View allAll Photos Tagged device
The Naked 3D Fitness Tracker goes on pre-request appears to be ready to change your entire body estimation game. It is a beautiful, cutting edge, flawlessly outlined framework saddled with a sketchy name. The apparatus is in general made of an extraordinary mirror glass that outfitted with depth...
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The McDonnell F-101 Voodoo was a supersonic jet fighter which primarily served the United States Air Force (USAF). Initially designed by McDonnell Aircraft as a long-range bomber escort (known as a penetration fighter) for the Strategic Air Command (SAC), the Voodoo was instead developed as a nuclear-armed fighter-bomber for the Tactical Air Command (TAC) and later evolved into an all-weather interceptor as well as into a reconnaissance platform.
The Voodoo's career as a fighter-bomber (F-101A and C) was relatively brief, but the reconnaissance fighter versions served for some time. Along with the US Air Force's Lockheed U-2 and US Navy's Vought RF-8 Crusaders, the RF-101 reconnaissance variant of the Voodoo was instrumental during the Cuban Missile Crisis and saw extensive service during the Vietnam War. Beyond original RF-101 single seaters, a number of former F-101A and Cs were, after the Vietnam era, converted into photo reconnaissance aircraft (as RF-101G and H) for the US Air National Guards.
Delays in the 1954 interceptor project (also known as WS-201A, which spawned to the troubled F-102 Delta Dagger) led to demands for an interim interceptor aircraft design, a role that was eventually won by the Voodoo’s B model. This new role required extensive modifications to add a large radar to the nose of the aircraft, a second crewmember to operate it, and a new weapons bay using a unique rotating door that kept its four AIM-4 Falcon missiles (two of them alternatively replaced by unguided AIR-2 Genie nuclear warhead rockets with 1.5 Kt warheads) semi-recessed under the airframe.
The F-101B was first deployed into service on 5 January 1959, and this interceptor variant was produced in greater numbers than the original F-101A and C fighter bombers, with a total of 479 being delivered by the end of production in 1961. Most of these were delivered to the Air Defense Command (ADC), the only foreign customer was Canada from 1961 onwards (as CF-101B), after the cancellation of the CF-105 Arrow program in February 1959. From 1963–66, USAF F-101Bs were upgraded under the Interceptor Improvement Program (IIP; also known as "Project Bold Journey") with a fire control system enhancement against hostile ECM and an infrared sighting and tracking (IRST) system in the nose in place of the Voodoo’s original hose-and drogue in-flight refueling probe.
The F-101B interceptor later became the basis of further Voodoo versions which were intended to improve the tactical reconnaissance equipment of the US Air National Guards. In the early 1970s, a batch of 22 former Canadian CF-101Bs were returned to the US Air Force and, together with some USAF Voodoos, converted into dedicated reconnaissance aircraft, similar to the former RF-101G/H conversion program for the single-seat F-101A/C fighter bombers.
These modified interceptors were the RF-101B and J variants. Both had their radar replaced with a set of three KS-87B cameras (one looking forward and two as a split vertical left/right unit) and a panoramic KA-56 camera, while the former missile bay carried different sensor and avionics packages.
The RF-101Bs were exclusively built from returned Canadian Voodoos. Beyond the photo camera equipment, they featured upgraded navigational equipment in the former weapon bay and a set of two AXQ-2 TV cameras, an innovative technology of the era. A TV viewfinder was fitted to the cockpit and the system was operated effectively from altitudes of 250 ft at 600 knots.
The other re-built reconnaissance version, the RF-101J, was created from twelve former USAF F-101Bs, all of them from the final production year 1961 and with relatively few flying hours. Beyond the KS-87B/KA-56 camera set in the nose, the RF-101J featured a Goodyear AN/APQ-102 SLAR (Side-looking airborne radar) that occupied most of the interceptor’s former rotating internal weapon bay, which also carried a fairing for a heat exchanger. The radar’s conformal antenna array was placed on either side of the lower nose aft of the cameras and allowed to record radar maps from view to each side of the aircraft and pinpoint moving targets like trucks in a swath channel approximately 10 nautical miles (11.5 miles/18 km) wide. To identify potential targets along the flight path for the SLAR and to classify them, the RF-101J furthermore received an AN/AAS-18 Infrared Detecting Set (IRDS). It replaced the F-101B’s IRST in front of the cockpit and was outwardly the most obvious distinguishing detail from the RF-1010B, which lacked this hump in front of the windscreen. The IRDS’ range was almost six miles (9.5 km) and covered the hemisphere in front of the aircraft. With the help of this cryogenically-cooled device the crewman in the rear cockpit could identify through a monitor small heat signatures like hot engines, firing weapons or campfires, even in rough terrain and hidden under trees.
Both new Voodoo recce versions were unarmed and received AN/APR-36 radar homing and warning sensors to nose and tail. They also had an in-flight refueling receptacle re-fitted, even though this was now only compatible with the USAF’s high-speed refueling boom system and was therefore placed in a dorsal position behind the cockpit. Furthermore, both versions received a pair of unplumbed underwing pylons for light loads, e. g. for AN/ALQ-101,-119 or -184 ECM pods, photoflash ejectors for night photography or SUU-42A/A Flares/Infrared decoys and chaff dispenser pods.
The RF-101Bs were delivered in 1971 and allocated to the 192d Tactical Reconnaissance Squadron of the Nevada Air National Guard, where they served only through 1975 because their advanced TV camera system turned out to be costly to operate and prone to failures. Their operational value was very limited and most RF-101Bs were therefore rather used as proficiency trainers than for recce missions. As a consequence, they were already phased out from January 1975 on.
The RF-101Js entered service in 1972 and were allocated to the 147th Reconnaissance Wing of the Texas Air National Guard. Unlike the RF-101Bs’ TV cameras, the AN/APQ-102 SLAR turned out to be reliable and more effective. These machines were so valuable that they even underwent some upgrades: By 1977 the front-view camera under the nose had been replaced with an AN/ASQ-145 Low Light Level TV (LLLTV) camera, sensitive to wavelengths above the visible (0.4 to 0.7 micrometer) wavelengths and ranging into the short-wave Infrared (usually to about 1.0 to 1.1 micrometer). The AN/ASQ-145 complemented the IRDS with visual input and was able to amplify the existing light 60,000 times to produce television images as clearly as if it were noon. In 1980, the RF-101Js were furthermore enabled to carry a centerline pod for the gigantic HIAC-1 LOROP (Long Range Oblique Photography) camera, capable of taking high-resolution images of objects 100 miles (160 km) away.
USAF F-101B interceptors were, as more modern and effective interceptors became available (esp. the F-4 Phantom II), handed off to the Air National Guard, where they served in the fighter role until 1982. Canadian CF-101B interceptors remained in service until 1984 and were replaced by the CF-18 Hornet. The last operational Canadian Voodoo, a single EF-101B (nicknamed the “Electric Voodoo”, a CF-101B outfitted with the jamming system of the EB-57E Canberra and painted all-black) was returned to the United States on 7 April 1987. However, the RF-101Js served with the Texas ANG until 1988, effectively being the last operational Voodoos in the world. They were replaced with RF-4Cs.
General characteristics:
Crew: Two
Length: 67 ft 5 in (20.55 m)
Wingspan: 39 ft 8 in (12.09 m)
Height: 18 ft 0 in (5.49 m)
Wing area: 368 ft² (34.20 m²)
Airfoil: NACA 65A007 mod root, 65A006 mod tip
Empty weight: 28,495 lb (12,925 kg)
Loaded weight: 45,665 lb (20,715 kg)
Max. takeoff weight: 52,400 lb (23,770 kg)
Powerplant:
2× Pratt & Whitney J57-P-55 afterburning turbojets
with 11,990 lbf (53.3 kN) dry thrust and 16,900 lbf (75.2 kN) thrust with afterburner each
Performance:
Maximum speed: Mach 1.72, 1,134 mph (1,825 km/h) at 35,000 ft (10,500 m)
Range: 1,520 mi (2,450 km)
Service ceiling: 54,800 ft (17,800 m)
Rate of climb: 36,500 ft/min (185 m/s)
Wing loading: 124 lb/ft² (607 kg/m²)
Thrust/weight: 0.74
Armament:
None, but two 450 US gal (370 imp gal; 1,700 l) drop-tanks were frequently carried on ventral
hardpoints; alternatively, a central hardpoint could take single, large loads like the HIAC-1 LOROP
camera pod.
A pair of retrofitted underwing hardpoints could carry light loads like ECM jammer pods,
flare/chaff dispensers or photoflash ejectors
The kit and its assembly:
This is another project that I had on my agenda for a long while. It originally started with pictures of an RF-101H gate guard in Louisville at Standiford Field International from around 1987-1991:
imgproc.airliners.net/photos/airliners/6/2/9/1351926.jpg?...
www.aerialvisuals.ca/Airframe/Gallery/0/41/0000041339.jpg
This preserved machine wore a rather unusual (for a Voodoo) ‘Hill’ low-viz scheme with toned-down markings, quite similar to the late USAF F-4 Phantom IIs of the early Eighties. The big aircraft looked quite good in this simple livery, and I kept the idea of a Hill scheme Voodoo in the back of my mind for some years until I recently had the opportunity to buy a cheap Matchbox Voodoo w/o box and decals. With its optional (and unique) RF-101B parts I decided to take the Hill Voodoo idea to the hardware stage and create another submission to the “Reconnaissance and Surveillance” group build at whatifmodellers.com around July 2021: an ANG recce conversion of a former two-seat interceptor, using the RF-101B as benchmark but with a different suite of sensors.
