialised; front-wheel drive; rack and pinion steering mounted inside the front suspension cross-tube, away from a frontal impact; rear fender skirts (the suspension design allowed wheel changes without removing the skirts); bolt-on detachable front and rear wings; detachable doors, bonnet (and boot lid after 1960), by "slide out" P-profile sheet metal hinges; flap-up windows, as roll up windows were considered too heavy and expensive.; and detachable full length fabric sunroof and boot lid, for almost pickup-like load-carrying versatility. Ventilation in addition to the sunroof and front flap windows was provided by an opening flap under the windscreen. The car had load adjustable headlights and a heater (heaters were standardised on British economy cars in the 1960s).

 

BODY

The body was constructed of a dual H-frame platform chassis and aircraft-style tube framework, and a very thin steel shell that was bolted to the chassis. Because the original design brief called for a low speed car, little or no attention was paid to aerodynamics; the body had a drag coefficient of Cd=0.51, high by today's standards but typical for the era.

 

The 2CV used the fixed-profile convertible, where the doors and upper side elements of its bodywork remain fixed, while its fabric soft top can be opened. This reduces weight and lowers the centre of gravity, and allows the carrying of long or irregularly shaped items, but the key reason was that fabric was cheaper than steel which was in short supply and expensive after the war. The fixed-profile concept was quite popular in this period.

 

SUSPENSION

The suspension of the 2CV was very soft; a person could easily rock the car side to side dramatically. The swinging arm, fore-aft linked suspension system with inboard front brakes had a much smaller unsprung mass than existing coil spring or leaf spring designs. The design was modified by Marcel Chinon.

 

The system comprises two suspension cylinders mounted horizontally on each side of the platform chassis. Inside the cylinders are two springs, one for each wheel, mounted at each end of the cylinder. The springs are connected to the front leading swinging arm and rear trailing swinging arm, that act like bellcranks by pull rods (tie rods). These are connected to spring seating cups in the middle of the cylinder, each spring being compressed independently, against the ends of the cylinder. Each cylinder is mounted using an additional set of springs, originally made from steel, called "volute" springs, on later models made from rubber. These allow the front and rear suspension to interconnect. When the front wheel is deflected up over a bump, the front pull rod compresses the front spring inside the cylinder, against the front of the cylinder. This also compresses the front "volute" spring pulling the whole cylinder forwards. That action pulls the rear wheel down on the same side via the rear spring assembly and pull rod. When the rear wheel meets that bump a moment later, it does the same in reverse, keeping the car level front to rear. When both springs are compressed on one side when travelling around a bend, or front and rear wheels hit bumps simultaneously, the equal and opposite forces applied to the front and rear spring assemblies reduce the interconnection. It reduces pitching, which is a particular problem of soft car suspension.

 

The swinging arms are mounted with large bearings to "cross tubes" that run side to side across the chassis; combined with the effects of all-independent soft springing and excellent damping, keeps the road wheels in contact with the road surface and parallel to each other across the axles at high angles of body roll. A larger than conventional steering castor angle, ensures that the front wheels are closer to vertical than the rears, when cornering hard with a lot of body roll. The soft springing, long suspension travel and the use of leading and trailing arms means that as the body rolls during cornering the wheelbase on the inside of the corner increases while the wheelbase on the outside of the corner decreases. As the corning forces put more of the car's weight on the inside pair of wheels the wheelbase extends in proportion, keeping the car's weight balance and centre of grip constant. promoting excellent road holding. The other key factor in the quality of its road holding is the very low and forward centre of gravity, provided by the position of the engine and transmission.

 

The suspension also automatically accommodates differing payloads in the car- with four people and cargo on board the wheelbase increases by around 4 cm as the suspension deflects, and the castor angle of the front wheels increases by as much as 8 degrees thus ensuring that ride quality, handling and road holding are almost unaffected by the additional weight. On early cars friction dampers (like a dry version of a multi-plate clutch design) were fitted at the mountings of the front and rear swinging arms to the cross-tubes. Because the rear brakes were outboard, they had extra tuned mass dampers to damp wheel bounce from the extra unsprung mass. Later models had tuned mass dampers ("batteurs") at the front (because the leading arm had more inertia and "bump/thump" than the trailing arm), with hydraulic telescopic dampers / shock absorbers front and rear. The uprated hydraulic damping obviated the need for the rear inertia dampers. It was designed to be a comfortable ride by matching the frequencies encountered in human bipedal motion.

