View allAll Photos Tagged ASTROPHYSICS
about 4 of total interation time in LRGB, from Tiglieto (GE) with SQM 21.09. Taken with an astrograph RC8 Carbon Tecnosky, redu/flattener Astrophysics 0.67x and a ZWO ASI1600 Mono on Skywatcher AZEQ6
full specs: www.astrobin.com/417872/
Eine Reihe von Zeitrafferaufnahmen vom Kometen C/2023 A3 Tsuchinshan-ATLAS, die zwischen dem 14. - 22. Oktober 2024 entstanden sind.
4K Video:https://youtu.be/UWvy-ClJ4YI
© Leanne Boulton, All Rights Reserved
Posed street portrait taken for my 100 Strangers project and revisited with new editing techniques. Primary editing was done in Lightroom and I exported to Photoshop for some extensive frequency separation work and a subtle addition of split tone processing. Enjoy!
This striking image features a relatively rare celestial phenomenon known as a Herbig-Haro object. This particular object, named HH111, was imaged by NASA's Hubble Space Telescope's Wide Field Camera 3 (WFC3).
These spectacular objects develop under very specific circumstances. Newly formed stars are often very active, and in some cases they expel very narrow jets of rapidly moving ionized gas – gas that is so hot that its molecules and atoms have lost their electrons, making the gas highly charged. The streams of ionized gas then collide with the clouds of gas and dust surrounding newly formed stars at speeds of hundreds of miles per second. It is these energetic collisions that create Herbig-Haro objects such as HH111.
WFC3 takes images at optical, ultraviolet, and infrared wavelengths, which means that it observes objects at a wavelength range similar to the range that human eyes are sensitive to (optical, or visible) and a range of wavelengths that are slightly too short (ultraviolet) or too long (infrared) to be detected by human eyes. Herbig-Haro objects actually release a lot of light at optical wavelengths, but they are difficult to observe because their surrounding dust and gas absorb much of the visible light. Therefore, the WFC3’s ability to observe at infrared wavelengths – where observations are not as affected by gas and dust – is crucial to observing Herbo-Haro objects successfully.
Image credit: ESA/Hubble & NASA, B. Nisini
NASA image use policy.
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Architect: Erich Mendelsohn
Build: 1919-1921
The Einstein Tower (German: Einsteinturm) is an astrophysical observatory in the Albert Einstein Science Park in Potsdam, Germany built by Erich Mendelsohn. It was built on the summit of the Potsdam Telegraphenberg to house a solar telescope designed by the astronomer Erwin Finlay-Freundlich. The telescope supports experiments and observations to validate (or disprove) Albert Einstein's relativity theory. The building was first conceived around 1917, built from 1919 to 1921 after a fund-raising drive, and became operational in 1924. Although Einstein never worked there, he supported the construction and operation of the telescope. It is still a working solar observatory today as part of the Leibniz Institute for Astrophysics Potsdam. Light from the telescope is directed down through the shaft to the basement where the instruments and laboratory are located. There were more than half a dozen telescopes in the laboratory.
Macro Mondays - DOTS
It may not look like the biggest dot in the world and in truth, it is quite tiny. It does have power disproportionate to its size.
This dot is sometimes a period which is hugely important in the field of written communication. But that is dwarfed by its importance when it becomes a decimal point. Its use in mathematics has driven science and in recent years has made it possible to measure and express distances in outer space.
Consider that 1 light year is equal to about 6 trillion miles and the nearest star to earth is over 4 light years away , expressed without using a decimal point would be 24 followed by 12 zeroes. Yes, we have concocted other terms to express large numbers, but as I understand it they are not things easily used by the super computers that do much of the legwork in astrophysics.
Parte del Cigno -NGC7000 IC5070- ASI ZWO 533MC PRO- Olimpus 50mm- Orion SSautoguider -Astrophysics 400GTO
Taken from Coral Towers Observatory using a Skynyx 2-2 high speed camera and 16-cm Astrophysics Apochromatic Refractor at F/32 on a software bisque PME mount.
LINK
Negative image: www.flickr.com/photos/jbrimacombe/51165146266/
Taken from Coral Towers Observatory using a Skynyx 2-2 high speed camera and 16-cm Astrophysics Apochromatic Refractor at F/16 on a software bisque PME mount.
Captured rising and then journeying high in to the clear night skies of London, England. February 2021.
Full Strawberry Moon captured in London, England. June 2020.
(Copyright: Epiphany Appleseed / @FunkyAppleTree)
🇪🇸 Gran Telescopio Canarias (GTC)
Place: Observatorio Roque de los Muchachos, La Palma, Spain
© Juan C. Moñino, 2021
A Padova svetta la Torlonga, detta anche la Specola.
La Specola di Padova è la sede dell'Osservatorio Astronomico di Padova, una delle più importanti strutture di ricerca dell'Istituto Nazionale di Astrofisica. Nato come gabinetto universitario nel 1767, l'Osservatorio divenne ente giuridico autonomo nel 1923, per confluire infine nell'INAF nel 2001.