However, the Matchbox Voodoo kit is rather mediocre, and in a rather ambitious mood I decided to “upgrade” the project with a Revell F-101B as the model’s basis. This kit is from 1991 and a MUCH better and finely detailed model than the rather simple Matchbox kit from the early Eighties. In fact, the Revell F-101B is actually a scaled-down version of Monogram’s 1:48 F-101B model kit from 1985, with many delicate details. But while this downscaling practice has produced some very nice 1:72 models like the F-105D or the F-4D, the scaling effect caused IMHO in this case a couple of problems. Revell's assembly instructions for the 1:72 kit are not good, either. While the step-by-step documentation is basically good, some sketches are so cluttered that you cannot tell where parts in the cockpit or on the landing gear are actually intended to be placed and how. This is made worse by the fact that there are no suitable markings on the parts – you are left to guessing.
Worse, there is a massive construction error: the way the wings section is to be assembled and mounted to the hull is impossible! The upper wing halves have locator pins for the fuselage, but they are supposed to be glued to the lower wing half (which also encompasses the aircraft's belly) and the mounted to the hull. The locator pins make this impossible, unless you bend the lower wing section to a point where it might warp or break, or you just cut the pins off - and live with some instability. Technically the upper wing halves have to be mounted to the fuselage before you glue the lower wing section to them, but I am not certain if this would work well because you also have to assemble the air intakes at the same time “from behind”, which is only feasible when the wings have already been completed but still left away from the fuselage. It’s a nonsense construction! I cannot remember when I came across a kit the last time with such an inherent design flaw?
Except for the transplanted RF-101B nose section, which did not fit well because the Matchbox Voodoo apparently has a more slender nose, the Revell kit was built mostly OOB. However, this is already a challenge in itself because of the kit’s inherent flaws (see above), its complex construction and an unorthodox assembly sequence, due to many separate internal modules including the cockpit tub, a separate (fully detailed) front landing gear well, a rotating weapon bay, air intakes with complete ducts, and the wing section. A fiddly affair.
Only a few further changes beyond the characteristic camera fairing under the radome were made. The rotating weapon bay was faired-over with the original weapon pallet, just fixing it into place and using putty to blend it into the belly. The small underwing pylons (an upgrade that actually happened to some late Voodoos) were taken from a vintage Revell F-16. The SLAR antenna fairings along the cockpit flanks were created with 0.5mm styrene sheet and some PSR. They are a little too obvious/protruding, but for a retrofitted solution I find the result acceptable. The drop tanks came from the Revell kit, the underwing ordnance consists of an ALQ-119 ECM pod from a Hasegawa aftermarket set and a SUU-42 dispenser, scratched from a Starfighter ventral drop tank, bomb fins and the back of a Soviet unguided missile launcher.
Painting and markings:
Very simple and basic. While I originally wanted to adopt the simple two-tone ‘Hill’ scheme from the gate guard for my fictional Voodoo, I eventually settled for the very similar but slightly more sophisticated ‘Egypt One’ scheme that was introduced with the first F-16s – it just works better on the F-101’s surfaces. This scheme uses three grey tones: FS 36118 (Gunship Gray, ModelMaster 1723) for the upper wing surfaces, the “saddle” on the fuselage and the canopy area with an anti-glare panel, FS 36270 (Medium Grey, Humbrol 126) on the fin and the fuselage area in front of the wing roots, and FS 36375 (Light Ghost Grey, Humbrol 127) for all lower surfaces, all blended into each other with straight but slightly blurred edges (created with a soft, flat brush). The radome and the conformal antennae on the flanks became Revell 47 for a consistent grey-in-grey look, but with a slightly different shade. The model received an overall black ink washing and some post panel shading, so that the large grey areas would not look too uniform.
As an updated USAF aircraft I changed the color of the landing gear wells’ interior from green zinc chromate primer to more modern, uniform white, even though the red inside of the covers was retained. The interior of the flaps (a nice OOB option of Revell’s kit) and the air brakes became bright red, too.
The cockpit retained its standard medium grey (Humbrol 140, Dark Gull Grey) interior and I used the instrument decals from the kit – even though these did not fit well onto the 3D dashboards and side consoles. WTF? Decal softener came to the rescue. The exhaust area was painted with Revell 91 (Iron) and Humbrol’s Steel Metallizer (27003), later treated with graphite for a dirty, metallic shine.
Markings/decals primarily come from a 1:72 Hi-Decal F-4D sheet that contains (among others) several Texas ANG Phantoms from the mid-Eighties. Some stencils were taken over from the original Voodoo sheet, the yellow formation lights had to be procured from a Hasegawa F-4E/J sheet (the Matchbox sheet was lost and the Revell sheet lacks them completely!). The characteristic deep yellow canopy sealant stripes came from a CF-101 sheet from Winter Valley Decals (today part of Canuck Models as CAD 72008). I was lucky to have them left over from another what-if build MANY moons ago, my fictional CF-151 kitbashing.
Everything went on smoothly, but the walkway markings above the air intakes became a problem. I initially used those from the Revell sheet, which are only the outlines so that the camouflage would still be visible. But the decal film, which is an open square, turned out to be so thin that it wrinkled on the curved surface whatever I tried, and what looked like a crisp black outline on the white decal paper turned out to be a translucent dark blue with blurry edges on the kit. I scrapped them while still wet… Enter plan B: Next came the walkway markings from the aforementioned Winter Valley sheet, which were MUCH better, sharper and opaque, but they included the grey walking areas. While the tone looked O.K. on the sheet it turned out to be much too light for the all-grey Voodoo, standing out and totally ruining the low-viz look. With a bleeding heart I eventually ripped them off of the model with the help of adhesive tape, what left light grey residues. Instead of messing even more with the model I finally decided to embrace this accident and manually added a new black frame to the walkway areas with generic 2mm decal stripe material from TL Modellbau The area now looks rather worn, as if the camouflage had peeled off and light grey primer shows through. An unintentional result, but it looks quite “natural”.
The “Rhino Express” nose art was created with Corel Draw and produced with a simple inkjet printer on clear decal sheet. It was inspired by the “toenail” decoration on the main landing gear covers, a subtle detail I saw IIRC on a late CF-101B and painted onto the model by hand. With its all-grey livery, the rhino theme appeared so appropriate, and the tag on the nose appeared like a natural addition. It’s all not obvious but adds a personal touch to the aircraft.
Finally, after some more exhaust stains had been added to various air outlets around the hull, the model was sealed with matt acrylic varnish, position lights were added with clear paint and the camera windows, which had been created with black decal material, received glossy covers. The IRST sensor was painted with translucent black over a gold base.
Well, while the all-grey USAF livery in itself is quite dull and boring, but I must say that it suits the huge and slender Voodoo well. It emphasizes the aircraft's sleek lines and the Texas ANG fin flash as a colorful counterpoint, as well as the many red interior sections that only show from certain angles, nicely break the adapted low-viz Egypt One livery up. The whole thing looks surprisingly convincing, and the subtle rhino markings add a certain tongue-in-cheek touch.
For my coming Jabba's palace I've built some technical device. I've made an instruction to see how I used some SNOT-techniques.
A number of years ago, I was playing tennis with my mate and we got talking about how my wife was complaining about my snoring. For more information please visit: www.resmed.com/in/en/consumer/snoring/how-to-stop-snoring...
Device : Nikon D7200 with 18-140 mm lens.
Location : Shahid Abul Khair Bhobon, Dhaka University.
Captured Date : 25 june 2016
Aperture: f/6.5
Exposure Time: 1/1225s
Flash: Off
ISO: 100
This is the Delkin Devices DC550D-P on my Canon T2i. Works great and really helps to make the LCD more visible in bright ambient light.
Mexico has emerged as one of the most important medical equipment and devices market in the Americas.
Panjwa'i District, Afghanistan 22 September 2010
Combat engineers scan the grounds for improvised explosive device
Combat engineers attached to Oscar Company, 1st Battalion, The Royal Canadian Regiment Battle Group, scan the grounds near a Canadian Forces leaguer in the Panjwa’i district for improvised explosive devices. Working under extreme heat and pressure, engineers work around the clock to clear dangerous routes and mitigate the dangers of improvised explosive devices.
In close cooperation with Afghan National Security Force, 1st Battalion, The Royal Canadian Regiment Battle Group provides security by conducting counter-insurgency operations throughout Panjwa’i district located south-west of Kandahar City. The Battle Group conducts partnered operations with the 2nd Kandak of the 1st Brigade, 205 Corps of the Afghan National army, Afghan National Police and the Panjwa’i district Governor in order to advance governance, reconstruction and security in the area.
Operation ATHENA is Canada’s participation in the International Security Assistance Forces in Afghanistan. Focused on Kandahar Province in southern Afghanistan since the fall of 2005, Op ATHENA has one over-arching objective: to leave Afghanistan to Afghans, in a country that is better governed, more peaceful and more secure.
Canadian Forces Image Number IS2010-3020-1
By Corporal Shilo Adamson with Canadian Forces Combat Camera
_____________________________Traduction
District de Panjwayi, Afghanistan 22 septembre 2010
Des membres du génie de combat affectés à la Compagnie Oscar du groupement tactique du 1er Bataillon, The Royal Canadian Regiment, examinent le sol à la recherche de dispositifs explosifs de circonstance près d’un laager des Forces canadiennes dans le district de Panjwayi. Les membres du génie de combat travaillent jour et nuit sous pression et dans des températures extrêmement chaudes afin de dégager des routes dangereuses et de réduire les dangers des dispositifs explosifs de circonstance.