 

This suspension design ensured the road wheels followed ground contours underneath them closely, while insulating the vehicle from shocks, enabling the 2CV to be driven over a ploughed field without breaking any eggs, as its design brief required. More importantly it could comfortably and safely drive at reasonable speed, along the ill-maintained and war-damaged post-war French Routes Nationales. It was commonly driven "Pied au Plancher" — "foot to the floor" by their peasant owners.

 

FRONT-WHEEL DRIVE AND GEARBOX

Citroën had developed expertise with front-wheel drive due to the pioneering Traction Avant, which was the first mass-produced steel monocoque front-wheel-drive car in the world. The 2CV was originally equipped with a sliding splined joint, and twin Hookes type universal joints on its driveshafts; later models used constant velocity joints and a sliding splined joint.

 

The gearbox was a four-speed manual transmission, an advanced feature on an inexpensive car at the time. The gear stick came horizontally out of the dashboard with the handle curved upwards. It had a strange shift pattern: the first was back on the left, the second and third were inline, and the fourth (or the S) could be engaged only by turning the lever to the right from the third. Reverse was opposite first. The idea was to put the most used gears opposite each other — for parking, first and reverse; for normal driving, second and third. This layout was adopted from the H-van's three-speed gearbox.

 

OTHER

The windscreen wipers were powered by a purely mechanical system: a cable connected to the transmission; to reduce cost, this cable also powered the speedometer. The wipers' speed was therefore dependent on car speed. When the car was waiting at a crossroad, the wipers were not powered; thus, a handle under the speedometer allowed them to be operated by hand. From 1962, the wipers were powered by a single-speed electric motor. The car came with only a speedometer and an ammeter.

 

The 2CV design predates the invention of disc brake, so 1948–1981 cars have drum brakes on all four wheels. In October 1981, front disc brakes were fitted. Disc brake cars use green LHM fluid – a mineral oil – which is not compatible with standard glycol brake fluid.

 

ENGINES

The engine was designed by Walter Becchia and Lucien Gerard, with a nod to the classic BMW boxer motorcycle engine. It was an air-cooled, flat-twin, four-stroke, 375 cc engine with pushrod operated overhead valves and a hemispherical combustion chamber. The earliest model developed 9 PS (6.6 kW) DIN (6.5 kW). A 425 cc engine was introduced in 1955, followed in 1968 by a 602 cc one giving 28 bhp (21 kW) at 7000 rpm. With the 602 cc engine, the tax classification of the car changed so that it became a 3CV, but the name remained unchanged. A 435 cc engine was introduced at the same time to replace the 425 cc; the 435 cc engine car was named 2CV 4 while the 602 cc took the name 2CV 6 (a variant in Argentina took the name 3CV). The 602 cc engine evolved to the M28 33 bhp (25 kW) in 1970; this was the most powerful engine fitted to the 2CV. A new 602 cc giving 29 bhp (22 kW) at a slower 5,750 rpm was introduced in 1979. This engine was less powerful, and more efficient, allowing lower fuel consumption and better top speed, but decreased acceleration. All 2CVs with the M28 engine can run on unleaded petrol.

 

The 2CV used the wasted spark ignition system for simplicity and reliability and had only speed-controlled ignition timing, no vacuum advance taking account of engine load.

 

Unlike other air-cooled cars (such as the Volkswagen Beetle and the Fiat 500) the 2CV's engine had no thermostat valve in its oil system. The engine needed more time for oil to reach normal operating temperature in cold weather. All the oil passed through an oil cooler behind the fan and received the full cooling effect regardless of the ambient temperature. This removes the risk of overheating from a jammed thermostat that can afflict water- and air-cooled engines and the engine can withstand many hours of running under heavy load at high engine speeds even in hot weather. To prevent the engine running cool in cold weather (and to improve the output of the cabin heater) all 2CVs were supplied with a grille blind (canvas on early cars and a clip-on plastic item called a "muff" in the owner's handbook, on later ones) which blocked around half the aperture to reduce the flow of air to the engine.

 

The engine's design concentrated on the reduction of moving parts. The cooling fan and dynamo were built integrally with the one-piece crankshaft, removing the need for drive belts. The use of gaskets, seen as another potential weak point for failure and leaks, was also kept to a minimum. The cylinder heads are mated to the cylinder barrels by lapped joints with extremely fine tolerances, as are the two halves of the crankcase and other surface-to-surface joints.

