View allAll Photos Tagged System's
The Hispasat AG1 communications satellite completes the integration phase of testing in OHB System's cleanroom in Bremen, Germany. Hispasat AG1 will provide Spain, Portugal, the Canary Islands and the Americas with faster multimedia services through its reconfigurable Redsat payload.
AG1 is now at the IABG (Industrieanlagen-Betriebsgesellschaft) in Ottobrunn, Germany, undergoing environmental impact testing. There it will be placed in the thermal-vacuum chamber and its systems tested under ultra-high and low temperatures to simulate the conditions in space.
AG1 is the first satellite to use Europe’s new SmallGEO platform, developed through a public–private partnership between ESA and OHB. SmallGEO will strengthen the position of European industry in the commercial telecommunications market, expanding the current range of available products.
Credit:OHB
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The APS-4 was a light-weight, pod-mounted airborne search Radar which was suitable for either Airborne Interception (AI) or Air-to-Surface-Vessel (ASV) applications. It was a member of a series of early air-borne radar equipment and was initially designated as AS-H (“Air-to Surface, version H”). This very advanced equipment for its time was first used by the US Navy on board of carrier-borne night fighter aircraft like respective F6F Hellcat and F4U-2 Corsair variants. The Royal Air Force was impressed enough with the system's performance that it was adopted in 1943 for domestic airframes, too, as an alternative to the British AI radars used on board of early Mosquito, Beaufighter and Defiant night fighters.
One very successful carrier of the APS-4, in RAF service known as the AI Mk XV, was the De Havilland Mosquito in its NF Mk.XIX and NF Mk.30 night fighter incarnations. Aware of the performance and effectiveness of the American single engine aircraft, though, the RAF decided to test similar domestic airframes towards the end of WWII as well. The shorter range of a single engine night fighter would, compared with the bigger but also more sluggish two engine types, be compensated by higher speed, agility and rate of climb. These lighter aircraft were intended as a second defense for homeland defense, esp. around large cities or industrial sites.
One of these projects concerned the Supermarine Spitfire, more specifically the new types powered by a Rolly Royce Griffon engine. The Griffon provided a substantial performance increase over the Merlin-powered Spitfire Mk IX, but initially suffered from poor high altitude performance due to having only a single stage supercharged engine. By 1943, Rolls-Royce engineers had developed a new Griffon engine, the 61 series, with a two-stage supercharger, leading to a slightly modified engine, the 65 series, which was eventually mounted in the Spitfire Mk XIV.
With this performance surplus, a night fighter, despite carrying the AI Mk XV equipment plus a second crew member, was still expected to offer a superior performance over German two-engine bombers that intruded British airspace and the heavy night fighters that lurked over the Channel and attacked grouping RAF night bomber formations before they entered Continental airspace.
From this idea, the Spitfire NF.XX was born, as an alternative to a Hawker Typhoon night fighter with a British radar and only a single crew member. In summer 1944 an initial prototype was built, converted from an early series production Mk. XIV airframe. Since the AI Mk XV came with a rather complicated and voluminous display, a second crew member was deemed necessary for effective operations, esp. at night and under poor visibility conditions. The radio operator would check the radar readings and verbally guide the pilot towards the target, who could concentrate on the flying job and keep the eyes on the surroundings.
In order to fit the equipment and the second crew member into the tight Spitfire airframe, and a separate compartment behind the pilot's cockpit and the real bulkhead was added. This second seat received a separate sliding canopy, resulting in a distinctive camel hump silhouette, which earned the Spitfire NF.XX quickly the nickname 'Camelback'. Supermarine had proposed a new service name for this aircraft, 'Nightfire', but it was not officially accepted, since the machine did not differ enough from the basic Spitfire day fighter to justify a completely new designation.
The AI Mk XV equipment and its antenna were carried in a bullet-shaped pod under the port wing, similar to the US Navy night fighters’ arrangement. The radar dish was designed to scan from side to side for AI applications, but it could also be commanded to look up and down by a few degrees. This enabled the aircraft to attack targets from above, and it could also search for surface vessels below, so that the aircraft could also act in ASV or pathfinder duties in a secondary role (much like the Mosquito night fighters, which frequently guided bomber formations to their targets).
In order to mount the pod to the outer wing and compensate for the gain of weight, the standard 0.303" Browning machine guns normally located there were deleted. Instead, the NF.XX was initially armed with two 20 mm Hispano cannon plus a pair of 0.5" machine guns, mounted in a fashion similar to the Spitfire's standard E wing.
The NF.XX was powered, like the Spitfire Mk. XIV, by the two-stage supercharged Griffon 65, producing 2,050 hp (1,528 kW). A five bladed Rotol propeller of 10 ft 5 in (3.18 m) in diameter was used, and for the night fighter role the standard single exhaust stubs gave way to a collector fairing on each side, which dampened flames and improved the crew's view in the darkness.
To help balance the heavy Griffon engine, the radio equipment was moved further back in the rear fuselage. Improved VHF radio equipment allowed for the aerial mast to be removed and replaced by a "whip" aerial further aft on the fuselage spine. Because of the longer nose and the increased slipstream of the big five-bladed propeller, a new tail unit, with a taller, broader fin and a rudder of increased area was introduced.
One problem that hampered all early Griffon-powered Spitfire variants also plagued the NF.XX, though: short legs. The NF.XX carried a total of 109.5 gal of fuel, consisting of 84 gal in two main tanks and a 12.5 imp gal fuel tank in each leading edge wing tank. With this internal capacity, the fighter's maximum range was just a little over 460 miles (740 km) since the new Griffon engine consumed much more fuel per hour than the Merlin engine of earlier variants, and the extra drag and weight through the radar equipment did not make things better.
As a simple remedy, a conformal, fixed belly tank between the radiators was devised. This carried an extra 90 gal, of fuel, extending the fighter's range to about 850 miles (1,370 km) – still not much for aerial patrol and extended loiter time for interceptions, but enough for short-notice home defense duties. Alternatively, a more conventional but jettisonable 100 gal. drop tank could be carried, but it produced considerably more drag and affected overall performance so dramatically that it was never used in service.
The first tests of the new aircraft were conducted in January 1945 and three pre-production machines (all converted Mk. XIV airframes) were allocated to night fighter units for field trials and direct comparison with two engine types. Despite its innate aerodynamic and weight penalties the Spitfire NF.XX still attained an impressive top speed of 400 mph (350 kn; 640 km/h) at 29,500 ft (9.000 m), even though in clean condition only. But it was still more than enough to take on much heavier German bombers and night fighters. The second crewman was another winning factor, since the pilot alone would be overloaded in the face of heavily armed enemy aircraft in the European theatre of operations and the local weather conditions.
Further initial experience with the type resulted in several ad hoc modifications: the wing span was increased in order to improve handling and climb performance, using standard wing tip extensions from Spitfire high altitude variants. Furthermore, a deeper rudder was added to the fin because the second cockpit created significant directional instability.
Armament was changed, too - more firepower and a longer range was deemed necessary to attack the German heavy night fighters, which themselves frequently carried defensive armament in the form of heavy machine guns. Consequently, the initial pair of 0.5" machine guns was deleted and replaced by an additional pair of 20 mm Hispano cannon, and all four guns received extended barrels for a higher weapon range.
In this form, the Spitfire NF.XX quickly entered RAF service in March 1945, but, in the meantime, the German night fighter threat had declined, so that only 50 machines were completed and delivered to RAF units in the UK until the end of hostilities.
The operational use of the machines was hampered by localized skin wrinkling on the wings and fuselage at load attachment points, a problem the type shared with the Mk. XIV day fighter. Even though Supermarine advised that the machines had not been seriously weakened, nor were they on the point of failure, the RAF nevertheless issued instructions in early 1945 that all F and FR Mk XIVs were to be retrospectively fitted with clipped wings to counter the threat. The NF.XX kept their elongated wing tips, however, and were simply limited to a top speed of 370 mph (600 km/h) and not allowed to dive anymore.
General characteristics:
Crew: 2 (pilot, radar operator)
Length: 32 ft 8 in (9.96 m)
Wingspan: 40 ft 2 in (12.2 m)
Height: 10 ft 0 in (3.05 m)
Wing area: 249.7 sq.ft (23.2 m²)
Airfoil: NACA 2213 (root), NACA 2209.4 (tip)
Empty weight: 8,680 lb (3,937 kg)
Gross weight: 10,700 lb (4,853 kg)
Max takeoff weight: 12,530 lb (5,683 kg)
Powerplant:
1× Rolls-Royce Griffon 65 supercharged V12, 2,050 hp (1,530 kW) at 8,000 ft (2,438 m),
driving a 5-bladed Jablo-Rotol propeller
Performance:
Maximum speed: 400 mph (640 km/h; 353 kn) in FS supercharger gear at 29,500 ft.