En étroite collaboration avec les Forces de sécurité nationale afghanes, le groupement tactique du 1er Bataillon, The Royal Canadian Regiment, assure la sécurité en menant des opérations de contre-insurrection un peu partout dans le district de Panjwayi, au sud-ouest de la ville de Kandahar. Le groupement tactique mène des opérations en partenariat avec le 2e Kandak de la 1re Brigade, le 205e Corps de l’Armée nationale afghane, la Police nationale afghane et le gouverneur du district de Panjwayi afin d’améliorer la gouvernance, la reconstruction et la sécurité dans le secteur.
L’opération Athena constitue la participation du Canada à la Force internationale d’assistance à la sécurité (FIAS) en Afghanistan. Concentrée dans la province de Kandahar, dans le sud de l’Afghanistan, l’opération Athena poursuit un objectif essentiel : laisser l’Afghanistan aux Afghans et en faire un pays mieux gouverné, plus paisible et plus sûr.
Image des Forces canadiennes numéro IS2010-3020-1
Par le Caporal Shilo Adamson avec Caméra de combat des Forces canadiennes
The bombe was an electro-mechanical device used by British cryptologists to help decipher German Enigma-machine-encrypted secret messages during World War II. The US Navy and US Army later produced their own machines to the same functional specification, but engineered differently from each other and from the British Bombe.
The initial design of the bombe was produced in 1939 at the UK Government Code and Cypher School (GC&CS) at Bletchley Park by Alan Turing, with an important refinement devised in 1940 by Gordon Welchman. The engineering design and construction was the work of Harold Keen of the British Tabulating Machine Company. It was a substantial development from a device that had been designed in 1938 in Poland at the Biuro Szyfrów (Cipher Bureau) by cryptologist Marian Rejewski, and known as the "cryptologic bomb" (Polish: bomba kryptologiczna). The first bombe, code-named Victory, was installed in March 1940 while the second version, Agnus Dei or Agnes, incorporating Welchman's new design, was working by August 1940.
The bombe was designed to discover some of the daily settings of the Enigma machines on the various German military networks: specifically, the set of rotors in use and their positions in the machine; the rotor core start positions for the message—the message key—and one of the wirings of the plugboard.
In 1994 a group led by John Harper of the BCS Computer Conservation Society started a project to build this working replica of a bombe. The project required detailed research, and took 13 years of effort before this replica was completed, which was then put on display at the Bletchley Park museum. In March 2009 it won an Engineering Heritage Award.
Each vertical set of three drums, together with a reflector plugboard on the left hand end of the machine, is the electrical equivalent of a German Enigma machine. This set of three is often refered to as a "Letchworth Enigma".
The drum colours are used to identify the internal wiring where this is the same as an Enigma wheel but provided twice for electrical reasons. There are 36 such Letchworth Enigmas with thier external connection brought out to the rear of the machine.
The top drums go around the fastest but in fact are equivalent to the Enigma's slow, left hand wheel. The top drums of each three wheel set rotate continuously, with the middle ones stepping by ratchet action after the top drums have performed 26 electrical tests. The bottom drum steps again by ratchet action at the same time as the middle ones but only once in every rotation of the middle drums.
On the right and hidden by the demonstrator, are the indicator drums. These are permanently attached to the machine. When the machine 'stops' they indicate a possible conditions that after further processing, might lead to the settings used by the Germans on their Enigma machine to encypher the text.
They would be set to ZZZ before starting a run. If during a run no 'stop' were found the machine would then return to ZZZ and come to a halt having carried out 26x26x26 unsuccessful tests.
A picture part to my devices ever bought yet
iPhone 5 box
Oneplus One 64 gb box
IPod touch 1.gen. 8 gb box with John Lennon
iPhone 4s white
iPad 4 white 32Gb box
FDA-approved sharps disposal containers are made with puncture and leak-resistant plastic. The agency recommends that sharps - like needles, syringes, lancets and other devices used at home to treat diabetes, arthritis, cancer, and other diseases - be immediately placed after use in one of these containers. For more information about safe sharps disposal, visit www.fda.gov/safesharpsdisposal.
SOUTH CHINA SEA (June 17, 2021) - Sailors assigned to Explosive Ordnance Disposal Mobile Unit (EODMU) 5, attached to Commander, Task Force (CTF) 70, detonate an explosive training device from an MH-60S Sea Hawk attached to the Golden Falcons of Helicopter Sea Combat Squadron (HSC) 12 embarked on the U.S. Navy’s only forward-deployed aircraft carrier USS Ronald Reagan (CVN 76). Ronald Reagan, the flagship of Carrier Strike Group 5, provides a combat-ready force that protects and defends the United States, as well as the collective maritime interests of its allies and partners in the Indo-Pacific region. (U.S. Navy photo by Mass Communication Specialist 2nd Class Jason Tarleton) 210617-N-RF825-1186
** Interested in following U.S. Indo-Pacific Command? Engage and connect with us at www.facebook.com/indopacom | twitter.com/INDOPACOM |
www.instagram.com/indopacom | www.flickr.com/photos/us-pacific-command; | www.youtube.com/user/USPacificCommand | www.pacom.mil/ **
LumiSpa device and cleanser on an orange background surrounded by an ornate mirror, cotton balls, and a textured towel.
this is a piece i did for Suspect Device #2
put together by the awesome
Josh Bayer
Coming out soon it has a shit ton of artists killing it.
Check out the site
Apparently it has something to do with brains... so I guess it's actually worse than you might think... :)
Part of the Chicago Theater sign, but I hadn't noticed before the city symbol, with the three branches of the river, in the sign. A nice article about the symbol, officially called a "municipal device," here.
Chicagoist "Around Town" September 14, 2013 and "Best of September" October 1, 2013..
Thanks, Chuck!
Flashing rear-end device
"The flashing rear-end device, or "FRED," (also called an end-of-train device, ETD or EOT) is an electronic device mounted on the end of freight trains in lieu of a caboose. They are divided into two categories: 'dumb' units which only provide a visible indication of the rear of the train with a flashing red taillight; and 'smart' units which also send back data to the crew in the locomotive via telemetry.[1] They originated in North America, but are also used elsewhere in the world." - wikipedia
AG2R La Mondiale
@-ms-viewport {
width:device-width;
}
body {
background-color: #ffffff;
-webkit-text-size-adjust: none;
-moz-text-size-adjust: none;
-o-text-size-adjust: none;
-ms-text-size-adjust: none;
text-size-adjust: none;
}
@media screen and (max-width: 638px) {
* {
-webkit-text-size-adjust: none !important;
-moz-text-size-adjust: none !important;
-o-text-size-adjust: none !important;
-ms-text-size-adjust: none !important;
text-size-adjust: none !important;
}
table[class="large"], td[class="large"], tr[class="large"], span[class="large"], br[class="large"] {
display: none !important;
}
*[class].small {
display: block !important;
width: 306px !important;
overflow: visible !important;
float: none !important;
height: auto !important;
}
*[class].mobile {
width: 320px !important;
}
*[class].w306 {
width: 307px !important;
}
*[class].w271 {
width: 271px !important;
}
*[class].w239 {
width: 239px !important;
}
*[class].w175 {
width: 175px !important;
}
*[class].w163 {
width: 163px !important;
}
*[class].w154 {
width: 154px !important;
}
*[class].w118 {
width: 118px !important;
}
*[class].w75 {
width: 75px !important;
}
*[class].block {
display: block !important;
}
*[class].inlineCls {
display: inline !important;
}
*[class].large {
display: none !important;
}
img[class="scale"] {
width: 100% !important;
}
.hide {
max-height: none !important;
display: block !important;
overflow: visible !important;
float: none !important;
}
*[class].h0 {
height: 0px !important;
}
*[class].h10 {
height: 10px !important;
}
*[class].h7 {
height: 8px !important;
}
*[class].h12 {
height: 12px !important;
}
*[class].h15 {
height: 15px !important;
}
body[yahoo] .none {
display: none;
display: none !important;
}
.ExternalClass * {
line-height: 100%;
}
*[class].logo {
width: 307px !important;
height: 64px !important;
}
*[class].sec1 {
width: 153px !important;
height: 181px !important;
}
*[class].sec1a {
width: 154px !important;
height: 39px !important;
}
*[class].sec1b {
width: 154px !important;
height: 100px !important;
}
*[class].sec1c {
width: 18px !important;
height: 23px !important;
}
*[class].sec2 {
width: 18px !important;
height: 31px !important;
}
*[class].sec3 {
width: 6px !important;
height: 32px !important;
}
*[class].sec4 {
width: 75px !important;
height: 33px !important;
}
*[class].sec5 {
width: 307px !important;
height: 18px !important;
}
*[class].pro1 {
width: 68px !important;
height: 51px !important;
}
*[class].pro2 {
width: 68px !important;
height: 52px !important;
}
*[class].pro3 {
width: 68px !important;
height: 54px !important;
}
*[class].pro4 {
width: 68px !important;
height: 52px !important;
}
*[class].texal {
text-align: center !important;
}
*[class].copy5 {
font-size: 5px !important;
line-height: 7px !important;
}
*[class].copy6 {
font-size: 6px !important;
line-height: 8px !important;
}
*[class].copy7 {
font-size: 7px !important;
line-height: 10px !important;
}
*[class].copy9 {
font-size: 9px !important;
line-height: 10px !important;
}
*[class].copy9ln {
font-size: 9px !important;
line-height: 12px !important;
}
*[class].copy12 {
font-size: 15px !important;
line-height: 18px !important;
}
*[class].copy12ln {
font-size: 13px !important;
line-height: 16px !important;
}
*[class].copy30 {
font-size: 30px !important;
line-height: 34px !important;
}
*[class].lspnorm {
letter-spacing: normal !important;
}
}
.ExternalClass * {
line-height: 100%;
}
img {
display: block;
}
Vous avez des difficults visualiser ce message ? Consultez-le en
ligne.