 

As well as the close tolerances between parts, the engine's lack of gaskets was made possible by a unique crankcase ventilation system. On any 2-cylinder boxer engine such as the 2CV's, the volume of the crankcase reduces by the cubic capacity of the engine when the pistons move together. This, combined with the inevitable small amount of "leakage" of combustion gases past the pistons leads to a positive pressure in the crankcase which must be removed in the interests of engine efficiency and to prevent oil and gas leaks. The 2CV's engine has a combined engine "breather" and oil filler assembly which contains a series of rubber reed valves. These allow positive pressure to escape the crankcase (to the engine air intake to be recirculated) but close when the pressure in the crankcase drops as the pistons move apart. Because gases are expelled but not admitted this creates a slight vacuum in the crankcase so that any weak joint or failed seal causes air to be sucked in rather than allowing oil to leak out.

 

These design features made the 2CV engine highly reliable; test engines were run at full speed for 1000 hours at a time, equivalent to driving 80,000 km at full throttle. They also meant that the engine was "sealed for life" — for example, replacing the big-end bearings required specialised equipment to dismantle and reassemble the built-up crankshaft, and as this was often not available the entire crankshaft had to be replaced. The engine is very under-stressed and long-lived, so this is not a major issue.

 

If the starter motor or battery failed, the 2CV had the option of hand-cranking, the jack handle serving as starting handle through dogs on the front of the crankshaft at the centre of the fan. This feature, once universal on cars and still common in 1948 when the 2CV was introduced, was kept until the end of production in 1990.

 

PERFORMANCE

In relation to the 2CV's performance and acceleration, it was joked that it went "from 0–60 km/h in one day". The original 1948 model that produced 9 hp had a 0–40 time of 42.4 seconds and a top speed of 64 km/h, far below the speeds necessary for North American highways or the German Autobahns of the day. The top speed increased with engine size to 80 km/h in 1955, 84 km/h in 1962, 100 km/h in 1970, and 115 km/h in 1981.

 

The last evolution of the 2CV engine was the Citroën Visa flat-2, a 652 cc featuring electronic ignition. Citroën never sold this engine in the 2CV, but some enthusiasts have converted their 2CVs to 652 engines, or even transplanted Citroën GS or GSA flat-four engines and gearboxes.

 

In the mid-1980s Car magazine editor Steve Cropley ran and reported on a turbocharged 602 cc 2CV that was developed by engineer Richard Wilsher.

 

END OF PRODUCTION

The 2CV was produced for 42 years, the model finally succumbing to customer demands for speed, in which this ancient design had fallen significantly behind modern cars, and safety. Although the front of the chassis was designed to fold up, to form a crumple zone according to a 1984 Citroën brochure, in common with other small cars of its era its crashworhiness was very poor by modern standards. (The drive for improved safety in Europe happened from the 1990s onwards, and accelerated with the 1997 advent of Euro NCAP.) Its advanced underlying engineering was ignored or misunderstood by the public, being clothed in an anachronistic body. It was the butt of many a joke, especially by Jasper Carrott in the UK.

 

Citroën had attempted to replace the ultra-utilitarian 2CV several times (with the Dyane, Visa, and the AX). Its comically antiquated appearance became an advantage to the car, and it became a niche product which sold because it was different from anything else on sale. Because of its down-to-earth economy car style, it became popular with people who wanted to distance themselves from mainstream consumerism — "hippies" — and also with environmentalists.

 

Although not a replacement for the 2CV, the AX supermini, a conventional urban runabout, unremarkable apart from its exceptional lightness, seemed to address the car makers' requirements at the entry level in the early 1990s. Officially, the last 2CV, a Charleston, which was reserved for Mangualde's plant manager, rolled off the Portuguese production line on 27 July 1990, although five additional 2CV Spécials were produced afterwards.[citation needed]

 

In all a total of 3,867,932 2CVs were produced. Including the commercial versions of the 2CV, Dyane, Méhari, FAF, and Ami variants, the 2CV's underpinnings spawned 8,830,679 vehicles.

 

The 2CV was outlived by contemporaries such as the Mini (out of production in 2000), Volkswagen Beetle (2003), Renault 4 (1992), Volkswagen Type 2 (2013) and Hindustan Ambassador (originally a 1950s Morris Oxford), (2014).

 

CONTINUED POPULARITY

The Chrysler CCV or Composite Concept Vehicle developed in the mid-1990s is a concept car designed to illustrate new manufacturing methods suitable for developing countries. The car is a tall, roomy four-door sedan of small dimensions. The designers at Chrysler said they were inspired to create a modernised 2CV.

 

The company Sorevie of Lodève was building 2CVs until 2002. The cars were built from scratch using mostly new parts. But as the 2CV no longer complied with safety regulations, the cars were sold as second-hand cars using chassis and engine numbers from old 2CVs.

 

The long-running 2CV circuit racing series organized by The Classic 2CV Racing Club continues to be popular in the UK.