Combat range: 460 mi (741 km/400 nmi) with internal fuel only
850 mi (1,370 km/757 nmi)
Ferry range: 1,093 mi (1,759 km/950 nmi)
Service ceiling: 43,500 ft (13,259 m)
Rate of climb: 4,300 ft/min (21.8 m/s) in MS supercharger gear at 2,100 ft.
3,100 ft/min (15.8 m/s) in FS supercharger gear at 22,100 ft.
Time to altitude: 8 mins to 22,000 ft (at max weight)
Wing loading: 32.72 lb/sq ft (159.8 kg/m²)
Power/mass: 0.24
Armament:
4× 20 mm (0.787-in) Hispano Mk II cannon with 120 RPG in the wings
Provision for an auxiliary underfuselage tank, either a fixed conformal 90 gal tank or a
100 gal drop tank.
The kit and its assembly:
Well, Spitfire fans might call it crude to create a whiffy variant that incorporates so many ugly details. But this fever creation came into being through the simple thought: "What would a dedicated Spitfire night fighter with a radar look like?" From this initial creative spark I tried to build this fictional NF.XX variant with available late WWII technology from a Griffon-powered Spitfire.
The basis is the Airfix Spitfire PR.XIX kit, a nice and clean offering, even though the use of this photo recce variant meant some additional work. The radar pod comes wholesale from an F4U night fighter (Fujimi), since the wing installation appeared to me to be the only plausible (and proven) option.
The second cockpit and the "double bubble" canopy come from an RS Models Spitfire Mk.IX UTI trainer, which is/was a domestic conversion made in the Soviet Union. The kit comes with an extra two seater fuselage, so that, despite body donors, almost a complete Spitfire remains (just the cockpit missing, but this can be taken from the Airfix kit).
I also considered the Spitfire TR.IX arrangement, with a stepped bubble canopy, but found that the risen rear cockpit for the instructor would not make sense in a night fighter, so the UTI arrangement with separate canopies on the same level appeared to me to be the most suitable solution for this aircraft and its task.
Surgery was not easy, though: The whole cockpit area was dissected from the RS Models trainer and – together with the internal parts like the bulkheads, dashboards and seats – transplanted into an appropriate gap, cut into the Airfix kit fuselage. The windscreen position on both airframes was used as orientation benchmark.
Basically a simple idea, but, even though you have two Spitfire kits at hand, both models differ slightly from each other in many ways. Material thickness is different, as well as panel lines, which are all there on both models but simply do not fall in line. Internal width and available space is also different, esp. the rear bulkhead was not easy to integrate into the Airfix fuselage. It worked, somehow, but it consequently took some PSR effort and rescribing (at least, both donor kits have engraved details) in order to create this Griffon-powered two-seater.
The extended wings were created through the simple implantation of high altitude wing tips from an AZ Model Spitfire I/II/V/VI kit. They match very well with the Airfix PR.XIX wings, which were simply clipped at the correct position outside of the ailerons. Since the recce Spitfire comes without any weapons I added four brass barrels (Pavla) to the wings, plus respective bulges for the magazines (scratched from sprue) and casing ejector fairings under the wings.
I also changed the vertical rudder. Instead of the separate OOB part from the Spitfire PR.XIX I used a deeper and higher rudder from a late Seafire mark (left over from a Special Hobby kit, IIRC). The part lost its hook and the notch for its deployment mechanism, replaced by a piece of styrene that was PSRed into the rest of the rudder. It’s not an obvious change, but the bigger fin area is a good counterpart to the enlarged wings and the bulkier rear fuselage.
The conformal belly tank was scratched from the upper half of a Matchbox A-10 inner wing. There are aftermarket solutions available, but I simply did not want to spend as much money on a single resin part that no one will clearly see and that’s just as expensive as the whole Airfix basis kit. Some things are just ridiculous.
Painting and markings:
Very simple: classic late war RAF night fighter colors, with Medium Sea Grey and Dark Green (Humbrol 165 and 163, respectively) on the uppers surfaces, plus Night (I used Revell Acrylics 06, Tar Black, which is actually a very dark grey tone) underneath, with a high waterline and a black fin. Looks weird on a Spitfire, but also somewhat cool!? The model received a light black ink wash and some panel post-shading, using a blue-ish hue for the Night undersurfaces.
The interior is classic RAF Cockpit Green (Humbrol 78), the only catchy marking is the red propeller spinner – originally I just wanted to keep the spinner black, too, but found that to be too dull overall.
The markings come from different sources; the codes were created with single Dull Red letters from Xtradecal, roundels and other markings come from various other sheets. The added “G” to the serial number is, BTW, an indication that the aircraft had to be guarded all the time. A nice and appropriate detail for this high tech aircraft of its time. The roundels/fin flashes were taken from another Xtradecal sheet, IIRC they belong to an FAA SB2C Helldiver.
Finally, some wear marks were added with dry-brushed light grey and silver. Exhaust stains were added with dry-brushed dark and light grey, as well as some grinded graphite. A coat of matt acrylic varnish (Italeri) sealed the kit.
I feel a bit guilty of creating the probably ugliest Spitfire possible, with all the add-ons and the weird proportions through the second cockpit and the belly tank. Very massive, at least for this sleek aircraft. The night fighter paint scheme suits the Spitfire surprisingly well, though. Anyway, it’s whifworld, after all, and I tried to go through with the night fighter idea as good and consequential as possible – the fictional NF.XX is just my personal interpretation of the theme.
Edinburgh Tram No 251 on Haymarket Yards whilst forming a York Place (New Town)-Edinburgh Airport (Ingliston) service. The tram is about to join the system's segregated track. The 8.7-mile route cost £776m (along with more than £200m in interest on a 30-year loan) and opened in May 2014 after six troubled years of construction. The Urbos 3 trams were built by CAF, a Spanish company. Each of the 27 sets, numbered 251 to 277, has a capacity of 250 (including 78 seats) and is finished in a white livery with rose madder and platinum stripes. Services are operated by Edinburgh Trams Ltd, a publicly owned company working in partnership with Lothian Buses, as part of the Transport for Edinburgh group.
Bo' Bo'-de, ČKD, Praha, Typ: ČSD-Baureihe T 478.1, installierte Leistung: 1103 kW (1.500 PS), Vmax: 100 km/h
Produktionszeitraum: 1966-71
gebaute Stückzahl: Anzahl: T 478.1: 230; T 478.2: 82
Die Güterzugvariante T 478.2 hatte an Stelle des Dampfgenerators ein Ballastgewicht.
1988 erhielten die Loks der ČD die neuen Baureihennummern 751 bzw. 752 mit dreistelliger Ordnungsnummer. Die 1992-96 von der ČD grundlegend modernisierten 60 Lokomotiven wurden als Reihe 749 bezeichnet. Bei der Modernisierung wurden u.a. die Dampfheizanlage bzw. das Ballastgewicht durch eine elektrische Zugheizung mit 3000 V Gleichspannung ersetzt.
Das EVU Rail System s.r.o. des Speditionsunternehmers Josef Hanzalík führt seit dem 28.08.2012 als Mattoni-Express Schienentransporte für die Mineralwassser-Marke Mattoni der Karlovarské minerální vody (KMV) auf der acht Kilometer langen Anschlussbahn im Egertal von der ehemaligen Kurstadt Kyselka - Gießhübl-Sauerbrunn nach Vojkovice nad Ohří - Wickwitz durch. Etwa ein Drittel der Gesamtproduktion von Mattoni wird seitdem wieder mit der Bahn abgefahren.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the aftermath of the Second World War, Sweden required a strong air defense, utilizing the newly developed jet propulsion technology. The original concept had been designed around a mostly straight wing, but after Swedish engineers had obtained German research data on swept-wing designs, the prototype was altered to incorporate a 25° sweep. In order to make the wing as thin as possible, Saab elected to locate the retractable undercarriage in the aircraft's fuselage rather than into the wings.
Extensive wind tunnel testing had also influenced aspects of the aircraft's aerodynamics, such as stability and trim across the aircraft's speed range. In order to test the design of the swept wing further and avoid any surprises, it was decided to modify a Saab Safir. It received the designation Saab 201 and a full-scale swept wing for a series of flight tests. The first 'final' sketches of the aircraft, incorporating the new information, were drawn in January 1946.
The originally envisioned powerplant for the new fighter type was the de Havilland Goblin turbojet engine. However, in December 1945, information on the newer and more powerful de Havilland Ghost engine became available. The new engine was deemed to be ideal for Saab's in-development aircraft, as not only did the Ghost engine had provisions for the use of a central circular air intake, the overall diameter of the engine was favorable for the planned fuselage dimensions, too. Thus, following negotiations between de Havilland and Saab, the Ghost engine was selected to power the type and built in license as the RM 2.