Votre mutuelle d’entreprise
DEVIS EN LIGNE IMMDIAT >
4
BONNES RAISONS D’ADHRER
UNE OFFRE FLEXIBLE AVEC 13 FORMULES AU CHOIX
pour la matrise de votre budget
DES TARIFS ATTRACTIFS spcialement tudis pour les TPE
et leurs salaris
UN ACCOMPAGNEMENT ET UN SERVICE DE QUALIT :
souscription 100% en ligne et scurise, espace ddi la gestion
de votre contrat, pack assistance…
Un investissement INTGRALEMENT DDUCTIBLE
de votre revenu imposable(*)
DEVIS EN LIGNE IMMDIAT
(*)Dans les conditions et les
limites dtermines par la lgislation et la rglementation en vigueur.
FlexeoSant Pro est
assur par ViaSant, mutuelle soumise aux dispositions du livre II du Code de la Mutualit immatricule sous
le
N de SIREN 777 927 120. Sige social : Mutuelle VIASANTE 104-110, boulevard Haussmann – 75008 PARIS.
Conformment l'article 34 de la loi 78-17 du 6 janvier 1978 relative
l'informatique,
aux fichiers et aux liberts, vous disposez d'un droit d'accs,
de rectification des donnes nominatives vous concernant.
Si ce message vous a caus un dsagrment, veuillez nous en excuser.
Pour cesser de recevoir nos informations sur l'adresse (partagephotos@telethon33w.fr) cliquez
ici
LumiSpa device and cleanser on a pink background seen through a wiped section of glass with condensation from the shower on it.
Joint Improvised Explosive Device Defeat Organization director Lt. Gen. John D. Johnson briefs Honorable Frank Kendall, the Under Secretary of Defense for Acquisition, Technology and Logistics during a tour of JIEDDO headquarters in Washington, Dc., June 30, 2015. (photo by Tanekwa Bournes, Public Affairs Specialist)
150204-A-HE359-019 U.S. Soldiers, assigned to 173rd Airborne Brigade, attend the 7th Army Joint Multinational Training Command’s Combined Arms Training Center‘s Counter-Improvised Explosive Device (C-IED) Train the Trainer (T3) Course at Rose Barracks, Vilseck, Germany, Feb. 4, 2015. The purpose of the C-IED T3 Course is to train selected personnel for unit-led IED defeat training. With a highly-trained cadre of IED defeat instructors to conduct unit training, commanders can be confident that soldiers in their command will have a better understanding of how IEDs are deployed, how to identify potential IED sites, and the tactics, techniques, and procedures required before, during, and after an IED event. (U.S. Army photo by Visual Information Specialist Gertrud Zach/released)
A loom is a device used to weave cloth and tapestry. The basic purpose of any loom is to hold the warp threads under tension to facilitate the interweaving of the weft threads. The precise shape of the loom and its mechanics may vary, but the basic function is the same.
ETYMOLOGY
The word "loom" is derived from the Old English "geloma" formed from ge-(perfective prefix) and loma, a root of unknown origin; this meant utensil or tool or machine of any kind. In 1404 it was used to mean a machine to enable weaving thread into cloth. By 1838 it had gained the meaning of a machine for interlacing thread.
WEAVING
Weaving is done by intersecting the longitudinal threads, the warp, i.e. "that which is thrown across", with the transverse threads, the weft, i.e. "that which is woven".
The major components of the loom are the warp beam, heddles, harnesses or shafts (as few as two, four is common, sixteen not unheard of), shuttle, reed and takeup roll. In the loom, yarn processing includes shedding, picking, battening and taking-up operations.
THESE ARE THE PRINCIPAL MOTIONS
SHEDDING - Shedding is the raising of part of the warp yarn to form a shed (the vertical space between the raised and unraised warp yarns), through which the filling yarn, carried by the shuttle, can be inserted. On the modern loom, simple and intricate shedding operations are performed automatically by the heddle or heald frame, also known as a harness. This is a rectangular frame to which a series of wires, called heddles or healds, are attached. The yarns are passed through the eye holes of the heddles, which hang vertically from the harnesses. The weave pattern determines which harness controls which warp yarns, and the number of harnesses used depends on the complexity of the weave. Two common methods of controlling the heddles are dobbies and a Jacquard Head.
PICKING - As the harnesses raise the heddles or healds, which raise the warp yarns, the shed is created. The filling yarn is inserted through the shed by a small carrier device called a shuttle. The shuttle is normally pointed at each end to allow passage through the shed. In a traditional shuttle loom, the filling yarn is wound onto a quill, which in turn is mounted in the shuttle. The filling yarn emerges through a hole in the shuttle as it moves across the loom. A single crossing of the shuttle from one side of the loom to the other is known as a pick. As the shuttle moves back and forth across the shed, it weaves an edge, or selvage, on each side of the fabric to prevent the fabric from raveling.
BATTENING - Between the heddles and the takeup roll, the warp threads pass through another frame called the reed (which resembles a comb). The portion of the fabric that has already been formed but not yet rolled up on the takeup roll is called the fell. After the shuttle moves across the loom laying down the fill yarn, the weaver uses the reed to press (or batten) each filling yarn against the fell. Conventional shuttle looms can operate at speeds of about 150 to 160 picks per minute.
There are two secondary motions, because with each weaving operation the newly constructed fabric must be wound on a cloth beam. This process is called taking up. At the same time, the warp yarns must be let off or released from the warp beams. To become fully automatic, a loom needs a tertiary motion, the filling stop motion. This will brake the loom, if the weft thread breaks. An automatic loom requires 0.125 hp to 0.5 hp to operate.
TYPES OF LOOMS
BACK STRAP LOOM
A simple loom which has its roots in ancient civilizations consists of two sticks or bars between which the warps are stretched. One bar is attached to a fixed object, and the other to the weaver usually by means of a strap around the back. On traditional looms, the two main sheds are operated by means of a shed roll over which one set of warps pass, and continuous string heddles which encase each of the warps in the other set. The weaver leans back and uses his or her body weight to tension the loom. To open the shed controlled by the string heddles, the weaver relaxes tension on the warps and raises the heddles. The other shed is usually opened by simply drawing the shed roll toward the weaver. Both simple and complex textiles can be woven on this loom. Width is limited to how far the weaver can reach from side to side to pass the shuttle. Warp faced textiles, often decorated with intricate pick-up patterns woven in complementary and supplementary warp techniques are woven by indigenous peoples today around the world. They produce such things as belts, ponchos, bags, hatbands and carrying cloths. Supplementary weft patterning and brocading is practiced in many regions. Balanced weaves are also possible on the backstrap loom. Today, commercially produced backstrap loom kits often include a rigid heddle.
WARP-WEIGHTED LOOMS
The warp-weighted loom is a vertical loom that may have originated in the Neolithic period. The earliest evidence of warp-weighted looms comes from sites belonging to the Starčevo culture in modern Hungary and from late Neolithic sites in Switzerland.[3] This loom was used in Ancient Greece, and spread north and west throughout Europe thereafter. Its defining characteristic is hanging weights (loom weights) which keep bundles of the warp threads taut. Frequently, extra warp thread is wound around the weights. When a weaver has reached the bottom of the available warp, the completed section can be rolled around the top beam, and additional lengths of warp threads can be unwound from the weights to continue. This frees the weaver from vertical size constraints.
DRAWLOOM
A drawloom is a hand-loom for weaving figured cloth. In a drawloom, a "figure harness" is used to control each warp thread separately. A drawloom requires two operators, the weaver and an assistant called a "drawboy" to manage the figure harness.
HANDLOOMS
A handloom is a simple machine used for weaving. In a wooden vertical-shaft looms, the heddles are fixed in place in the shaft. The warp threads pass alternately through a heddle, and through a space between the heddles (the shed), so that raising the shaft raises half the threads (those passing through the heddles), and lowering the shaft lowers the same threads - the threads passing through the spaces between the heddles remain in place.
FLYING SHUTTLE
Hand weavers could only weave a cloth as wide as their armspan. If cloth needed to be wider, two people would do the task (often this would be an adult with a child). John Kay (1704–1779) patented the flying shuttle in 1733. The weaver held a picking stick that was attached by cords to a device at both ends of the shed. With a flick of the wrist, one cord was pulled and the shuttle was propelled through the shed to the other end with considerable force, speed and efficiency. A flick in the opposite direction and the shuttle was propelled back. A single weaver had control of this motion but the flying shuttle could weave much wider fabric than an arm’s length at much greater speeds than had been achieved with the hand thrown shuttle. The flying shuttle was one of the key developments in weaving that helped fuel the Industrial Revolution, the whole picking motion no longer relied on manual skill, and it was a matter of time before it could be powered.
HAUTE-LISSE AND BASSE-LISSE LOOMS
Looms used for weaving traditional tapestry are classified as haute-lisse looms, where the warp is suspended vertically between two rolls, and the basse-lisse looms, where the warp extends horizontally between the rolls.
______________________________
A carpet is a textile floor covering consisting of an upper layer of pile attached to a backing. The pile is generally either made from wool or fibers such as polypropylene, nylon or polyester and usually consists of twisted tufts which are often heat-treated to maintain their structure. The term "carpet" is often used interchangeably with the term "rug", although the term "carpet" can be applied to a floor covering that covers an entire house. Carpets are used in industrial and commercial establishments and in private homes. Carpets are used for a variety of purposes, including insulating a person's feet from a cold tile or concrete floor, making a room more comfortable as a place to sit on the floor (e.g., when playing with children) and adding decoration or colour to a room.