 

English nicknames include "Flying Dustbin", "Tin Snail", "Dolly", "Tortoise"

 

WIKIPEDIA

Soldiers from the Tennessee National Guard's Regimental Support Squadron, 278th Armored Cavalry Regiment, perform sling load operations on Black Hawks from the Minnesota National Guard's 2-147 Assault Helicopter Battalion during an eXportable Combat Training Capability exercise at Fort Hood, Texas. Soldiers from 2-147 contributed to the aviation support for the XCTC exercise for the 278th ACR from the Tennessee National Guard as they prepare for an upcoming rotation to the National Training Center in 2018. (Minnesota National Guard photo by 1st Lt. Katherine Zins)

FoSoldiers of the North Carolina National Guard's 230th Brigade Support Battalion set up communications antennas and camouflage at their staging area on Fort Bliss for their upcoming missions. The 230th is part of the 30th Armored Brigade's eXportable Combat Training Capability (XCTC) exercise. The exercise is one of the 30th largest exercise in recent history, with over 4,000 Citizen Soldiers from North Carolina, South Carolina, West Virginia, Minnesota, and the country of Moldova will hone their combat skills of “Shoot, Move, Communicate, and Sustain”. (U.S. Army National Guard photo by Sgt. Odaliska Almonte, North Carolina National Guard Public Affairs)

 

During sunrise August 7th, a M1151 Enhanced Armament Carrier HMMWV gunner from 1st Squadron 303rd Cavalry Regiment scans his sector minutes before an opposing force engagement during the 41st Infantry Brigade Combat Team’s field training exercise at eXportable Combat Training Capability (XCTC) 2018 in Fort Hunter Liggett, California. (U.S. Army Photo by Maj. W. Chris Clyne, 41st IBCT Public Affairs)

A visit to Charlecote Park for an afternoon visit to this National Trust property in Warwickshire. Near Stratford-upon-Avon. A deer park with a country house in the middle of it.

  

Charlecote Park (grid reference SP263564) is a grand 16th-century country house, surrounded by its own deer park, on the banks of the River Avon near Wellesbourne, about 4 miles (6 km) east of Stratford-upon-Avon and 5.5 miles (9 km) south of Warwick, Warwickshire, England. It has been administered by the National Trust since 1946 and is open to the public. It is a Grade I listed building.

 

The Lucy family owned the land since 1247. Charlecote Park was built in 1558 by Sir Thomas Lucy, and Queen Elizabeth I stayed in the room that is now the drawing room. Although the general outline of the Elizabethan house remains, nowadays it is in fact mostly Victorian. Successive generations of the Lucy family had modified Charlecote Park over the centuries, but in 1823, George Hammond Lucy (High Sheriff of Warwickshire in 1831) inherited the house and set about recreating the house in its original style.

 

Charlecote Park covers 185 acres (75 ha), backing on to the River Avon. William Shakespeare has been alleged to have poached rabbits and deer in the park as a young man and been brought before magistrates as a result.

 

From 1605 to 1640 the house was organised by Sir Thomas Lucy. He had twelve children with Lady Alice Lucy who ran the house after he died. She was known for her piety and distributing alms to the poor each Christmas. Her eldest three sons inherited the house in turn and it then fell to her grandchild Sir Davenport Lucy.

 

In the Tudor great hall, the 1680 painting Charlecote Park by Sir Godfrey Kneller, is said to be one of the earliest depictions of a black presence in the West Midlands (excluding Roman legionnaires). The painting, of Captain Thomas Lucy, shows a black boy in the background dressed in a blue livery coat and red stockings and wearing a gleaming, metal collar around his neck. The National Trust's Charlecote brochure describes the boy as a "black page boy". In 1735 a black child called Philip Lucy was baptised at Charlecote.

 

The lands immediately adjoining the house were further landscaped by Capability Brown in about 1760. This resulted in Charlecote becoming a hostelry destination for notable tourists to Stratford from the late 17th to mid-18th century, including Washington Irving (1818), Sir Walter Scott (1828) and Nathaniel Hawthorn (c 1850).

 

Charlecote was inherited in 1823 by George Hammond Lucy (d 1845), who married Mary Elizabeth Williams of Bodelwyddan Castle, from who's extensive diaries the current "behind the scenes of Victorian Charlecote" are based upon. GH Lucy's second son Henry inherited the estate from his elder brother in 1847. After the deaths of both Mary Elizabeth and Henry in 1890, the house was rented out by Henry's eldest daughter and heiress, Ada Christina (d 1943). She had married Sir Henry Ramsay-Fairfax, (d 1944), a line of the Fairfax Baronets, who on marriage assumed the name Fairfax-Lucy.