Un po' di storia (da wikipedia):
La Torlonga era un'antica torre di difesa medievale edificata nel IX secolo d.C. Fu risistemata da Ezzelino III da Romano nel XIII secolo ed è legata alla fama di crudeltà di quest'ultimo: fu infatti prigione e sala di tortura per i nemici del tiranno, caduto il quale il castello fu abbandonato.
Nella seconda metà del Trecento, i Carraresi, nuovi signori di Padova, edificarono il nuovo castello sui resti del preesistente, in parallelo al corso del Bacchiglione. In un'antica veduta della città di Padova è raffigurato colorato a quadri bianchi e rossi (Giusto de' Menabuoi nella Basilica di Sant'Antonio di Padova). Con la costruzione della cinta muraria cinquecentesca il castello e la torlonga persero la loro funzione militare e caddero in abbandono. Infatti, nel Settecento l'antica fortezza, in gran parte cadente, veniva chiamata "Castel Vecchio" e da tempo era stata destinata a magazzino di granaglie, di paglia, di fieno, deposito di armi e munizioni.
Nel 1761 il senato veneziano decretò l'istituzione di un osservatorio astronomico per l'Università padovana. Il progetto fu voluto dall'abate Giuseppe Toaldo che assieme all'architetto Domenico Cerato di Vicenza utilizzò l'esistente torrione, aggiungendovi alla sommità la sala di accesso alle torrette d'osservazione.
[1] I lavori, condotti su progetto di Domenico Cerato, contemplavano la creazione di due osservatori distinti, ognuno adatto a svolgere una precisa funzione. Sulla sommità della torre sarebbe stato costruito l'osservatorio superiore, un ambiente ottagonale dotato di alte finestre per consentire, dall'interno della sala, l'osservazione del cielo a 360 gradi. Gli strumenti, tutti dotati di montatura con ruote, potevano infatti essere spostati nella terrazza circostante, più ampia verso sud perché l'orizzonte sud è la direzione privilegiata per le osservazioni astronomiche nell'emisfero boreale.
A circa 16 m di altezza sarebbe stato costruito l'osservatorio inferiore, una sala progettata appositamente per eseguire le osservazioni al meridiano celeste. Qui infatti fu realizzata la linea meridiana, fondamentale per determinare l'istante esatto del mezzogiorno locale, e qui fu installato il grande quadrante murale che serviva per osservare il passaggio degli astri al meridiano celeste[2]. A testimonianza della trasformazione della torre-prigione in un luogo dedicato agli studi astronomici fu incisa una lapide sopra la porta a pianterreno della torre quando i lavori furono ultimati nel 1777.
Dal settembre 1772 all'agosto 1773 la sala ottagonale dell'osservatorio superiore venne affrescata dal pittore vicentino Giacomo Ciesa con soggetti di carattere astronomico ideati da Toaldo.[3] Settecento, e fino ai primi anni dell'Ottocento, l'accesso alla Specola avveniva dall'attuale piazza Castello.
Nel 1773, prima ancora che i lavori della Specola fossero finiti, Toaldo ottenne il permesso di collocare un parafulmine. Quello della Specola fu la prima installazione di un parafulmine installato su un edificio pubblico nella Repubblica di Venezia (l'invenzione era stata fatta da Benjamin Franklin nel 1750), una decisione presa con la consulenza del professore ginevrino Horace-Bénédict de Saussure, di passaggio per Padova.
Nel 1777 la Specola di Padova venne infine completata come edificio[1], ma altrettanto non si poteva dire del corredo strumentario. L'acquisizione degli strumenti avvenne a varie riprese; nel 1779, dopo un viaggio per nave dall'Inghilterra a Venezia, poi in battello dalla città lagunare sino all'Osservatorio, arrivò un grande quadrante che venne fissato al muro appositamente predisposto e orientato con grande precisione lungo l'asse nord-sud all'interno della sala meridiana. Nel complesso il corredo strumentario della Specola, verso la fine del Settecento, era formato da quadranti, cannocchiali rifrattori, orologi a pendolo, e altri strumenti per la misura delle coordinate celesti come lo strumento dei passaggi e la macchina parallattica.
Il 25 luglio 1806, Napoleone emanava il decreto con il quale veniva conservata l'Università di Padova, e con essa anche l'Osservatorio.
Il complesso con la Specola, vista notturna da Ponte Sant'Agostino.
Con l'entrata in guerra dell'Italia il 24 maggio 1915, Padova, dopo Udine, divenne la sede del Comando supremo delle forze armate[4]: furono requisiti dal Comando generale gli apparati telegrafici in uso all'Osservatorio per il servizio dell'ora; nel 1916 fu requisita la torre per il servizio di avvistamento degli aerei nemici. Direttore della Specola era in quegli anni Antonio Maria Antoniazzi[5]. I locali dell'Osservatorio furono riconsegnati all'università di Padova nel 1919.