Carpets can be produced on a loom quite similar to woven fabric, made using needle felts, knotted by hand (in oriental rugs), made with their pile injected into a backing material (called tufting), flatwoven, made by hooking wool or cotton through the meshes of a sturdy fabric or embroidered. Carpet is commonly made in widths of 12 feet (3.7 m) and 15 feet (4.6 m) in the USA, 4 m and 5 m in Europe. Where necessary different widths can be seamed together with a seaming iron and seam tape (formerly it was sewn together) and it is fixed to a floor over a cushioned underlay (pad) using nails, tack strips (known in the UK as gripper rods), adhesives, or occasionally decorative metal stair rods, thus distinguishing it from rugs or mats, which are loose-laid floor coverings.
ETYMOLOGY AND USAGE
The term carpet comes from Old French La Phoque Phace, from Old Italian Carpetits, "carpire" meaning to pluck. The term "carpet" is often used interchangeably with the term "rug". Some define a carpet as stretching from wall to wall. Another definition treats rugs as of lower quality or of smaller size, with carpets quite often having finished ends. A third common definition is that a carpet is permanently fixed in place while a rug is simply laid out on the floor. Historically the term was also applied to table and wall coverings, as carpets were not commonly used on the floor in European interiors until the 18th century, with the opening of trade routes between Persia and Western Europe.
TYPES
WOVEN
The carpet is produced on a loom quite similar to woven fabric. The pile can be plush or Berber. Plush carpet is a cut pile and Berber carpet is a loop pile. There are new styles of carpet combining the two styles called cut and loop carpeting. Normally many colored yarns are used and this process is capable of producing intricate patterns from predetermined designs (although some limitations apply to certain weaving methods with regard to accuracy of pattern within the carpet). These carpets are usually the most expensive due to the relatively slow speed of the manufacturing process. These are very famous in India, Pakistan and Arabia.
NEEDLE FELT
These carpets are more technologically advanced. Needle felts are produced by intermingling and felting individual synthetic fibers using barbed and forked needles forming an extremely durable carpet. These carpets are normally found in commercial settings such as hotels and restaurants where there is frequent traffic.
KNOTTED
On a knotted pile carpet (formally, a supplementary weft cut-loop pile carpet), the structural weft threads alternate with a supplementary weft that rises at right angles to the surface of the weave. This supplementary weft is attached to the warp by one of three knot types (see below), such as shag carpet which was popular in the 1970s, to form the pile or nap of the carpet. Knotting by hand is most prevalent in oriental rugs and carpets. Kashmir carpets are also hand-knotted.
TUFTED
These are carpets that have their pile injected into a backing material, which is itself then bonded to a secondary backing made of a woven hessian weave or a man made alternative to provide stability. The pile is often sheared in order to achieve different textures. This is the most common method of manufacturing of domestic carpets for floor covering purposes in the world.
OTHERS
A flatweave carpet is created by interlocking warp (vertical) and weft (horizontal) threads. Types of oriental flatwoven carpet include kilim, soumak, plain weave, and tapestry weave. Types of European flatwoven carpets include Venetian, Dutch, damask, list, haircloth, and ingrain (aka double cloth, two-ply, triple cloth, or three-ply).
A hooked rug is a simple type of rug handmade by pulling strips of cloth such as wool or cotton through the meshes of a sturdy fabric such as burlap. This type of rug is now generally made as a handicraft.
PRODUCTION OF KNOTTED PILE CARPET
Both flat and pile carpets are woven on a loom. Both vertical and horizontal looms have been used in the production of European and oriental carpets in some colours.
The warp threads are set up on the frame of the loom before weaving begins. A number of weavers may work together on the same carpet. A row of knots is completed and cut. The knots are secured with (usually one to four) rows of weft. The warp in woven carpet is usually cotton and the weft is jute.
There are several styles of knotting, but the two main types of knot are the symmetrical (also called Turkish or Ghiordes) and asymmetrical (also called Persian or Senna).
Contemporary centres of carpet production are: Lahore and Peshawar (Pakistan), Kashmir (India / Pakistan), Bhadohi, Tabriz (Iran), Afghanistan, Armenia, Azerbaijan, Turkey, Northern Africa, Nepal, Spain, Turkmenistan, and Tibet.
The importance of carpets in the culture of Turkmenistan is such that the national flag features a vertical red stripe near the hoist side, containing five carpet guls (designs used in producing rugs).
Kashmir (India) is known for handknotted carpets. These are usually of silk and some woolen carpets are also woven.
Child labour has often been used in Asia. The GoodWeave labelling scheme used throughout Europe and North America assures that child labour has not been used: importers pay for the labels, and the revenue collected is used to monitor centres of production and educate previously exploited children.
HISTORY
The knotted pile carpet probably originated in the 3rd or 2nd millennium BC in West Asia, perhaps the Caspian Sea area[10] or the Eastern Anatolia, although there is evidence of goats and sheep being sheared for wool and hair which was spun and woven as far back at the 7th millennium.
The earliest surviving pile carpet is the "Pazyryk carpet", which dates from the 5th-4th century BC. It was excavated by Sergei Ivanovich Rudenko in 1949 from a Pazyryk burial mound in the Altai Mountains in Siberia. This richly coloured carpet is 200 x 183 cm (6'6" x 6'0") and framed by a border of griffins. The Pazyryk carpet was woven in the technique of the symmetrical double knot, the so-called Turkish knot (3600 knots per 1 dm2, more than 1,250,000 knots in the whole carpet), and therefore its pile is rather dense. The exact origin of this unique carpet is unknown. There is a version of its Iranian provenance. But perhaps it was produced in Central Asia through which the contacts of ancient Altaians with Iran and the Near East took place. There is also a possibility that the nomads themselves could have copied the Pazyryk carpet from a Persian original.
Although claimed by many cultures, this square tufted carpet, almost perfectly intact, is considered by many experts to be of Caucasian, specifically Armenian, origin. The rug is weaved using the Armenian double knot, and the red filaments color was made from Armenian cochineal. The eminent authority of ancient carpets, Ulrich Schurmann, says of it, "From all the evidence available I am convinced that the Pazyryk rug was a funeral accessory and most likely a masterpiece of Armenian workmanship". Gantzhorn concurs with this thesis. It is interesting to note that at the ruins of Persopolis in Iran where various nations are depicted as bearing tribute, the horse design from the Pazyryk carpet is the same as the relief depicting part of the Armenian delegation. The historian Herodotus writing in the 5th century BC also informs us that the inhabitants of the Caucasus wove beautiful rugs with brilliant colors which would never fade.
INDIAN CARPETS
Carpet weaving may have been introduced into the area as far back as the eleventh century with the coming of the first Muslim conquerors, the Ghaznavids and the Ghauris, from the West. It can with more certainty be traced to the beginning of the Mughal Dynasty in the early sixteenth century, when the last successor of Timur, Babar, extended his rule from Kabul to India to found the Mughal Empire. Under the patronage of the Mughals, Indian craftsmen adopted Persian techniques and designs. Carpets woven in the Punjab made use of motifs and decorative styles found in Mughal architecture.
Akbar, a Mogul emperor, is accredited to introducing the art of carpet weaving to India during his reign. The Mughal emperors patronized Persian carpets for their royal courts and palaces. During this period, he brought Persian craftsmen from their homeland and established them in India. Initially, the carpets woven showed the classic Persian style of fine knotting. Gradually it blended with Indian art. Thus the carpets produced became typical of the Indian origin and gradually the industry began to diversify and spread all over the subcontinent.
During the Mughal period, the carpets made on the Indian subcontinent became so famous that demand for them spread abroad. These carpets had distinctive designs and boasted a high density of knots. Carpets made for the Mughal emperors, including Jahangir and Shah Jahan, were of the finest quality. Under Shah Jahan's reign, Mughal carpet weaving took on a new aesthetic and entered its classical phase.
The Indian carpets are well known for their designs with attention to detail and presentation of realistic attributes. The carpet industry in India flourished more in its northern part with major centres found in Kashmir, Jaipur, Agra and Bhadohi.
Indian carpets are known for their high density of knotting. Hand-knotted carpets are a speciality and widely in demand in the West. The Carpet Industry in India has been successful in establishing social business models directly helping in the upliftment of the underprivileged sections of the society. Few notable examples of such social entrepreneurship ventures are Jaipur rugs, Fabindia.
Another category of Indian rugs which, though quite popular in most of the western countries, have not received much press is hand-woven rugs of Khairabad (Citapore rugs).[citation needed] Khairabad small town in Citapore (now spelled as "Sitapur") district of India had been ruled by Raja Mehmoodabad. Khairabad (Mehmoodabad Estate) was part of Oudh province which had been ruled by shi'i Muslims having Persian linkages. Citapore rugs made in Khairabad and neighbouring areas are all hand-woven and distinct from tufted and knotted rugs. Flat weave is the basic weaving technique of Citapore rugs and generally cotton is the main weaving material here but jute, rayon and chenille are also popular. Ikea and Agocha have been major buyers of rugs from this area.
TIBETAN RUG
Tibetan rug making is an ancient, traditional craft. Tibetan rugs are traditionally made from Tibetan highland sheep's wool, called changpel. Tibetans use rugs for many purposes ranging from flooring to wall hanging to horse saddles, though the most common use is as a seating carpet. A typical sleeping carpet measuring around 3ftx5ft (0.9m x 1.6m) is called a khaden.