 

From this point onwards, the family began selling off parts of the outlying estate to fund their extensive lifestyle, and post-World War II in 1946, Sir Montgomerie Fairfax-Lucy, who had inherited the residual estate from his mother Ada, presented Charlecote to the National Trust in-lieu of death duties. Sir Montgomerie was succeeded in 1965 by his brother, Sir Brian, whose wife, Lady Alice, researched the history of Charlecote, and assisted the National Trust with the restoration of the house.

  

Charlecote Park House is a Grade I Listed Building

 

Charlecote Park

  

Listing Text

  

CHARLECOTE

 

SP2556 CHARLECOTE PARK

1901-1/10/19 Charlecote Park

06/02/52

(Formerly Listed as:

Charlecote Park House)

 

GV I

 

Formerly known as: Charlecote Hall.

Country house. Begun 1558; extended C19. Partly restored and

extended, including east range, 1829-34 by CS Smith;

north-east wing rebuilt and south wing extended 1847-67 by

John Gibson. For George and Mary Elizabeth Lucy.

MATERIALS: brick, that remaining from original building has

diapering in vitrified headers, but much has been replaced in

C19; ashlar dressings; tile roof with brick stacks with

octagonal ashlar shafts and caps.

PLAN: U-plan facing east, with later west range and south

wing.

EXTERIOR: east entrance front of 2 storeys with attic;

3-window range with long gabled projecting wings. Ashlar

plinth, continuous drip courses and coped gables with finials,

sections of strapwork balustrading between gables; quoins.

2-storey ashlar porch has round-headed entrance with flanking

pairs of Ionic pilasters and entablature, round-headed

entrance has panelled jambs, impost course and arch with lion

mask to key and 2 voussoirs, strapwork spandrels and stained

glass to fanlight over paired 4-panel doors; first floor has

Arms of Elizabeth I below projecting ovolo-moulded

cross-mullion window, with flanking pairs of Composite

detached columns; top balustrade with symmetrical balusters

supports Catherine wheel and heraldic beasts holding spears;

original diapered brick to returns.

3-light mullioned and transomed window to each floor to left,

that to first floor with strapwork apron. Large canted bay

window to right of 1:3:1 transomed lights with pierced

rosettes to parapet modelled on that to gatehouse (qv) and

flanked by cross-mullioned windows, all with moulded reveals

and small-paned sashes; C19 gables have 3-light

ovolo-mullioned windows with leaded glazing.

Wings similar, with 2 gables to 5-window inner returns,

ovolo-moulded cross-mullioned windows. Wing to south has much

diaper brickwork and stair window with strapwork apron.

East gable ends have 2-storey canted bay windows dated 1852 to

strapwork panels with Lucy Arms between 1:3:1-light transomed

windows; 3-light attic windows, that to north has patch of

reconstructed diaper brickwork to left.

Octagonal stair turrets to outer angles with 2-light windows,

top entablatures and ogival caps with wind vanes, that to

south mostly original, that to north with round-headed

entrance with enriched key block over studded plank door.

North side has turret to each end, that to west is wholly C19;

3 gables with external stacks with clustered shafts between;

cross-mullioned windows and 3-light transomed stair window on

strapwork apron; 2-light single-chamfered mullioned windows to

turrets.

Single-storey east range of blue brick has 2 bay windows with

octagonal pinnacles with pepper-pot finials and arcaded

balustrades over 1:4:1-light transomed windows; central panel

with Lucy Arms in strapwork setting has date 1833; coped

parapet with 3 gables with lights; returns similar with

3-light transomed windows.

Range behind has 3 renewed central gables and 2 lateral stacks

each with 6 shafts; gable to each end, that to south over

Tudor-arched verandah with arcaded balustrade to central arch

and above, entrance behind arch to left with half-glazed door,

blocked arch to right; first floor with cross-mullioned window

and blocked window, turret to right is wholly C19. South

return has cross-mullioned window to each floor and external

stack with clustered shafts.

South-west wing of 2 storeys; west side is a 7-window range;

recessed block to north end has window to each floor, the next

4 windows between octagonal pinnacles; gabled end breaks

forward under gable with turret to angle; rosette balustrade;

stacks have diagonal brick shafts, gable has lozenge with Lucy

Arms impaling Williams Arms (for Mary Elizabeth Lucy).

Cross-mullioned windows, but 2 southern ground-floor windows

are 3-light and transomed.

South end 4-window range between turrets has cross-mullioned

windows, but each end of first floor has bracketed oriel with

strapwork apron with Lucy/Williams Arms in lozenge and dated

1866, rosette balustrade with to each end a gable with 2-light

single-chamfered mullioned window with label, and 3 similar

windows to each turret, one to each floor.