Con la costruzione della succursale di Asiago nel 1942 (Osservatorio astrofisico di Asiago) e il suo sviluppo negli anni successivi (Stazione osservativa di Asiago Cima Ekar), la torre della Specola non fu più usata per compiere osservazioni astronomiche. Alcuni locali furono invece trasformati per collocarvi la biblioteca antica e l'archivio.
#torlonga #padova #specola #archivio #fiume #river #long-exposure #torre #tower #astronomy #astrophysics #history #storia
Jodrell Bank Observatory in Cheshire, England, hosts a number of radio telescopes as part of the Jodrell Bank Centre for Astrophysics at the University of Manchester.
Part of the Veil supernova complex.
Image Details:
Scope: A-P 130mm EDFS @ f/4.9 (reduced with 27TVPH)
Camera: QSI 6120
Mount: Takahashi EM-200
Guiding: QHY 5LII-M & Mini Guidescope (PHD2)
Image Capture: Sequence Generator Pro
Processing:
PixInsight
AstroPixelProcessor - Palette Blending - HSOO
Location: Central District, Seattle, WA
Ha: 30x10min
OIII: 30x10min
SII: 31x10min
Total integration time = ~ 15 hours
Our Milky Way galaxy and its small companions are surrounded by a giant halo of million-degree gas (seen in blue in this artists' rendition) that is only visible to X-ray telescopes in space. University of Michigan astronomers discovered that this massive hot halo spins in the same direction as the Milky Way disk and at a comparable speed.
Read more: go.nasa.gov/29VgLdK
Credit: NASA/CXC/M.Weiss/Ohio State/A Gupta et al
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on Instagram
One of 8 radio telescopes forming the Smithsonian Sub-Millimeter Array, at Sunset, about 14kft (=4km) altitude atop Mauna Kea. SMA is a joint project of the Smithsonian Institution and the Academia Sinica Institute for Astronomy and Astrophysics.
More dishes increase sensitivity; more separation yields more aperture and hence resolution; tracking a target over multiple hours on multiple nights lengthens exposure. Linking SMA with similar radio telescope arrays in California and Arizona to form the Event Horizon Telescope provided the first image of Sag A*, the black hole at the center of the Milky Way Galaxy. The journal article describing the observation of Sag A* had several hundred authors, from multiple nations.
The short stairway offers access to the control room behind the disk, sufficient for a pair of engineers, as we shall see eventually. Telescope guidance and data recording are fully automated.
The location—as you can see—is cold and windy at sunset, and no place for tourists in the dark.
Happy Freezing Friday!
Explore no.125 March 1, 2025
A highly advanced extraterrestrial organism with a biostructure resembling cosmic dust and plasma filaments. Its surface exhibits a reflective pattern of star-like luminescence, suggesting a photosensitive or energy-absorbing layer. The Eclipser is theorized to exist in deep space environments, drawing energy from electromagnetic radiation and gravitational fields — a living interface between biology and astrophysics.
Image originally generated with DALL-E, then enhanced through upscaling in Leonardo AI and finally refined with Topaz Gigapixel AI.
Armagh Observatory is an astronomical research institute in Armagh, Northern Ireland. Around 25 astronomers are based at the observatory, studying stellar astrophysics, the Sun, Solar System astronomy and Earth's climate.
RGB composition
75:75:75x300"=R:G:BX300"
T:Takahashi FSQ 106ED @f/5.0
M: Astrophysics Mach1 GTO
C: SBIG STL 11000
G: Lodestar X2
F: Antlia V-Pro - LRGB set
Foc: PrimaLuceLab ESATTO 4"
CPU: Eagle-S Primalucelab
Sw: Sequence Generator Pro - PHD2 - Pixinsight 1.8.8-9
53% illuminated. Captured in London, England. January 2020.
(Copyright: Epiphany Appleseed / @FunkyAppleTree)
This image, taken by the NASA/ESA Hubble Space Telescope, shows the colorful "last hurrah" of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years.
Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers called them the name because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of more than 360,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bowtie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis.
The material expelled by the star glows with different colors depending on its composition, its density and how close it is to the hot central star. Blue samples helium; blue-green oxygen, and red nitrogen and hydrogen.
Credit: NASA, ESA, and K. Noll (STScI), Acknowledgment: The Hubble Heritage Team (STScI/AURA)
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on Instagram
HARGB composition
15:15:15x75"=R:G:BX75"bin 2x2
6x600"=Ha x600" bin 1x1
T:Takahashi TOA 130
M: Astrophysics Mach1 GTO
C: QSI WSg8
G: Lodestar X2
F: Astromomik - RGB set + Astronomik Ha 6nm
Foc: PrimaLuceLab Sesto Senso 2
CPU: Eagle3 Primalucelab
Sw: Sequence Generator Pro - PHD2 - Pixinsight 1.8.8-9
I merged the R channel and 15% HA channel to get to a "new Red" channel;
I merged the B channel and 5% HA channel to get to a "new Blue" channel;
Stars are from "pure" RGBs.