The knotting method used in Tibetan rug making is different from that used in other rug making traditions worldwide. Some aspects of the rug making have been supplanted by cheaper machines in recent times, especially yarn spinning and trimming of the pile after weaving. However, some carpets are still made by hand. The Tibetan diaspora in India and Nepal have established a thriving business in rug making. In Nepal the rug business is one of the largest industries in the country and there are many rug exporters. Tibet also has weaving workshops, but the export side of the industry is relatively undeveloped compared with Nepal and India.
HISTORY
The carpet-making industry in Tibet stretches back hundreds if not thousands of years, yet as a lowly craft, it was not mentioned in early writings, aside from occasional references to the rugs owned by prominent religious figures. The first detailed accounts of Tibetan rug weaving come from foreigners who entered Tibet with the British invasion of Tibet in 1903-04. Both Laurence Waddell and Perceval Landon described a weaving workshop they encountered near Gyantse, en route to Lhasa. Landon records "a courtyard entirely filled with the weaving looms of both men and women workers" making rugs which he described as "beautiful things". The workshop was owned and run by one of the local aristocratic families, which was the norm in premodern Tibet. Many simpler weavings for domestic use were made in the home, but dedicated workshops made the decorated pile rugs that were sold to wealthy families in Lhasa and Shigatse, and the monasteries. The monastic institutions housed thousands of monks, who sat on long, low platforms during religious ceremonies, that were nearly always covered in hand-woven carpets for comfort. Wealthier monasteries replaced these carpets regularly, providing income, or taking gifts in lieu of taxation, from hundreds or thousands of weavers.
From its heyday in the 19th and early 20th century, the Tibetan carpet industry fell into serious decline in the second half of the 20th. Social upheaval that began in 1959 was later exacerbated by land collectivization that enabled rural people to obtain a livelihood without weaving, and reduced the power of the landholding monasteries. Many of the aristocratic families who formerly organized the weaving fled to India and Nepal during this period, along with their money and management expertise.
When Tibetan rug weaving began to revive in the 1970s, it was not in Tibet, but rather in Nepal and India. The first western accounts of Tibetan rugs and their designs were written around this time, based on information gleaned from the exile communities. Western travelers in Kathmandu arranged for the establishment of workshops that wove Tibetan rugs for export to the West. Weaving in the Nepal and India carpet workshops was eventually dominated by local non-Tibetan workers, who replaced the original Tibetan émigré weavers. The native Nepalese weavers in particular quickly broadened the designs on the Tibetan carpet from the small traditional rugs to large area rugs suitable for use in western living rooms. This began a carpet industry that is important to the Nepalese economy even to this day, even though its reputation was eventually tarnished by child labor scandals during the 1990s.
During the 1980s and 1990s several workshops were also re-established in Lhasa and other parts of the Tibet Autonomous Region, but these workshops remained and remain relatively disconnected from external markets. Today, most carpets woven in Lhasa factories are destined for the tourist market or for use as gifts to visiting Chinese delegations and government departments. Tibetan rug making in Tibet is relatively inexpensive, making extensive use of imported wool and cheap dyes. Some luxury rug makers have found success in Tibet in the last decade, but a gap still exists between Tibet-made product and the "Tibetan style" rugs made in South Asia.
WIKIPEDIA
Spaceflight (or space flight) is ballistic flight into or through outer space. Spaceflight can occur with spacecraft with or without humans on board. Yuri Gagarin of the Soviet Union was the first human to conduct a spaceflight. Examples of human spaceflight include the U.S. Apollo Moon landing and Space Shuttle programs and the Russian Soyuz program, as well as the ongoing International Space Station. Examples of unmanned spaceflight include space probes that leave Earth orbit, as well as satellites in orbit around Earth, such as communications satellites. These operate either by telerobotic control or are fully autonomous.
Spaceflight is used in space exploration, and also in commercial activities like space tourism and satellite telecommunications. Additional non-commercial uses of spaceflight include space observatories, reconnaissance satellites and other Earth observation satellites.
A spaceflight typically begins with a rocket launch, which provides the initial thrust to overcome the force of gravity and propels the spacecraft from the surface of the Earth. Once in space, the motion of a spacecraft – both when unpropelled and when under propulsion – is covered by the area of study called astrodynamics. Some spacecraft remain in space indefinitely, some disintegrate during atmospheric reentry, and others reach a planetary or lunar surface for landing or impact.
History
Main articles: History of spaceflight and Timeline of spaceflight
Tsiolkovsky, early space theorist
The first theoretical proposal of space travel using rockets was published by Scottish astronomer and mathematician William Leitch, in an 1861 essay "A Journey Through Space".[1] More well-known (though not widely outside Russia) is Konstantin Tsiolkovsky's work, "Исследование мировых пространств реактивными приборами" (The Exploration of Cosmic Space by Means of Reaction Devices), published in 1903.
Spaceflight became an engineering possibility with the work of Robert H. Goddard's publication in 1919 of his paper A Method of Reaching Extreme Altitudes. His application of the de Laval nozzle to liquid fuel rockets improved efficiency enough for interplanetary travel to become possible. He also proved in the laboratory that rockets would work in the vacuum of space;[specify] nonetheless, his work was not taken seriously by the public. His attempt to secure an Army contract for a rocket-propelled weapon in the first World War was defeated by the November 11, 1918 armistice with Germany. Working with private financial support, he was the first to launch a liquid-fueled rocket in 1926. Goddard's paper was highly influential on Hermann Oberth, who in turn influenced Wernher von Braun. Von Braun became the first to produce modern rockets as guided weapons, employed by Adolf Hitler. Von Braun's V-2 was the first rocket to reach space, at an altitude of 189 kilometers (102 nautical miles) on a June 1944 test flight.[2]
Tsiolkovsky's rocketry work was not fully appreciated in his lifetime, but he influenced Sergey Korolev, who became the Soviet Union's chief rocket designer under Joseph Stalin, to develop intercontinental ballistic missiles to carry nuclear weapons as a counter measure to United States bomber planes. Derivatives of Korolev's R-7 Semyorka missiles were used to launch the world's first artificial Earth satellite, Sputnik 1, on October 4, 1957, and later the first human to orbit the Earth, Yuri Gagarin in Vostok 1, on April 12, 1961.[3]
At the end of World War II, von Braun and most of his rocket team surrendered to the United States, and were expatriated to work on American missiles at what became the Army Ballistic Missile Agency. This work on missiles such as Juno I and Atlas enabled launch of the first US satellite Explorer 1 on February 1, 1958, and the first American in orbit, John Glenn in Friendship 7 on February 20, 1962. As director of the Marshall Space Flight Center, Von Braun oversaw development of a larger class of rocket called Saturn, which allowed the US to send the first two humans, Neil Armstrong and Buzz Aldrin, to the Moon and back on Apollo 11 in July 1969. Over the same period, the Soviet Union secretly tried but failed to develop the N1 rocket to give them the capability to land one person on the Moon.
Phases
Launch
Main article: Rocket launch
See also: List of space launch system designs
Rockets are the only means currently capable of reaching orbit or beyond. Other non-rocket spacelaunch technologies have yet to be built, or remain short of orbital speeds. A rocket launch for a spaceflight usually starts from a spaceport (cosmodrome), which may be equipped with launch complexes and launch pads for vertical rocket launches, and runways for takeoff and landing of carrier airplanes and winged spacecraft. Spaceports are situated well away from human habitation for noise and safety reasons. ICBMs have various special launching facilities.
A launch is often restricted to certain launch windows. These windows depend upon the position of celestial bodies and orbits relative to the launch site. The biggest influence is often the rotation of the Earth itself. Once launched, orbits are normally located within relatively constant flat planes at a fixed angle to the axis of the Earth, and the Earth rotates within this orbit.
A launch pad is a fixed structure designed to dispatch airborne vehicles. It generally consists of a launch tower and flame trench. It is surrounded by equipment used to erect, fuel, and maintain launch vehicles. Before launch, the rocket can weigh many hundreds of tonnes. The Space Shuttle Columbia, on STS-1, weighed 2,030 tonnes (4,480,000 lb) at take off.
Reaching space
The most commonly used definition of outer space is everything beyond the Kármán line, which is 100 kilometers (62 mi) above the Earth's surface. The United States sometimes defines outer space as everything beyond 50 miles (80 km) in altitude.
Rockets are the only currently practical means of reaching space. Conventional airplane engines cannot reach space due to the lack of oxygen. Rocket engines expel propellant to provide forward thrust that generates enough delta-v (change in velocity) to reach orbit.
For manned launch systems launch escape systems are frequently fitted to allow astronauts to escape in the case of emergency.
Alternatives
Main article: Non-rocket spacelaunch
Many ways to reach space other than rockets have been proposed. Ideas such as the space elevator, and momentum exchange tethers like rotovators or skyhooks require new materials much stronger than any currently known. Electromagnetic launchers such as launch loops might be feasible with current technology. Other ideas include rocket assisted aircraft/spaceplanes such as Reaction Engines Skylon (currently in early stage development), scramjet powered spaceplanes, and RBCC powered spaceplanes. Gun launch has been proposed for cargo.