East side has 3-window range with recessed range to right.

South end has Tudor-arched entrance and 3-light transomed

window, cross-mullioned window and 3-light transomed window to

first floor and gable with lozenge to south end; gable to

full-height kitchen to north has octagonal pinnacles flanking

4-light transomed window and gable above with square panel

with Lucy/Williams Arms to shield; recessed part to north has

loggia with entrance and flanking windows, to left a

single-storey re-entrant block with cross-mullioned windows;

first floor has 5 small sashed windows. South side of

south-east wing has varied brickwork with mullioned and

transomed windows, 2 external stacks and 2 gables with 3-light

windows.

INTERIOR: great hall remodelled by Willement with wood-grained

plaster ceiling with 4-centred ribs and Tudor rose bosses;

armorial glass attributed to Eiffler, restored and extended by

Willement; wainscoting and panelled doors; ashlar fireplace

with paired reeded pilasters and strapwork to entablature, and

fire-dogs; white and pink marble floor, Italian, 1845.

Dining room and library in west wing have rich wood panelling

by JM Willcox of Warwick and strapwork cornices, and strapwork

ceilings with pendants; wallpaper by Willement; dining room

has richly carved buffet, 1858, by Willcox and simple coloured

marble fireplace, the latter with bookshelves and fireplace

with paired pilasters and motto to frieze of fireplace, paired

columns and strapwork frieze to overmantel with armorial

bearings; painted arabesques to shutter backs.

Main staircase, c1700, but probably extensively reconstructed

in C19, open-well with cut string, 3 twisted balusters to a

tread, carved tread ends and ramped handrail;

bolection-moulded panelling in 2 heights, the upper panels and

panelled ceiling probably C19.

Morning room to south of hall has Willement decoration: white

marble Tudor-arched fireplace with cusped panels; plaster

ceiling with bands.

Ebony bedroom, originally billiard room, and drawing room to

north-east wing have 1856 scheme with cornices and

Jacobean-style plaster ceilings; white marble C18-style

fireplaces, that to Ebony Bedroom with Italian inserts with

Lucy crest. Drawing room has gilded and painted cornice and

ceiling, and large pier glasses.

Rooms to first floor originally guest bedrooms: doors with

egg-and-dart and eared architraves; C18-style fireplaces, that

to end room, originally Ebony Bedroom, has wood Rococo-style

fireplace with Chinoiserie panel; 1950s stair to attic.

South-east wing has c1700 stair, probably altered in C19, with

symmetrical balusters with acanthus, closed string; first

floor has wall and ceiling paintings: land and sea battle

scenes painted on canvas, male and female grisaille busts.

First floor has to west the Green Room, with Willement

wallpaper and simple Tudor-arched fireplace with

wallpaper-covered chimney board; adjacent room has marble

fireplace.

Death Room and its dressing room to east end have wallpaper of

gold motifs on white, painted 6-panel doors and architraves,

papier-mache ceilings; bedroom has fireplace with marble

architrave. Adjacent room has bolection-moulded panelling with

c1700 Dutch embossed leather. Stair to attic has c1700

balusters with club-form on acorn. Attics over great hall and

north-east and south-east wings have lime-ash floors and

servants' rooms, each with small annex and corner fireplace;

some bells.

South wing has kitchen with high ceiling and 2

segmental-arched recesses for C19 ranges; Tudor-arched recess

with latticed chamber for smoked meats over door.

Servants' hall has dark marble bolection-moulded fireplace and

cornice; scullery has bread oven, small range, pump and former

south window retaining glass.

First floor has to south end a pair of rooms added for Mary

Elizabeth Lucy in her widowhood; bedroom to east with deep

coved cornice and Adam-style fireplace, sitting room to west

similar, with gold on white wallpaper, white marble fireplace

with painted glass armorial panels and 1830s-40s carpet; door

to spiral timber turret staircase.

Nursery has fireplace with faceted panels and C19 Delft tiles;

probably 1920s wallpaper.

Other rooms with similar fireplaces and coloured glazed tiles.

While dating back to the C16, the house is one of the best

examples of the early C19 Elizabethan Revival style. Property

of National Trust.

(The Buildings of England: Pevsner, N & Wedgwood, A:

Warwickshire: Harmondsworth: 1966-: 227-9; The National Trust

Guide to Charlecote Park: 1991-; Wainwright C: The Romantic

Interior).

 

Listing NGR: SP2590656425

 

This text is from the original listing, and may not necessarily reflect the current setting of the building.