By February 1946 the main outline of the proposed aircraft had been clearly defined. In autumn 1946, following the resolution of all major questions of principal and the completion of the project specification, the Swedish Air Force formally ordered the completion of the design and that three prototype aircraft be produced, giving the proposed type the designation J 29. After a thorough test program, production of the type commenced in 1948 and, in May 1951, the first deliveries of operational production aircraft were received by F 13 Norrköping. The J 29 proved to be very successful and several variants and updates of the Tunnan were produced, including a dedicated reconnaissance variant, a two seat trainer and an all-weather fighter with an onboard radar
However, Sweden foresaw that there would soon be a need for a jet fighter that could intercept bombers at high altitude and also successfully engage fighters. During September 1949, the Swedish Air Force, via the Swedish Defence Material Administration, released a requirement for a cutting-edge interceptor aircraft that was envisioned to be capable of attacking hostile bomber aircraft in the transonic speed range. As released, this requirement specified a top speed of Mach speed 1.4 to 1.5. (1956, the specified speed was revised and raised to Mach 1.7-1.8, and eventually led to the Saab 35 Draken). With the barely supersonic Saab 32 Lansen just under development, and intended for different roles than being a nimble day fighter, the company searched for a way to either achieve supersonic flight through modifications of an existing type or at least gather sufficient data and develop and try the new technologies necessary to meet the 1949 requirements.
Since Sweden did not have a truly supersonic aircraft in its inventory (not even an experimental type), Saab decided to convert the Saab 29 into a supersonic testbed, with the outlook to develop an interim day fighter that could replace the various Tunnan fighter versions and support the new Lansen fleet until a fully capable Mach 1.5+ interceptor was ready for service. Even though the type was regarded as a pure experimental aircraft, the designation remained close to the J29 nomenclature in order to secure military funding for the project and to confuse eventual spies. Consequently, the P29 was initially presented as a new J29 version (hence the “G” suffix).
The P29G was based on a heavily modified production J29B airframe, which was built in two versions and only in two specimens. Work on the first airframe started in 1952, just when the first Saab 32 prototype made its maiden flight. The initial challenge consisted of integrating two relatively compact axial flow jet engines with afterburners into the fuselage, since the J29’s original RM2, even in its late afterburner variant, was not able to safely deliver the necessary thrust for the intended supersonic flight program. After long negotiations, Saab was able to procure a small number of Westinghouse J34-WE-42 turbojets from the USA, which delivered as a pair 40% more thrust than the original RM2B. The engines were only delivered under the restriction that they would exclusively be used in connection with the supersonic research program.
Through a thorough re-construction, the Saab team was able to mount the new engines into the lower rear fuselage, and, internally, the air intake duct had to be modified and forked behind the landing gear wells. Due to the significantly widened rear fuselage, the P29G became quickly nicknamed “Kurviga Tunnan” (= “Curvy Barrel”). Even though the widened rear fuselage increased the aircraft’s frontal cross section, the modified shape had the (unintended) effect of area ruling, a welcome side benefit which became apparent during the flight test and which largely promoted the P29G’s gain of top speed.
Another special and unique feature of the P29G was a special wing attachment system. It consisted of two strengthened, open box spars in the fuselage with additional attachment points along the wing roots, which allowed different wings to be switched with relatively little effort. However, due to this modification, the wing tanks (with a total capacity of 900l inside of the J29s standard wings) were lost and only 2.150l in the Saab 29’s standard fuselage tanks could be carried – but this was, for a research aircraft, not regarded as a major weakness, and compensated for the wing attachment system’s additional weight. The original wing-mounted pitots were replaced by a single, massive sensor boom attached to the aircraft’s nose above the air intake, slightly set-off to starboard in order to give the pilot an unobstructed view.
The first P29G's maiden flight, marked “Gul Urban” (Yellow U), took place in July 1955. The aircraft behaved normally, even though the center of gravity had markedly shifted backwards and the overall gain of weight made the aircraft slightly unstable along the longitudinal axis. During the initial, careful attempts to break the sound barrier, it soon became apparent that both the original wings as well as the original air intake shape limited the P29G's potential. In its original form, the P29G could only barely pass Mach 1 in level flight.
As a consequence, the second P29G, which had been under conversion from another J29B airframe since mid-1954, received more thorough modifications. The air intake was lengthened and widened, and in order to make it more effective at supersonic speed it received a sharp lip. Wind tunnel tests with the first machine led to a modified tail, too: the fin was now taller and further swept back, the stabilizer was moved to a higher position, resulting in a cruciform layout. The original single-piece stabilizer was furthermore replaced by a two-piece, all-moving construction with a 45° sweep and a thinner profile. This not only improved the aerodynamics at high speed, it also suppressed the longitudinal instability problem, even though this was never really cured.
Due to the even higher all-up weight of the new aircraft, the landing gear was reinforced and the 2nd P29G received an experimental suspension system on its main legs with higher spring travel, which was designed for operations on semi-prepared airfields. This system had actually been designed for the updated J29 fighters (esp. the A32B attack variant), but it was not introduced into series production or the Saab 29E/F conversion program. Despite these massive changes, the P29G designation was retained, and the second machine, carrying the tactical code “Röd Urban” (Red U), was quickly nicknamed “Karpen” (“Carp”), due to its characteristic new intake shape, the long fin and its stocky shape.
The second P29G was ready for flight tests in August 1956, just in time to support the Saab 35’s ongoing development – the aircraft, which was eventually built to meet (and exceed) the Swedish Air Force’s 1949 supersonic interceptor requirement. The modifications proved to be successful and the P29G was, fitted with a 60° sweep wing and in clean configuration, able to achieve a maximum speed of 1.367 km/h (849 mph) in level flight, a formidable achievement (vs. the 1,060 km/h (660 mph) of the late J29F and the 1200 km/h (745 mph) of the J32B interceptor) for the post WWII design.
Several wing shapes and profiles were tested, including sweep angles from 25° to 63° as well as different shapes and profiles. Even though the machines carried provisions for the J29’s standard armament, the 20 mm cannons were normally not mounted and replaced with sensors and recording equipment. However, both machines were temporarily fitted with one or two guns in order to analyze the effects of firing the weapons at supersonic speed. Underwing ordnance was also almost never carried. In some tests, though, light bombs or unguided missiles were carried and deployed, or podded cine cameras were carried.
While the second P29G was used for high speed trials, the first machine remained in its original guise and took over low speed handling tests. Thanks to the unique wing switch mechanism, the supersonic research program could be held within a very tight schedule and lasted until late 1959. Thereafter, the P29Gs’ potential was of little use anymore, and the engine use agreement with the USA put an end to further use of the two aircraft, so that both P29Gs were retired from service in 1960. The 1st machine, outfitted with standard J29F wings and stripped off of its engines, remained in use as an instructional air at Malmslätt air base 1969, while the second machine was mothballed. However, both airframes were eventually scrapped in 1970.
General characteristics:
Crew: 1
Length: 11.66 m (38 ft 2 in) fuselage only,
13,97 m (45 ft 9 in) with pitot boom
Wingspan: varied*; 11.0 m (36 ft 1 in) with standard 25° sweep wings,
10.00 m (32 ft 9 ¾ in) with experimental 45° wings
Height: 4.54m (14 ft 10 ½ in)
Wing area: varied*; 24.15 m² (260.0 ft²) with standard 25° sweep wings
22.5 m² (242.2 ft²) with experimental 45° wings
Empty weight: 5,220 kg (11,500 lb)
Max. takeoff weight: 8,510 kg (18,744 lb)
Powerplant:
2× Westinghouse J34-WE-42 turbojets, each rated at 3,400 lbf (15 kN) dry thrust
and 4,200 lbf (19 kN) with full afterburner
Performance:
Maximum speed: 1.367 km/h (849 mph) were achieved*
Range: 790 km (490 mi)
Service ceiling: up to 17,250 m (56,500 ft)*
Rate of climb: up to 45 m/s (8,850 ft/min)*
*Varying figures due to different tested wing configurations
Armament:
None installed; provisions for 4x 20mm Hispano Mark V autocannon in the lower front fuselage.
Depending on the mounted wing type, various external loads could be carried, including a wide range of light bombs, 75 mm (3 in) air-to-air rockets, 145 mm (5.8 in) anti-armor rockets, 150 mm (6 in) HE (high-explosive) rockets or 180 mm (7.2 in) HE anti-ship rockets. Due to the lack of complex wiring or fuel plumbing, no guided weapons or drop tanks could be mounted, though.
The kit and its assembly:
Sweden is a prolific whiffing territory, and the Saab 29 offers some interesting options. This highly modified Tunnan, which is actually rather a kitbashing than a mere model kit modification, is/was a submission to the “More or less engines” group build at whatifmodelers.com in summer 2019.
I actually had the idea of a two-engine J29 in the back of my mind for a long time, spawned by a resin conversion set for the Hasegawa B-47 Stratojet kit that came with new intakes and exhaust sections for the four engine pods. The single engine pod parts had been spent a long time ago, but the twin engine parts were still waiting for a good use. Could the exhaust fit under/into a Tunnan…?