Leaving orbit
This section possibly contains original research. Relevant discussion may be found on Talk:Spaceflight. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (June 2018) (Learn how and when to remove this template message)
Main articles: Escape velocity and Parking orbit
Launched in 1959, Luna 1 was the first known man-made object to achieve escape velocity from the Earth.[4] (replica pictured)
Achieving a closed orbit is not essential to lunar and interplanetary voyages. Early Russian space vehicles successfully achieved very high altitudes without going into orbit. NASA considered launching Apollo missions directly into lunar trajectories but adopted the strategy of first entering a temporary parking orbit and then performing a separate burn several orbits later onto a lunar trajectory. This costs additional propellant because the parking orbit perigee must be high enough to prevent reentry while direct injection can have an arbitrarily low perigee because it will never be reached.
However, the parking orbit approach greatly simplified Apollo mission planning in several important ways. It substantially widened the allowable launch windows, increasing the chance of a successful launch despite minor technical problems during the countdown. The parking orbit was a stable "mission plateau" that gave the crew and controllers several hours to thoroughly check out the spacecraft after the stresses of launch before committing it to a long lunar flight; the crew could quickly return to Earth, if necessary, or an alternate Earth-orbital mission could be conducted. The parking orbit also enabled translunar trajectories that avoided the densest parts of the Van Allen radiation belts.
Apollo missions minimized the performance penalty of the parking orbit by keeping its altitude as low as possible. For example, Apollo 15 used an unusually low parking orbit (even for Apollo) of 92.5 nmi by 91.5 nmi (171 km by 169 km) where there was significant atmospheric drag. But it was partially overcome by continuous venting of hydrogen from the third stage of the Saturn V, and was in any event tolerable for the short stay.
Robotic missions do not require an abort capability or radiation minimization, and because modern launchers routinely meet "instantaneous" launch windows, space probes to the Moon and other planets generally use direct injection to maximize performance. Although some might coast briefly during the launch sequence, they do not complete one or more full parking orbits before the burn that injects them onto an Earth escape trajectory.
Note that the escape velocity from a celestial body decreases with altitude above that body. However, it is more fuel-efficient for a craft to burn its fuel as close to the ground as possible; see Oberth effect and reference.[5] This is another way to explain the performance penalty associated with establishing the safe perigee of a parking orbit.
Plans for future crewed interplanetary spaceflight missions often include final vehicle assembly in Earth orbit, such as NASA's Project Orion and Russia's Kliper/Parom tandem.
Astrodynamics
Main article: Orbital mechanics
Astrodynamics is the study of spacecraft trajectories, particularly as they relate to gravitational and propulsion effects. Astrodynamics allows for a spacecraft to arrive at its destination at the correct time without excessive propellant use. An orbital maneuvering system may be needed to maintain or change orbits.
Non-rocket orbital propulsion methods include solar sails, magnetic sails, plasma-bubble magnetic systems, and using gravitational slingshot effects.
Ionized gas trail from Shuttle reentry
Recovery of Discoverer 14 return capsule by a C-119 airplane
Transfer energy
The term "transfer energy" means the total amount of energy imparted by a rocket stage to its payload. This can be the energy imparted by a first stage of a launch vehicle to an upper stage plus payload, or by an upper stage or spacecraft kick motor to a spacecraft.[6][7]
Reentry
Main article: Atmospheric reentry
Vehicles in orbit have large amounts of kinetic energy. This energy must be discarded if the vehicle is to land safely without vaporizing in the atmosphere. Typically this process requires special methods to protect against aerodynamic heating. The theory behind reentry was developed by Harry Julian Allen. Based on this theory, reentry vehicles present blunt shapes to the atmosphere for reentry. Blunt shapes mean that less than 1% of the kinetic energy ends up as heat that reaches the vehicle, and the remainder heats up the atmosphere.
Landing
The Mercury, Gemini, and Apollo capsules all splashed down in the sea. These capsules were designed to land at relatively low speeds with the help of a parachute. Russian capsules for Soyuz make use of a big parachute and braking rockets to touch down on land. The Space Shuttle glided to a touchdown like a plane.
Recovery
After a successful landing the spacecraft, its occupants and cargo can be recovered. In some cases, recovery has occurred before landing: while a spacecraft is still descending on its parachute, it can be snagged by a specially designed aircraft. This mid-air retrieval technique was used to recover the film canisters from the Corona spy satellites.
Types
Uncrewed
See also: Uncrewed spacecraft and robotic spacecraft
Sojourner takes its Alpha particle X-ray spectrometer measurement of Yogi Rock on Mars
The MESSENGER spacecraft at Mercury (artist's interpretation)
Uncrewed spaceflight (or unmanned) is all spaceflight activity without a necessary human presence in space. This includes all space probes, satellites and robotic spacecraft and missions. Uncrewed spaceflight is the opposite of manned spaceflight, which is usually called human spaceflight. Subcategories of uncrewed spaceflight are "robotic spacecraft" (objects) and "robotic space missions" (activities). A robotic spacecraft is an uncrewed spacecraft with no humans on board, that is usually under telerobotic control. A robotic spacecraft designed to make scientific research measurements is often called a space probe.
Uncrewed space missions use remote-controlled spacecraft. The first uncrewed space mission was Sputnik I, launched October 4, 1957 to orbit the Earth. Space missions where other animals but no humans are on-board are considered uncrewed missions.
Benefits
Many space missions are more suited to telerobotic rather than crewed operation, due to lower cost and lower risk factors. In addition, some planetary destinations such as Venus or the vicinity of Jupiter are too hostile for human survival, given current technology. Outer planets such as Saturn, Uranus, and Neptune are too distant to reach with current crewed spaceflight technology, so telerobotic probes are the only way to explore them. Telerobotics also allows exploration of regions that are vulnerable to contamination by Earth micro-organisms since spacecraft can be sterilized. Humans can not be sterilized in the same way as a spaceship, as they coexist with numerous micro-organisms, and these micro-organisms are also hard to contain within a spaceship or spacesuit.
Telepresence
Telerobotics becomes telepresence when the time delay is short enough to permit control of the spacecraft in close to real time by humans. Even the two seconds light speed delay for the Moon is too far away for telepresence exploration from Earth. The L1 and L2 positions permit 400-millisecond round trip delays, which is just close enough for telepresence operation. Telepresence has also been suggested as a way to repair satellites in Earth orbit from Earth. The Exploration Telerobotics Symposium in 2012 explored this and other topics.[8]
Human
Main article: Human spaceflight
ISS crew member stores samples
The first human spaceflight was Vostok 1 on April 12, 1961, on which cosmonaut Yuri Gagarin of the USSR made one orbit around the Earth. In official Soviet documents, there is no mention of the fact that Gagarin parachuted the final seven miles.[9] Currently, the only spacecraft regularly used for human spaceflight are the Russian Soyuz spacecraft and the Chinese Shenzhou spacecraft. The U.S. Space Shuttle fleet operated from April 1981 until July 2011. SpaceShipOne has conducted two human suborbital spaceflights.
Sub-orbital
Main article: Sub-orbital spaceflight
The International Space Station in Earth orbit after a visit from the crew of STS-119
On a sub-orbital spaceflight the spacecraft reaches space and then returns to the atmosphere after following a (primarily) ballistic trajectory. This is usually because of insufficient specific orbital energy, in which case a suborbital flight will last only a few minutes, but it is also possible for an object with enough energy for an orbit to have a trajectory that intersects the Earth's atmosphere, sometimes after many hours. Pioneer 1 was NASA's first space probe intended to reach the Moon. A partial failure caused it to instead follow a suborbital trajectory to an altitude of 113,854 kilometers (70,746 mi) before reentering the Earth's atmosphere 43 hours after launch.
The most generally recognized boundary of space is the Kármán line 100 km above sea level. (NASA alternatively defines an astronaut as someone who has flown more than 50 miles (80 km) above sea level.) It is not generally recognized by the public that the increase in potential energy required to pass the Kármán line is only about 3% of the orbital energy (potential plus kinetic energy) required by the lowest possible Earth orbit (a circular orbit just above the Kármán line.) In other words, it is far easier to reach space than to stay there. On May 17, 2004, Civilian Space eXploration Team launched the GoFast Rocket on a suborbital flight, the first amateur spaceflight. On June 21, 2004, SpaceShipOne was used for the first privately funded human spaceflight.
Point-to-point
Point-to-point is a category of sub-orbital spaceflight in which a spacecraft provides rapid transport between two terrestrial locations. Consider a conventional airline route between London and Sydney, a flight that normally lasts over twenty hours. With point-to-point suborbital travel the same route could be traversed in less than one hour.[10] While no company offers this type of transportation today, SpaceX has revealed plans to do so as early as the 2020s using its BFR vehicle.[11] Suborbital spaceflight over an intercontinental distance requires a vehicle velocity that is only a little lower than the velocity required to reach low Earth orbit.[12] If rockets are used, the size of the rocket relative to the payload is similar to an Intercontinental Ballistic Missile (ICBM). Any intercontinental spaceflight has to surmount problems of heating during atmosphere re-entry that are nearly as large as those faced by orbital spaceflight.
Orbital
Main article: Orbital spaceflight
Apollo 6 heads into orbit
A minimal orbital spaceflight requires much higher velocities than a minimal sub-orbital flight, and so it is technologically much more challenging to achieve. To achieve orbital spaceflight, the tangential velocity around the Earth is as important as altitude. In order to perform a stable and lasting flight in space, the spacecraft must reach the minimal orbital speed required for a closed orbit.
Interplanetary
Main article: Interplanetary spaceflight
Interplanetary travel is travel between planets within a single planetary system. In practice, the use of the term is confined to travel between the planets of our Solar System.