  

A look around the inside of the house / hall.

  

The Great Hall.

  

stained glass window

Croome Court is a mid 18th century Neo-Palladian mansion surrounded by an extensive landscaped parkland at Croome D'Abitot, near Pershore in south Worcestershire. The mansion and park were designed by Lancelot "Capability" Brown for George Coventry, 6th Earl of Coventry, and was Brown's first landscape design and first major architectural project. Some of the internal rooms of the mansion were designed by Robert Adam.

 

The mansion house is owned by Croome Heritage Trust, and is leased to the National Trust who operate it, along with the surrounding parkland, as a tourist attraction. The National Trust own the surrounding parkland, which is also open to the public.

 

Location[edit]

Croome Court is located near to Croome D'Abitot, in Worcestershire,[1] near Pirton, Worcestershire.[2] The wider estate was established on lands that were once part of the royal forest of Horewell.[3] Traces of these older landscapes, such as unimproved commons and ancient woodlands, can be found across the former Croome Estate.[4]

 

House[edit]

 

Croome Court South Portico

History[edit]

The foundations and core of Croome Court, including the central chimney stack structure, date back to the early 1640s.[5] Substantial changes to this early house were made by Gilbert Coventry, 4th Earl of Coventry.[6]

 

In 1751, George Coventry, the 6th Earl, inherited the estate, along with the existing Jacobean house. He commissioned Lancelot "Capability" Brown, with the assistance of Sanderson Miller, to redesign the house and estate.[7][1] It was Brown's "first flight into the realms of architecture" and a "rare example of his architectural work",[8] and it is an important and seminal work.[9] It was built between 1751 and 1752, and it and Hagley Hall are considered to be the finest examples of Neo-Palladian architecture in Worcestershire. Notable Neo-Palladian features incorporated into Croome Court include the plain exterior and the corner towers with pyramidal roofs (a feature first used by Inigo Jones in the design of Wilton House in Wiltshire).[1] Robert Adam worked on the interior of the building from 1760 onwards.[10]

 

The house has been visited by George III,[2][11] as well as Queen Victoria[7] during summers when she was a child, and George V (then Duke of York).[11]

 

A jam factory was built by the 9th Earl of Coventry, near to Pershore railway station, in about 1880, to provide a market for Vale of Evesham fruit growers in times of surplus. Although the Croome connection with jam making had ceased, during the First World War, the building was leased by the Croome Estate Trust to the Huddersfield Fruit Preserving Company as a pulping station.[12]

 

The First World War deeply affected Croome, with many local casualties, although the house was not requisitioned for the war effort. This is possibly because it was the home of the Lord Lieutenant of the County, who needed a residence for his many official engagements.[13]

 

During the Second World War Croome Court was requisitioned by the Ministry of Works and leased for a year to the Dutch Government as a possible refuge for Queen Wilhelmina of the Netherlands; to escape the Nazi occupation of the Netherlands. However, evidence shows that they stayed two weeks at the most, perhaps because of the noise and fear created by the proximity of Defford Aerodrome. They later emigrated to Canada.[14]

 

In 1948 the Croome Estate Trust sold the Court, along with 38 acres (15 ha) of land, to the Roman Catholic Archdiocese of Birmingham, and the mansion became St Joseph's Special School, which was run by nuns[15] from 1950[11] until 1979.[15]

 

The house was listed on 11 August 1952; it is currently Grade I listed.[10]

 

In 1979 the hall was taken over by the International Society for Krishna Consciousness (Hare Krishna movement), who used it as their UK headquarters and a training college[16] called Chaitanya College,[15] run by 25 members of the movement.[16] During their tenure they repainted the Dining Room.[17] In 1984 they had to leave the estate for financial reasons. They held a festival at the hall in 2011.[16]

 

From 1984 onwards various owners tried to use the property as a training centre; apartments; a restaurant and conference centre; and a hotel and golf course,[15] before once more becoming a private family home,[2][15] with outbuildings converted to private houses.[15]

 

The house was purchased by the Croome Heritage Trust, a registered charity,[18] in October 2007,[19] and it is now managed by the National Trust as a tourist attraction. It opened to the public in September 2009, at which point six of the rooms had restored, costing £400,000, including the Saloon. It was estimated that another £4 million[2][20] to £4.8 million would be needed to restore the entire building. Fundraising activities for the restoration included a 2011 raffle for a Morgan sports car organised by Lord and Lady Flight. After the restoration is complete, a 999-year lease on the building will be granted to the National Trust.[21] An oral history project to record recollections about Croome was funded by the Heritage Lottery Fund.[15] As of 2009, the service wing was empty and in need of substantial repair.[22]