I even had a Matchbox J29 stashed away for this experiment long ago, as well as some donor parts like the wings, and the GB eventually offered the right motivation to put those things together that no one would expect to work.
So I pulled out all the stuff and started – a rather straightforward affair. Work started with the fuselage, which was, together with the (very nice) cockpit assembled OOB at first, the nose filled with as much lead as possible and with the lower rear section cut away, so the B-47 resin jet nozzles would end up at the same position as the original RM2B exhaust. Due to the pen nib fairing between them, though, the profile of the modified tail became (visually) more massive, and I had to fill some gaps under the tail boom (with styrene sheet and putty). The twin engines also turned out to be wider than expected – I had hoped for straight flanks, but the fuselage shape ended up with considerable bulges behind the landing gear wells. These were created with parts from drop tank halves and blended into the rest of the lower hill with PSR work. In the same wake the area under the fin was sculpted and re-created, too.
At that point it became clear that I had to do more on the fuselage, esp. the front end, in order to keep the aircraft visually balance. A convenient solution became an F-100 air intake, which I grafted onto the nose instead of the original circular and round-lipped orifice – with its sharp lip the Super Sabre piece was even a plausible change! The fuselage shapes and diameters differed considerably, though, more PSR became necessary.
Next came the wings: I had already set apart a pair of trapezoid wings with a 45° sweep angle – these were left over from a PM Model Ta 183 conversion some time ago. With their odd shape and size they were a perfect match for my project, even more so due to the fact that I could keep the original J29 wing attachment points, I just had to shorten and modify the trailing edge area on the fuselage. The result was very conclusive.
With the new nose and the wings in place, the overall proportions became clearer: still tail-heavy, but not unpleasant. At this time I was also certain that I had to modify the tail surfaces. The fin was too small and did not have enough sweep for the overall look, and the stabilizer, with its thick profile, rounded edges and the single, continuous rudder did not look supersonic at all. What followed was a long search in the donor banks for suitable replacements, and I eventually came up with a MiG-15 fin (Hobby Boss) which was later clipped at the top for a less recognizable profile. The stabilizers were more challenging, though. My solution eventually became a pair of modified stabilizers from a Matchbox Buccaneer(!), attached to the MiG-15 fin.
The design problems did not stop here, though: the landing gear caused some more headaches. I wanted to keep the OOB parts, but especially the main legs would leave the aircraft with a very goofy look through a short wheelbase and a rear axis position too much forward. In an attempt to save the situation I attached swing arms to the OOB struts, moving the axis maybe 5mm backwards and widening the track by 2mm at the same time. Not much in total, but it helped (a little, even though the aircraft is still very tail-heavy)
As a final addition – since the original, wing-mounted pitots of the J29 were gone now and would not go well with the wing-switching idea – I gave the P29G a large, nose-mounted pitot and sensor boom, placed on top of the nose. This part come, like the air intake, from an F-100.
Painting and markings:
I tend to be conservative when it comes to liveries for what-if models, and the P29G is no exception. At first, I thought that this build could become an operational supersonic daylight interceptor (the J29G), so that I could give the model full military markings and maybe a camouflage paint scheme. However, this idea would not work: the potential real life window for such an aircraft, based on the Saab 29, would be very narrow. And aircraft development in the late Fifties made quantum leaps within a very short period of time: While the J29A entered service, work on the Mach 2 Saab 35 was already underway – nobody would have accepted (or needed) a Mach 1 fighter, based on late Forties technology, at that time anymore, and there was the all-weather Saab J32B around, too. The update program with new wings and a more powerful afterburner engine was all that could be done to exploit the Tunnan’s potential, resulting in the (real world’s) J29E and F variants.
I eventually decided that the J29G would only be a prototype/research aircraft, consequently called P29G, and through this decision I became more or less settled upon a NMF finish with some colorful markings. Consequently, the model was painted with various shades of metal colors, primarily Polished Aluminum Metallizer from Humbrol, but also with Humbrol 191 and Matt Aluminum Metallizer as well as ModelMaster Steel Metallizer. Around the exhaust section, I also used Revell 91 (Iron) and ModelMaster Exhaust Metallizer. Some single panels and details were painted with Revell 99 (Aluminum), and I also used generic decal material in silver to simulate some smaller access panels. Grey decal sheet was used to simulate covers for the cannon nozzles.
The cockpit interior was painted, according to Saab 29 standard, in a dark greenish-grey (Revell 67), and bluish grey was used inside of the landing gear wells (Revell 57). The pitot boom received black and white stripes.
For markings I let myself get inspired from the real world Saab 29 and 32 prototypes, which were all marked with a colored “U” tactical code on the fin and also on the front fuselage, simply meaning “Utverding” (= “Test”). I found four red decals, and I also gave the aircraft a yellow cheatline, lent from an Airfix F-86D decal sheet. The Swedish roundels come from a generic aftermarket sheet, most stencils were taken from the Revell OOB sheet and a Printscale J29 sheet.
Before the model was sealed with semi-gloss acrylic varnish from Italeri, some grinded graphite was rubbed onto the rear fuselage, adding a metallic shine and simulating exhaust stains.
A thorough conversion – this has rather evolved into a kitbashing than just a kit conversion: not much from the original Matchbox J29 has been left over. But I like the outcome, even though things developed gradually from the simple idea of changing the number of engines on the Tunnan. One thing led to another. The resulting aircraft looks quite plausible, even though I am not totally happy with the landing gear, which appears to be rather far forward, despite surgical measures to mend the situation. The Ta 183 wings are a very good match, though, and I cannot help but recognize a certain French look, maybe due to the cruciform tail and the oval air intake? The P29G could also, with Argentinian marking, have become a revised version of the FMA Pulqui II?
Canadian Pacific diesels were no stranger to the ET&HK Ide grain elevator in St. Johnsbury, Vermont for decades, but that came to an end with CP's withdrawal from the area in 1996. However, the current operator of the line, Vermont Rail System's Washington County RR, began to pool locomotives when needed with CP in the summer of 2023, giving me an opportunity to shoot a CP diesel passing the elevator.
In this dramatic scene, an unnamed crater in Mercury's northern volcanic plains is bathed in darkness as the sun sits low on the horizon. Rising from the floor of the crater is its central peak, a small mountain resulting from the crater's formation. A central peak is a type of crater morphology that lies between "simple" and "peak ring" in the range of crater morphology on Mercury.
This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week.
The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on Instagram
With the lightweight aluminium front and rear axles from the BMW M3/M4 models, forged 19-inch aluminium wheels with mixed-size tyres, M Servotronic steering with two settings and suitably effective M compound brakes, the new BMW M2 Coupe has raised the bar once again in the compact high-performance sports car segment when it comes to driving dynamics. The electronically controlled Active M Differential, which optimises traction and directional stability, also plays a significant role here. And even greater driving pleasure is on the cards when the Dynamic Stability Control system’s M Dynamic Mode (MDM) is activated. MDM allows wheel slip and therefore moderate, controlled drifts on the track.
THE SMADE JOURNAL | WWW.THESMADE.COM |
STAY CONNECTED TO THE SMADE JOURNALS IMAGE TEAM WITH THE LATEST HIGH DEFINITION IMAGES AND VIDEO
- Twitter - @smadejournal |
- Facebook.com - /smadejournal |
- Google - +smadejournal |
- Tumblr - smademeda |
- Instagram - @smadejournal |
- YouTube - the smade channel |
- Web - thesmade.com | www.smadeimages.com
The Washington State Ferry System's M/V Quinault approaches the Keystone landing on Whidbey Island.
This ferry served the route between Port Townsend and Whidbey Island. M/V Quinault began her life as a ferry on San Francisco Bay in 1927. The ship has been extensively modified since then. However, according to information posted on the ferry, she is still running on her original 1927 electric motors.
Update: On November 20, 2007, Washington State Ferries took the 80-year-old M/V Quinault out of service for safety reasons. The vessel went into drydock at Todd Pacific Shipyards in Seattle on November 28, 2007. Inspection of the hull revealed extensive corrosion and pitting, especially along the keel. Preliminary estimates were that at least 45 percent of the hull would have to be replaced before the ferry could be returned to service.
With that, I'd venture to say this photo documents the end of an era in marine transportation on Puget Sound.
This image is excerpted from a U.S. GAO report:
www.gao.gov/products/GAO-16-127
AIR TRAVEL AND COMMUNICABLE DISEASES: Comprehensive Federal Plan Needed for U.S. Aviation System's Preparedness
Bobak Ferdowsi, a system's engineer at NASA's Jet Propulsion Laboratory, is seen speaking with students during the sixth White House Science Fair, Wednesday, April 13, 2016. The White House Science Fair showcased the science, technology, engineering, and math (STEM) achievements of over 100 students from across the country. Photo Credit: (NASA/Joel Kowsky)
With the decline of the Greco-Roman Federation and the decreasing need for large quantities of VCS, the URE commissioned a new design, based around the Grouse II, that would be able to hold their own against multiple enemy VCS. Thus, the Grouse III (commonly known as the "Crusader") was born.