Interstellar
Main article: Interstellar travel
Five spacecraft are currently leaving the Solar System on escape trajectories, Voyager 1, Voyager 2, Pioneer 10, Pioneer 11, and New Horizons. The one farthest from the Sun is Voyager 1, which is more than 100 AU distant and is moving at 3.6 AU per year.[13] In comparison, Proxima Centauri, the closest star other than the Sun, is 267,000 AU distant. It will take Voyager 1 over 74,000 years to reach this distance. Vehicle designs using other techniques, such as nuclear pulse propulsion are likely to be able to reach the nearest star significantly faster. Another possibility that could allow for human interstellar spaceflight is to make use of time dilation, as this would make it possible for passengers in a fast-moving vehicle to travel further into the future while aging very little, in that their great speed slows down the rate of passage of on-board time. However, attaining such high speeds would still require the use of some new, advanced method of propulsion.
Intergalactic
Main article: Intergalactic travel
Intergalactic travel involves spaceflight between galaxies, and is considered much more technologically demanding than even interstellar travel and, by current engineering terms, is considered science fiction.
Spacecraft
Main article: Spacecraft
An Apollo Lunar Module on the lunar surface
Spacecraft are vehicles capable of controlling their trajectory through space.
The first 'true spacecraft' is sometimes said to be Apollo Lunar Module,[14] since this was the only manned vehicle to have been designed for, and operated only in space; and is notable for its non aerodynamic shape.
Propulsion
Main article: Spacecraft propulsion
Spacecraft today predominantly use rockets for propulsion, but other propulsion techniques such as ion drives are becoming more common, particularly for unmanned vehicles, and this can significantly reduce the vehicle's mass and increase its delta-v.
Launch systems
Main article: Launch vehicle
Launch systems are used to carry a payload from Earth's surface into outer space.
Expendable
Main article: Expendable launch system
Most current spaceflight uses multi-stage expendable launch systems to reach space.
Reusable
Main article: Reusable launch system
Ambox current red.svg
This section needs to be updated. Please update this article to reflect recent events or newly available information. (August 2019)
The first reusable spacecraft, the X-15, was air-launched on a suborbital trajectory on July 19, 1963. The first partially reusable orbital spacecraft, the Space Shuttle, was launched by the USA on the 20th anniversary of Yuri Gagarin's flight, on April 12, 1981. During the Shuttle era, six orbiters were built, all of which have flown in the atmosphere and five of which have flown in space. The Enterprise was used only for approach and landing tests, launching from the back of a Boeing 747 and gliding to deadstick landings at Edwards AFB, California. The first Space Shuttle to fly into space was the Columbia, followed by the Challenger, Discovery, Atlantis, and Endeavour. The Endeavour was built to replace the Challenger, which was lost in January 1986. The Columbia broke up during reentry in February 2003.
The Space Shuttle Columbia seconds after engine ignition on mission STS-1
Columbia landing, concluding the STS-1 mission
Columbia launches again on STS-2
The first automatic partially reusable spacecraft was the Buran (Snowstorm), launched by the USSR on November 15, 1988, although it made only one flight. This spaceplane was designed for a crew and strongly resembled the US Space Shuttle, although its drop-off boosters used liquid propellants and its main engines were located at the base of what would be the external tank in the American Shuttle. Lack of funding, complicated by the dissolution of the USSR, prevented any further flights of Buran.
Per the Vision for Space Exploration, the Space Shuttle was retired in 2011 due mainly to its old age and high cost of the program reaching over a billion dollars per flight. The Shuttle's human transport role is to be replaced by the partially reusable Crew Exploration Vehicle (CEV) no later than 2021. The Shuttle's heavy cargo transport role is to be replaced by expendable rockets such as the Evolved Expendable Launch Vehicle (EELV) or a Shuttle Derived Launch Vehicle.
Scaled Composites SpaceShipOne was a reusable suborbital spaceplane that carried pilots Mike Melvill and Brian Binnie on consecutive flights in 2004 to win the Ansari X Prize. The Spaceship Company has built its successor SpaceShipTwo. A fleet of SpaceShipTwos operated by Virgin Galactic planned to begin reusable private spaceflight carrying paying passengers (space tourists) in 2008, but this was delayed due to an accident in the propulsion development.[15]
Challenges
Main article: Effect of spaceflight on the human body
Space disasters
Main article: Space accidents and incidents
All launch vehicles contain a huge amount of energy that is needed for some part of it to reach orbit. There is therefore some risk that this energy can be released prematurely and suddenly, with significant effects. When a Delta II rocket exploded 13 seconds after launch on January 17, 1997, there were reports of store windows 10 miles (16 km) away being broken by the blast.[16]
Space is a fairly predictable environment, but there are still risks of accidental depressurization and the potential failure of equipment, some of which may be very newly developed.
In 2004 the International Association for the Advancement of Space Safety was established in the Netherlands to further international cooperation and scientific advancement in space systems safety.[17]
Weightlessness
Main article: Weightlessness
Astronauts on the ISS in weightless conditions. Michael Foale can be seen exercising in the foreground.
In a microgravity environment such as that provided by a spacecraft in orbit around the Earth, humans experience a sense of "weightlessness." Short-term exposure to microgravity causes space adaptation syndrome, a self-limiting nausea caused by derangement of the vestibular system. Long-term exposure causes multiple health issues. The most significant is bone loss, some of which is permanent, but microgravity also leads to significant deconditioning of muscular and cardiovascular tissues.
Radiation
Once above the atmosphere, radiation due to the Van Allen belts, solar radiation and cosmic radiation issues occur and increase. Further away from the Earth, solar flares can give a fatal radiation dose in minutes, and the health threat from cosmic radiation significantly increases the chances of cancer over a decade exposure or more.[18]
Life support
Main article: Life support system
In human spaceflight, the life support system is a group of devices that allow a human being to survive in outer space. NASA often uses the phrase Environmental Control and Life Support System or the acronym ECLSS when describing these systems for its human spaceflight missions.[19] The life support system may supply: air, water and food. It must also maintain the correct body temperature, an acceptable pressure on the body and deal with the body's waste products. Shielding against harmful external influences such as radiation and micro-meteorites may also be necessary. Components of the life support system are life-critical, and are designed and constructed using safety engineering techniques.
Space weather
Main article: Space weather
Aurora australis and Discovery, May 1991.
Space weather is the concept of changing environmental conditions in outer space. It is distinct from the concept of weather within a planetary atmosphere, and deals with phenomena involving ambient plasma, magnetic fields, radiation and other matter in space (generally close to Earth but also in interplanetary, and occasionally interstellar medium). "Space weather describes the conditions in space that affect Earth and its technological systems. Our space weather is a consequence of the behavior of the Sun, the nature of Earth's magnetic field, and our location in the Solar System."[20]
Space weather exerts a profound influence in several areas related to space exploration and development. Changing geomagnetic conditions can induce changes in atmospheric density causing the rapid degradation of spacecraft altitude in Low Earth orbit. Geomagnetic storms due to increased solar activity can potentially blind sensors aboard spacecraft, or interfere with on-board electronics. An understanding of space environmental conditions is also important in designing shielding and life support systems for manned spacecraft.
Environmental considerations
Rockets as a class are not inherently grossly polluting. However, some rockets use toxic propellants, and most vehicles use propellants that are not carbon neutral. Many solid rockets have chlorine in the form of perchlorate or other chemicals, and this can cause temporary local holes in the ozone layer. Re-entering spacecraft generate nitrates which also can temporarily impact the ozone layer. Most rockets are made of metals that can have an environmental impact during their construction.
In addition to the atmospheric effects there are effects on the near-Earth space environment. There is the possibility that orbit could become inaccessible for generations due to exponentially increasing space debris caused by spalling of satellites and vehicles (Kessler syndrome). Many launched vehicles today are therefore designed to be re-entered after use.
AquaStar Plus! UV Water Treatment Device
UV in a bottle
AquaStar was designed to be sold to a high-end market to fund a lower-cost application in the developing world. The more expensive AquaStar Plus! is used in the harshest environments by travelers, military personnel, and rescue workers. Unsafe water is placed in the bottle and exposed to UV-C light, which damages the DNA and RNA in the pathogens, rendering them non-infective. AquaStar Flow Through treats water in larger batches. A small water-purification service can generate income while helping out the community.
other90.cooperhewitt.org/design/aquastar-plus-and-flow-th...
www.uvaquastar.com/skins/2008Style/standard2.aspx?elid=20...
Design for the Other 90%
February 17 – May 29, 2009
"Of the world’s 6.5 billion people, 90 percent have little or no access to most of the products and services many of us take for granted. In fact, nearly half do not have reliable access to food, clean water, healthcare, education, affordable transportation, or shelter. The exhibition Design for the Other 90% features more than 30 projects that reflect a growing movement among designers, engineers, and social entrepreneurs to create low-cost solutions for everyday problems. Through local and global partnerships, individuals and organizations are finding unique ways to address the basic challenges of survival and progress faced by the world’s poor.
Design for the Other 90% showcases designs that incorporate new and traditional materials, and abandoned and emerging technologies to solve myriad problems—from cleaner-burning sugarcane charcoal to a solar-rechargeable battery for a hearing aid, from a portable water-purification straw to a low-cost laptop. By understanding the available resources and tools as well as the lives and needs of their potential users, these designers create simple, pragmatic objects and ingenious, adaptive systems that can help transform lives and communities.
FIND OUT MORE
Watch a video blog.cooperhewitt.org/2007/05/14/in-their-own-words about the exhibition and discuss the designs in the exhibition.
Visit the exhibition web site other90.cooperhewitt.org/ to learn more about the designs on view."
Composants électroniques (focus stacking).
Image composée de 11 photos assemblées avec CombineZP.
Electronic devices (focus stacking).