 

Exterior[edit]

The mansion is faced with Bath stone,[7] limestone ashlar, and has both north and south facing fronts. It has a basement and two stories, with three stories in the end pavilions. A slate roof, with pyramid roofs over the corner towers, tops the building, along with three pair-linked chimneys along the axis of the house.[10]

 

Both fronts have 11 bays, split into three central sets of three each, and one additional bay each side. The north face has a pedimented centre, with two balustraded staircases leading to a Roman Doric doorcase. The south face has a projecting Ionic tetrastyle portico and Venetian windows. It has a broad staircase, with cast stone sphinxes on each side, leading to a south door topped with a cornice on consoles. The wings have modillion cornice and balustrade.[10]

 

A two-story L-shaped service wing is attached to the east side of the mansion. It is made of red brick and stone, with slate roofs.[10] It was designed by Capability Brown in 1751-2.[22] On the far side of the service wing, a wall connects it to a stable court.[10]

 

Interior[edit]

The interior of the house was designed partially by Capability Brown, with plasterwork by G. Vassalli, and partially by Robert Adam, with plasterwork by J. Rose Jr. It has a central spine corridor. A stone staircase, with iron balusters, is at the east end.[10]

 

The entrance hall is on the north side of the building, and has four fluted Doric columns, along with moulded doorcases. To the east of the entrance hall is the dining room, which has a plaster ceiling and cornice, while to the west is a billiard room, featuring fielded panelling, a plaster cornice, and a rococo fireplace. The three rooms were probably decorated around 1758-59 by Capability Brown.[10] The dining room was vibrantly repainted by the Hare Krishnas in the 1970s-80s.[17]

 

The central room on the south side is a saloon, probably by Brown and Vassalli. It has an elaborate ceiling, with three panels, deep coving, and a cornice, along with two Ionic fireplaces, and Palladian doorcases.[10] George III was entertained by George Coventry, the 6th Earl, in the house's Saloon.[2] A drawing room is to the west of the saloon, and features rococo plasterwork and a marble fireplace.[10]

 

To the east of the saloon is the Tapestry Room.[10] This was designed in 1763-71, based on a design by Robert Adam, and contained tapestries and furniture covers possibly designed by Jacques Germain Soufflot, and made by Manufacture Nationale des Gobelins.[23] Around 1902 the ninth Earl sold the tapestries and seating to a Parisian dealer. In 1949 the Samuel H. Kress Foundation purchased the ceiling, floor, mantlepiece, chair rails, doors and the door surrounds, which were donated to the Metropolitan Museum of Art, New York, in 1958. In 1959 the Kress Foundation also helped the Metropolitan Museum acquire the chair and sofa frames, which they recovered using the original tapestry seats.[7][23] A copy of the ceiling was installed in place of the original.[10] As of 2016, the room is displayed as it would have looked after the tapestries had been sold, with a jug and ewer on display as the only original decoration of the room that remains in it. The adjacent library room is used to explain what happened to the tapestry room;[17] the former library was designed by Adam, and was dismantled except for the marble fireplace.[10]

 

At the west side of the building is a long gallery,[10] which was designed by Robert Adam and installed between 1761 and 1766. It is the best preserved of the original interior (little of the rest has survived in situ).[1] It has an octagonal panelled ceiling, and plaster reliefs of griffins. A half-hexagonal bay faces the garden. The room also contains a marble caryatid fireplace designed by J Wilton.[10] As of 2016, modern sculptures are displayed in empty niches along the Long Gallery

 

wikipedia

Robyn Gatens, left, deputy director, ISS Division and system capability leader for Environmental Control and Life Support Systems (ECLSS) at NASA Headquarters in Washington, tours laboratories in the Space Station Processing Facility at the agency's Kennedy Space Center in Florida, on June 13, 2018. Standing behind her is Ralph Fritsche, long-duration food production project manager at Kennedy. Gatens is viewing plant growth chambers and seeing firsthand some of the capabilities in the center's Exploration Research and Technology Programs. Photo credit: NASA/Kim Shiflett

NASA image use policy.

 

Inside the gallery, most of the paintings feature gardens, real or imaginary, grand or modest. Also in Suffolk, but only at the planning stage, this is a small section of the plans Lancelot 'Capability' Brown drew up for Heveningham Hall in 1781. The whole plan was sketched on a vast length of paper – never mind the radical changes planned in horticulture and the use of water, just creating the design would have been a major task. In the event, Brown's client, Sir Gerard Vanneck died before it could come to fruition and only a small part was put in place.

1 2 ••• 18 19 21 23 24 ••• 79 80