The Grouse III shares almost no physical elements with its predecessor, except for some parts of its inner structural design. It is a much heavier VCS, due mostly in part to its thicker armor and considerably more extensive array of equipment. In addition, the Grouse III has a much more comfortable and complex cockpit, alloying the pilot greater control over the system.
The Grouse III's primary weapon is a elite-issue 09R-Gunbow, a weapon that can convert between a machine gun (higher firing rate) and an energy crossbow (more accuracy). It also carries a hefty vibrotech sword, and a carbon-based shield. The shield can fire multiple small rockets. In addition, there are to small machine guns in the cranial unit, and a small semi-automated turret on the system's left shoulder. Two small rockets can be fired from each shoulder as well.
Here's the inevitable follow-up to the Grouse II. I started with the cockpit, since I wanted it to be as detailed a possible. The original design for it was even larger than the current one, which is already too bulky. Because of the bulk, I opted for a more medieval knight-inspired mech, an idea which suited it quite well.
It looks like even the craters on Mercury have heard of Bob Ross! The central peaks of this complex crater have formed in such a way that it resembles a smiling face. This image is oriented so north is toward the bottom.
This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week.
The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on Instagram
Tummel Bridge is a double arched hump-backed former military bridge crossing the River Tummel at Tummel Bridge, Perth & Kinross, Scotland. A Category A listed structure dating to 1730, it is now pedestrian-only. It stands immediately to the southeast of a modern road bridge, which carries the vehicular traffic of today's B846 road. Two worn milestones are at the northern end of the bridge.
Erected for the Board of Ordnance, to the order of Lieutenant General George Wade, its original purpose was as a military road. The Irvine Robertson papers at the National Records of Scotland contain, at GD1/53/97, the construction contract with John Stewart of Canagan [=Kynachan], for building the bridge, and the receipt by John Stewart for £50, in respect of above contract, 27 July 1730, and the bond by him and David Stewart, his eldest son, to maintain the bridge, 20 October 1730:
... the said John Stewart shall Build a Stone Bridge Strengthen'd with a double Arch over the River of Tumble, within less than a mile west of the house of the said Canagan, which Bridge is to have an Arch of at least forty two feet between the landstools for more if the breadth of the River shall require an Arch of a larger dimension. It is likewise to be twelve foot in breadth including the Parapet walls, which Walls are to be three foot high above the pavement, and at least one foot broad, and to be Cap'd with good flag Stones. The whole to be of good materials and well wrought, And to have an access to the same extending so far on both Sides to the Land, as to render it easily passable for Wheel Carriage or Canon, AND LIKEWISE to make sufficient Buttments that shall Confine the Water to pass under the Arch, that in extraordinary Floods it may not damage or undermine the foundation. For which Bridge and all Materials, and Charges relating thereto, the said Lieut General George Wade is to Pay to the said John Stewart, the Sum of two hundred pounds Sterling Viz Fifty pounds on the signing this contact, and one hundred and fifty Pounds as soon as the work is Compleated, which he promises to finish before the last day of October next ensuing, and the said John Stewart does oblige himself to give sufficient Security before the last Payment is made to uphold the said Bridge at his own Expense for the space of twenty years from the date hereof...
The bridge was renovated in 1973, and underwent conservation work in 2011.
The River Tummel is a river in Perth and Kinross, Scotland. Water from the Tummel is used in the Tummel hydro-electric power scheme, operated by SSE.
As a tributary of the River Tay, the Tummel is included as part of the River Tay Special Area of Conservation. The designation notes the river system's importance for salmon, otters, brook lampreys, river lampreys and sea lampreys.
Discharging from Loch Rannoch, it flows east to a point near the Falls of Tummel, where it bends to the southeast, a direction which it maintains until it falls into the River Tay, just below Logierait, after a course of 58 miles (93 km) from its source in Stob Ghabbar (3,565 ft (1,087 m)). Its only considerable affluent is the Garry, 24 miles (39 km) long, an impetuous river which issues from Loch Garry (2.5 mi (4.0 km) and 1,334 ft (407 m) above sea level). Some 2 miles from its outlet from Loch Rannoch the river expands into Dunalastair Water (or Dunalastair Reservoir), a man made loch formed by a weir, part of the Tummel Hydro Electric power scheme. About midway in its course the Tummel expands into Loch Tummel, between which and the confluence with the Garry occur the Pass and Falls of the Tummel, which are rather in the nature of rapids, the descent altogether amounting to 15 ft (4.6 m). Loch Tummel was previously 4.43 km (2.75 mi) long and 39 m (128 ft) deep, but with the construction of the Clunie Dam in 1950, the water level was raised by 4.5 metres, and Loch Tummel is now approximately 11 km (7 mi) long.
The scenery throughout this reach is most picturesque, culminating at the point above the eastern extremity of the loch, known as the "Queen's View" (Queen Victoria made the view famous in 1866, although it is said to have been named after Queen Isabel, wife of Robert the Bruce). The chief places of interest on the river are Kinloch Rannoch; Dunalastair, a rocky hill in well-wooded grounds, the embellishment of which was largely due to Alexander Robertson of Struan, the Jacobite and poet, from whom the spot takes its name (the stronghold of Alexander); Foss; Faskally House (beautifully situated on the left bank); Pitlochry; and Ballinluig.
The ancient name of the river, in its upper reaches at least, was the Dubhag
The Highlands is a historical region of Scotland. Culturally, the Highlands and the Lowlands diverged from the Late Middle Ages into the modern period, when Lowland Scots language replaced Scottish Gaelic throughout most of the Lowlands. The term is also used for the area north and west of the Highland Boundary Fault, although the exact boundaries are not clearly defined, particularly to the east. The Great Glen divides the Grampian Mountains to the southeast from the Northwest Highlands. The Scottish Gaelic name of A' Ghàidhealtachd literally means "the place of the Gaels" and traditionally, from a Gaelic-speaking point of view, includes both the Western Isles and the Highlands.
The area is very sparsely populated, with many mountain ranges dominating the region, and includes the highest mountain in the British Isles, Ben Nevis. During the 18th and early 19th centuries the population of the Highlands rose to around 300,000, but from c. 1841 and for the next 160 years, the natural increase in population was exceeded by emigration (mostly to Canada, the United States, Australia and New Zealand, and migration to the industrial cities of Scotland and England.) and passim The area is now one of the most sparsely populated in Europe. At 9.1/km2 (24/sq mi) in 2012, the population density in the Highlands and Islands is less than one seventh of Scotland's as a whole.
The Highland Council is the administrative body for much of the Highlands, with its administrative centre at Inverness. However, the Highlands also includes parts of the council areas of Aberdeenshire, Angus, Argyll and Bute, Moray, North Ayrshire, Perth and Kinross, Stirling and West Dunbartonshire.
The Scottish Highlands is the only area in the British Isles to have the taiga biome as it features concentrated populations of Scots pine forest: see Caledonian Forest. It is the most mountainous part of the United Kingdom.
Between the 15th century and the mid-20th century, the area differed from most of the Lowlands in terms of language. In Scottish Gaelic, the region is known as the Gàidhealtachd, because it was traditionally the Gaelic-speaking part of Scotland, although the language is now largely confined to The Hebrides. The terms are sometimes used interchangeably but have different meanings in their respective languages. Scottish English (in its Highland form) is the predominant language of the area today, though Highland English has been influenced by Gaelic speech to a significant extent. Historically, the "Highland line" distinguished the two Scottish cultures. While the Highland line broadly followed the geography of the Grampians in the south, it continued in the north, cutting off the north-eastern areas, that is Eastern Caithness, Orkney and Shetland, from the more Gaelic Highlands and Hebrides.
Historically, the major social unit of the Highlands was the clan. Scottish kings, particularly James VI, saw clans as a challenge to their authority; the Highlands was seen by many as a lawless region. The Scots of the Lowlands viewed the Highlanders as backward and more "Irish". The Highlands were seen as the overspill of Gaelic Ireland. They made this distinction by separating Germanic "Scots" English and the Gaelic by renaming it "Erse" a play on Eire. Following the Union of the Crowns, James VI had the military strength to back up any attempts to impose some control. The result was, in 1609, the Statutes of Iona which started the process of integrating clan leaders into Scottish society. The gradual changes continued into the 19th century, as clan chiefs thought of themselves less as patriarchal leaders of their people and more as commercial landlords. The first effect on the clansmen who were their tenants was the change to rents being payable in money rather than in kind. Later, rents were increased as Highland landowners sought to increase their income. This was followed, mostly in the period 1760–1850, by agricultural improvement that often (particularly in the Western Highlands) involved clearance of the population to make way for large scale sheep farms. Displaced tenants were set up in crofting communities in the process. The crofts were intended not to provide all the needs of their occupiers; they were expected to work in other industries such as kelping and fishing. Crofters came to rely substantially on seasonal migrant work, particularly in the Lowlands. This gave impetus to the learning of English, which was seen by many rural Gaelic speakers to be the essential "language of work".
Older historiography attributes the collapse of the clan system to the aftermath of the Jacobite risings. This is now thought less influential by historians. Following the Jacobite rising of 1745 the British government enacted a series of laws to try to suppress the clan system, including bans on the bearing of arms and the wearing of tartan, and limitations on the activities of the Scottish Episcopal Church. Most of this legislation was repealed by the end of the 18th century as the Jacobite threat subsided. There was soon a rehabilitation of Highland culture. Tartan was adopted for Highland regiments in the British Army, which poor Highlanders joined in large numbers in the era of the Revolutionary and Napoleonic Wars (1790–1815). Tartan had largely been abandoned by the ordinary people of the region, but in the 1820s, tartan and the kilt were adopted by members of the social elite, not just in Scotland, but across Europe. The international craze for tartan, and for idealising a romanticised Highlands, was set off by the Ossian cycle, and further popularised by the works of Walter Scott. His "staging" of the visit of King George IV to Scotland in 1822 and the king's wearing of tartan resulted in a massive upsurge in demand for kilts and tartans that could not be met by the Scottish woollen industry. Individual clan tartans were largely designated in this period and they became a major symbol of Scottish identity. This "Highlandism", by which all of Scotland was identified with the culture of the Highlands, was cemented by Queen Victoria's interest in the country, her adoption of Balmoral as a major royal retreat, and her interest in "tartenry".
Recurrent famine affected the Highlands for much of its history, with significant instances as late as 1817 in the Eastern Highlands and the early 1850s in the West. Over the 18th century, the region had developed a trade of black cattle into Lowland markets, and this was balanced by imports of meal into the area. There was a critical reliance on this trade to provide sufficient food, and it is seen as an essential prerequisite for the population growth that started in the 18th century. Most of the Highlands, particularly in the North and West was short of the arable land that was essential for the mixed, run rig based, communal farming that existed before agricultural improvement was introduced into the region.[a] Between the 1760s and the 1830s there was a substantial trade in unlicensed whisky that had been distilled in the Highlands. Lowland distillers (who were not able to avoid the heavy taxation of this product) complained that Highland whisky made up more than half the market. The development of the cattle trade is taken as evidence that the pre-improvement Highlands was not an immutable system, but did exploit the economic opportunities that came its way. The illicit whisky trade demonstrates the entrepreneurial ability of the peasant classes.
Agricultural improvement reached the Highlands mostly over the period 1760 to 1850. Agricultural advisors, factors, land surveyors and others educated in the thinking of Adam Smith were keen to put into practice the new ideas taught in Scottish universities. Highland landowners, many of whom were burdened with chronic debts, were generally receptive to the advice they offered and keen to increase the income from their land. In the East and South the resulting change was similar to that in the Lowlands, with the creation of larger farms with single tenants, enclosure of the old run rig fields, introduction of new crops (such as turnips), land drainage and, as a consequence of all this, eviction, as part of the Highland clearances, of many tenants and cottars. Some of those cleared found employment on the new, larger farms, others moved to the accessible towns of the Lowlands.
In the West and North, evicted tenants were usually given tenancies in newly created crofting communities, while their former holdings were converted into large sheep farms. Sheep farmers could pay substantially higher rents than the run rig farmers and were much less prone to falling into arrears. Each croft was limited in size so that the tenants would have to find work elsewhere. The major alternatives were fishing and the kelp industry. Landlords took control of the kelp shores, deducting the wages earned by their tenants from the rent due and retaining the large profits that could be earned at the high prices paid for the processed product during the Napoleonic wars.
When the Napoleonic wars finished in 1815, the Highland industries were affected by the return to a peacetime economy. The price of black cattle fell, nearly halving between 1810 and the 1830s. Kelp prices had peaked in 1810, but reduced from £9 a ton in 1823 to £3 13s 4d a ton in 1828. Wool prices were also badly affected. This worsened the financial problems of debt-encumbered landlords. Then, in 1846, potato blight arrived in the Highlands, wiping out the essential subsistence crop for the overcrowded crofting communities. As the famine struck, the government made clear to landlords that it was their responsibility to provide famine relief for their tenants. The result of the economic downturn had been that a large proportion of Highland estates were sold in the first half of the 19th century. T M Devine points out that in the region most affected by the potato famine, by 1846, 70 per cent of the landowners were new purchasers who had not owned Highland property before 1800. More landlords were obliged to sell due to the cost of famine relief. Those who were protected from the worst of the crisis were those with extensive rental income from sheep farms. Government loans were made available for drainage works, road building and other improvements and many crofters became temporary migrants – taking work in the Lowlands. When the potato famine ceased in 1856, this established a pattern of more extensive working away from the Highlands.
The unequal concentration of land ownership remained an emotional and controversial subject, of enormous importance to the Highland economy, and eventually became a cornerstone of liberal radicalism. The poor crofters were politically powerless, and many of them turned to religion. They embraced the popularly oriented, fervently evangelical Presbyterian revival after 1800. Most joined the breakaway "Free Church" after 1843. This evangelical movement was led by lay preachers who themselves came from the lower strata, and whose preaching was implicitly critical of the established order. The religious change energised the crofters and separated them from the landlords; it helped prepare them for their successful and violent challenge to the landlords in the 1880s through the Highland Land League. Violence erupted, starting on the Isle of Skye, when Highland landlords cleared their lands for sheep and deer parks. It was quietened when the government stepped in, passing the Crofters' Holdings (Scotland) Act, 1886 to reduce rents, guarantee fixity of tenure, and break up large estates to provide crofts for the homeless. This contrasted with the Irish Land War underway at the same time, where the Irish were intensely politicised through roots in Irish nationalism, while political dimensions were limited. In 1885 three Independent Crofter candidates were elected to Parliament, which listened to their pleas. The results included explicit security for the Scottish smallholders in the "crofting counties"; the legal right to bequeath tenancies to descendants; and the creation of a Crofting Commission. The Crofters as a political movement faded away by 1892, and the Liberal Party gained their votes.
Today, the Highlands are the largest of Scotland's whisky producing regions; the relevant area runs from Orkney to the Isle of Arran in the south and includes the northern isles and much of Inner and Outer Hebrides, Argyll, Stirlingshire, Arran, as well as sections of Perthshire and Aberdeenshire. (Other sources treat The Islands, except Islay, as a separate whisky producing region.) This massive area has over 30 distilleries, or 47 when the Islands sub-region is included in the count. According to one source, the top five are The Macallan, Glenfiddich, Aberlour, Glenfarclas and Balvenie. While Speyside is geographically within the Highlands, that region is specified as distinct in terms of whisky productions. Speyside single malt whiskies are produced by about 50 distilleries.
According to Visit Scotland, Highlands whisky is "fruity, sweet, spicy, malty". Another review states that Northern Highlands single malt is "sweet and full-bodied", the Eastern Highlands and Southern Highlands whiskies tend to be "lighter in texture" while the distilleries in the Western Highlands produce single malts with a "much peatier influence".
The Scottish Reformation achieved partial success in the Highlands. Roman Catholicism remained strong in some areas, owing to remote locations and the efforts of Franciscan missionaries from Ireland, who regularly came to celebrate Mass. There remain significant Catholic strongholds within the Highlands and Islands such as Moidart and Morar on the mainland and South Uist and Barra in the southern Outer Hebrides. The remoteness of the region and the lack of a Gaelic-speaking clergy undermined the missionary efforts of the established church. The later 18th century saw somewhat greater success, owing to the efforts of the SSPCK missionaries and to the disruption of traditional society after the Battle of Culloden in 1746. In the 19th century, the evangelical Free Churches, which were more accepting of Gaelic language and culture, grew rapidly, appealing much more strongly than did the established church.
For the most part, however, the Highlands are considered predominantly Protestant, belonging to the Church of Scotland. In contrast to the Catholic southern islands, the northern Outer Hebrides islands (Lewis, Harris and North Uist) have an exceptionally high proportion of their population belonging to the Protestant Free Church of Scotland or the Free Presbyterian Church of Scotland. The Outer Hebrides have been described as the last bastion of Calvinism in Britain and the Sabbath remains widely observed. Inverness and the surrounding area has a majority Protestant population, with most locals belonging to either The Kirk or the Free Church of Scotland. The church maintains a noticeable presence within the area, with church attendance notably higher than in other parts of Scotland. Religion continues to play an important role in Highland culture, with Sabbath observance still widely practised, particularly in the Hebrides.
In traditional Scottish geography, the Highlands refers to that part of Scotland north-west of the Highland Boundary Fault, which crosses mainland Scotland in a near-straight line from Helensburgh to Stonehaven. However the flat coastal lands that occupy parts of the counties of Nairnshire, Morayshire, Banffshire and Aberdeenshire are often excluded as they do not share the distinctive geographical and cultural features of the rest of the Highlands. The north-east of Caithness, as well as Orkney and Shetland, are also often excluded from the Highlands, although the Hebrides are usually included. The Highland area, as so defined, differed from the Lowlands in language and tradition, having preserved Gaelic speech and customs centuries after the anglicisation of the latter; this led to a growing perception of a divide, with the cultural distinction between Highlander and Lowlander first noted towards the end of the 14th century. In Aberdeenshire, the boundary between the Highlands and the Lowlands is not well defined. There is a stone beside the A93 road near the village of Dinnet on Royal Deeside which states 'You are now in the Highlands', although there are areas of Highland character to the east of this point.
A much wider definition of the Highlands is that used by the Scotch whisky industry. Highland single malts are produced at distilleries north of an imaginary line between Dundee and Greenock, thus including all of Aberdeenshire and Angus.
Inverness is regarded as the Capital of the Highlands, although less so in the Highland parts of Aberdeenshire, Angus, Perthshire and Stirlingshire which look more to Aberdeen, Dundee, Perth, and Stirling as their commercial centres.
The Highland Council area, created as one of the local government regions of Scotland, has been a unitary council area since 1996. The council area excludes a large area of the southern and eastern Highlands, and the Western Isles, but includes Caithness. Highlands is sometimes used, however, as a name for the council area, as in the former Highlands and Islands Fire and Rescue Service. Northern is also used to refer to the area, as in the former Northern Constabulary. These former bodies both covered the Highland council area and the island council areas of Orkney, Shetland and the Western Isles.
Much of the Highlands area overlaps the Highlands and Islands area. An electoral region called Highlands and Islands is used in elections to the Scottish Parliament: this area includes Orkney and Shetland, as well as the Highland Council local government area, the Western Isles and most of the Argyll and Bute and Moray local government areas. Highlands and Islands has, however, different meanings in different contexts. It means Highland (the local government area), Orkney, Shetland, and the Western Isles in Highlands and Islands Fire and Rescue Service. Northern, as in Northern Constabulary, refers to the same area as that covered by the fire and rescue service.
There have been trackways from the Lowlands to the Highlands since prehistoric times. Many traverse the Mounth, a spur of mountainous land that extends from the higher inland range to the North Sea slightly north of Stonehaven. The most well-known and historically important trackways are the Causey Mounth, Elsick Mounth, Cryne Corse Mounth and Cairnamounth.
Although most of the Highlands is geographically on the British mainland, it is somewhat less accessible than the rest of Britain; thus most UK couriers categorise it separately, alongside Northern Ireland, the Isle of Man, and other offshore islands. They thus charge additional fees for delivery to the Highlands, or exclude the area entirely. While the physical remoteness from the largest population centres inevitably leads to higher transit cost, there is confusion and consternation over the scale of the fees charged and the effectiveness of their communication, and the use of the word Mainland in their justification. Since the charges are often based on postcode areas, many far less remote areas, including some which are traditionally considered part of the lowlands, are also subject to these charges. Royal Mail is the only delivery network bound by a Universal Service Obligation to charge a uniform tariff across the UK. This, however, applies only to mail items and not larger packages which are dealt with by its Parcelforce division.
The Highlands lie to the north and west of the Highland Boundary Fault, which runs from Arran to Stonehaven. This part of Scotland is largely composed of ancient rocks from the Cambrian and Precambrian periods which were uplifted during the later Caledonian Orogeny. Smaller formations of Lewisian gneiss in the northwest are up to 3 billion years old. The overlying rocks of the Torridon Sandstone form mountains in the Torridon Hills such as Liathach and Beinn Eighe in Wester Ross.
These foundations are interspersed with many igneous intrusions of a more recent age, the remnants of which have formed mountain massifs such as the Cairngorms and the Cuillin of Skye. A significant exception to the above are the fossil-bearing beds of Old Red Sandstone found principally along the Moray Firth coast and partially down the Highland Boundary Fault. The Jurassic beds found in isolated locations on Skye and Applecross reflect the complex underlying geology. They are the original source of much North Sea oil. The Great Glen is formed along a transform fault which divides the Grampian Mountains to the southeast from the Northwest Highlands.
The entire region was covered by ice sheets during the Pleistocene ice ages, save perhaps for a few nunataks. The complex geomorphology includes incised valleys and lochs carved by the action of mountain streams and ice, and a topography of irregularly distributed mountains whose summits have similar heights above sea-level, but whose bases depend upon the amount of denudation to which the plateau has been subjected in various places.
Climate
The region is much warmer than other areas at similar latitudes (such as Kamchatka in Russia, or Labrador in Canada) because of the Gulf Stream making it cool, damp and temperate. The Köppen climate classification is "Cfb" at low altitudes, then becoming "Cfc", "Dfc" and "ET" at higher altitudes.
Places of interest
An Teallach
Aonach Mòr (Nevis Range ski centre)
Arrochar Alps
Balmoral Castle
Balquhidder
Battlefield of Culloden
Beinn Alligin
Beinn Eighe
Ben Cruachan hydro-electric power station
Ben Lomond
Ben Macdui (second highest mountain in Scotland and UK)
Ben Nevis (highest mountain in Scotland and UK)
Cairngorms National Park
Cairngorm Ski centre near Aviemore
Cairngorm Mountains
Caledonian Canal
Cape Wrath
Carrick Castle
Castle Stalker
Castle Tioram
Chanonry Point
Conic Hill
Culloden Moor
Dunadd
Duart Castle
Durness
Eilean Donan
Fingal's Cave (Staffa)
Fort George
Glen Coe
Glen Etive
Glen Kinglas
Glen Lyon
Glen Orchy
Glenshee Ski Centre
Glen Shiel
Glen Spean
Glenfinnan (and its railway station and viaduct)
Grampian Mountains
Hebrides
Highland Folk Museum – The first open-air museum in the UK.
Highland Wildlife Park
Inveraray Castle
Inveraray Jail
Inverness Castle
Inverewe Garden
Iona Abbey
Isle of Staffa
Kilchurn Castle
Kilmartin Glen
Liathach
Lecht Ski Centre
Loch Alsh
Loch Ard
Loch Awe
Loch Assynt
Loch Earn
Loch Etive
Loch Fyne
Loch Goil
Loch Katrine
Loch Leven
Loch Linnhe
Loch Lochy
Loch Lomond
Loch Lomond and the Trossachs National Park
Loch Lubnaig
Loch Maree
Loch Morar
Loch Morlich
Loch Ness
Loch Nevis
Loch Rannoch
Loch Tay
Lochranza
Luss
Meall a' Bhuiridh (Glencoe Ski Centre)
Scottish Sea Life Sanctuary at Loch Creran
Rannoch Moor
Red Cuillin
Rest and Be Thankful stretch of A83
River Carron, Wester Ross
River Spey
River Tay
Ross and Cromarty
Smoo Cave
Stob Coire a' Chàirn
Stac Polly
Strathspey Railway
Sutherland
Tor Castle
Torridon Hills
Urquhart Castle
West Highland Line (scenic railway)
West Highland Way (Long-distance footpath)
Wester Ross
"....But the tale that chills my spirit, more because I know it's true, is the tale of Jayme Dawson and his crew. Yes, the tale of Dawson's Christian and her crew...."
04/12/2382: COSCOM assigns Christian (DE-413) to patrol Barber system (S.VII)
04/17/2382: Christian arrives on station and assumes Standard Patrol Pattern 3
05/11/2382
1053: COSCOM receives alarm signal from Christian indicating three Alliance cruisers have entered system and are attacking
1055: COSCOM brings 7th Fleet to DEFCON 1, orders preparations for immediate departure.
1058: 7th Fleet reports ready to depart, burns for jump point
1135: 7th Fleet reaches jump point, enters for Barber. COSCOM final message to SEVCOM reads; "Godspeed."
1241: SEVCOM to COSCOM: "Arrived Sys.Barber. Initial scan neg. activ. Rpt. neg. activ. Analysis debris indi. minim. 3 cruiser type. Neg evidence Christian. Rpt. Neg. evidence Christian. Mess. end."
1300: SEVCOM orders fine-tooth search of system for Christian. All-channel hails remain unanswered.
1500: SEVCOM orders halt to search. No evidence or debris of Christian recovered. No distress beacon found. No lifeboats detected.
06/11/2382: COSCOM declares Christian (DE-413) lost with all hands.
nrhp # 92001490- The Boston Mills Historic District is a historic district in the Cuyahoga Valley National Park in Northeast Ohio in the United States. With the opening of the Ohio and Erie Canal in 1827, people began to settle in this vicinity. By 1842, there was a water-powered mill, a large warehouse, a boat-yard, two stores and a hotel, and the population was around 300. A number of houses and other buildings dating back to that period remain.
With the decrease in boat traffic on the canal the village declined somewhat, but its fortunes revived with the construction of the railway in 1880 and the arrival of the Cleveland—Akron Bag Company in 1900. This industry drew in many Polish immigrant workers, and housing and commercial premises were built. Many of these buildings remain today, intermingled with the older properties.
Located in the Cuyahoga Valley National Park, the Village of Boston Mills reflects the early 19th-century canal era and the early 20th-century industrial era. With the opening of the Ohio and Erie Canal from Cleveland to Akron in 1827, the settlement along the Cuyahoga River began to grow. By 1842, Boston Mills had a population of approximately 300. A water-powered mill, a large warehouse, two stores and a hotel were some of the businesses in the village. Canal boat building was also an important industry with several dry docks in this inland port. Although the canal is not watered through the village now, one of the system's locks is still extant and several Greek Revival frame buildings date from the early 19th century. The Upwright and Wing house type reflects the extended New England settlement culture. This style is exemplified by the main gable-front two-story section containing a parlor and bedchambers, while the kitchen is located in a perpendicular one-story eave oriented section. The 1836 Boston Company Store, with its Federal and Greek Revival influences, now serves as a Cuyahoga Valley National Park visitor center and canal boat building museum.
Although the village stagnated with the end of canal packet, or passenger boat era, the arrival of the Valley Railway in 1880 and the Cleveland—Akron Bag Company in 1900 began a new period of growth. Connecting the industries of Cleveland with the coal fields in the south, the Valley Railway provided raw resources and access to markets for industrial operations. The Cleveland—Akron Bag Company brought with it many Polish immigrant workers and new houses—built and sold by the company. Several patterned concrete block houses and a school remain from this era, along with a company store building. A somewhat later 20th-century building, the M. D. Garage has been restored, including period gas pumps and signage, and now houses art exhibits. The compact nature of the village creates streetscapes that juxtapose the buildings from each era.
from Wikipedia
Red-footed Booby on Tern Island in the French Frigate Shoals, Hawaii.
Camera: Olympus OM-1
Lens: Olympus OM-System S Zuiko MC Auto-Zoom f/4 35-70mm. Yellow filter.
Film: Adox HR-50
Developer: Beerenol (Rainier Beer)
Using original Lego set, modify it with system's bricks. Adding claws and tail to increase the "scary" feeling.
This is harder than I thought it would be.
鯖ナッツ味噌煮込み。Mackerel simmered in a sauce made from miso and a mixture of various kinds of nut paste.
Photographed with OLYMPUS OM-SYSTEM S ZUIKO AUTO-ZOOM 35~70mm 1:3.5-4.5 143233
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
In the first years of the war, the Wehrmacht had only little interest in developing self-propelled anti-aircraft guns, but as the Allies developed air superiority and dedicated attack aircraft threatened the ground troops from above, the need for more mobile and better-armed self-propelled anti-aircraft guns increased. As a stopgap solution the Wehrmacht initially adapted a variety of wheeled, half-track and tracked vehicles to serve as mobile forward air defense positions. Their tasks were to protect armor and infantry units in the field, as well as to protect temporary forward area positions such as mobile headquarters and logistic points.
These vehicles were only lightly armored, if at all, and rather mobilized the anti-aircraft weapons. As Allied fighter bombers and other ground attack aircraft moved from machine gun armament and bombing to air-to-ground rockets and large-caliber cannons, the air defense positions were even more vulnerable. The answer was to adapt a tank chassis with a specialized turret that would protect the gun crews while they fired upon approaching Allied aircraft. Furthermore, the vehicle would have the same mobility as the battle tanks it protected.
Initial German AA-tank designs were the ‘Möbelwagen’ and the ‘Wirbelwind’, both conversions of refurbished Panzer IV combat tank chassis with open platforms or turrets with four 20mm cannon. Alternatively, a single 37mm AA gun was mounted, too – but all these vehicles were just a compromise and suffered from light armor, a high silhouette and lack of crew protection.
Further developments of more sophisticated anti-aircraft tank designs started in late 1943 and led into different directions. One development line was the ‘Kugelblitz’, another Panzer IV variant, but this time the ball-shaped turret, armed with very effective 30 mm MK 103 cannon, was fully integrated into the hull, resulting in a low silhouette and a protected crew. However, the ‘Kugelblitz’ only featured two of these guns and the tilting turret was very cramped and complicated. Venting and ammunition feed problems led to serious delays and a prolonged development stage.
The ‘Coelian’ family of bigger turrets with various weapon options for the Panzer V (the ‘Panther’) was another direction, especially as a response against the armored Il-2 attack aircraft at the Eastern front and against flying targets at medium altitude. Targets at high altitude, esp. Allied bombers, were to be countered with the very effective 8.8 cm Flak, and there were also several attempts to mount this weapon onto a fully armored hull.
The primary weapon for a new low/medium altitude anti-aircraft tank was to become the heavy automatic 55 mm MK 214. Like the 30 mm MK 103 it was a former aircraft weapon, belt-fed and adapted to continuous ground use. However, in early 1944, teething troubles with the ‘Kugelblitz’ suggested that a completely enclosed turret with one or (even better) two of these new weapons, mounted on a ‘Panther’ or the new E-50/75 tank chassis, would need considerable development time. Operational vehicles were not expected to enter service before mid-1945. In order to fill this operational gap, a more effective solution than the Panzer IV AA conversions, with more range and firepower than anything else currently in service, was direly needed.
This situation led to yet another hasty stopgap solution, the so-called ‘Ostwind II’ weapon system, which consisted primarily of a new turret, mated with a standard medium battle tank chassis. It was developed in a hurry in the course of 1944 and already introduced towards the end of the same year. The ‘Ostwind II’ was a compromise in the worst sense: even though it used two 37 mm FlaK 43 guns in a new twin mount and offered better firepower than any former German AA tank, it also retained many weaknesses from its predecessors: an open turret with only light armor and a high silhouette. But due to the lack of time and resources, the ‘Ostwind II’ was the best thing that could be realized on short notice, and with the perspective of more effective solutions within one year’s time it was rushed into production.
The ‘Ostwind II’ system was an open, roughly diamond-shaped, octagonal turret, very similar in design to the Panzer IV-based ‘Wirbelwind’ and ‘Ostwind’ (which was re-designated ‘Ostwind I’). As a novelty, in order to relieve the crew from work overload, traverse and elevation of the turret was hydraulic, allowing a full elevation (-4° to +90° was possible) in just over four seconds and a full 360° traverse in 15 seconds. This had become necessary because the new turret was bigger and heaver, both the weapons and their crews required more space, so that the Ostwind II complex could not be mounted onto the Panzer IV chassis anymore and movement by hand was just a fallback option.
In order to provide the ‘Ostwind II’ with a sufficiently large chassis, it was based on the SdKfz. 171 Panzer V medium battle tank, the ‘Panther’, exploiting its bigger turret ring, armor level and performance. The Panther chassis had, by late 1944, become available for conversions in considerable numbers through damaged and/or recovered combat tanks, and updated details like new turrets or simplified road wheels were gradually introduced into production and during refurbishments. Mounting the ‘Ostwind II’ turret on the Panzer VI (Tiger) battle tank chassis had been theoretically possible, too, but it never happened, because the Tiger lacked agility and its protection level and fuel consumption were considered impractical for an SPAAG that would typically protect battle tank groups.
The ‘Ostwind II’ turret was built around a motorized mount for the automatic 3.7 cm FlaK 43 twin guns. These proven weapons were very effective against aircraft flying at altitudes up to 4,200 m, but they also had devastating effect against ground targets. The FlaK 43’s armor penetration was considerable when using dedicated ammunition: at 100 m distance it could penetrate 36 mm of a 60°-sloped armor, and at 800 m distance correspondingly 24 mm. The FlaK 43’s theoretical maximum rate of fire was 250 shots/minute, but it was practically kept at ~120 rpm in order to save ammunition and prevent wear of the barrels. The resulting weight of fire was 76.8 kg (169 lb) per minute, but this was only theoretical, too, because the FlaK 43 could only be fed manually by 6-round clips – effectively, only single shots or short bursts could be fired, but a trained crew could maintain fire through using alternating gun use. A more practical belt feed was at the time of the Ostwind II's creation not available yet, even though such a mechanism was already under development for the fully enclosed Coelian turret, which could also take the FlaK 43 twin guns, but the armament was separated from the turret crew.
The new vehicle received the official designation ‘Sd.Kfz. 171/2 Flakpanzer V’, even though ‘Ostwind II’ was more common. When production actually began and how many were built is unclear. The conversion of Panther hulls could have started in late-1944 or early-1945, with sources disagreeing. The exact number of produced vehicles is difficult to determine, either. Beside the prototype, the number of produced vehicles goes from as little as 6 to over 40. The first completed Ostwind II SPAAGs were exclusively delivered to Eastern front units and reached them in spring 1945, where they were immediately thrown into action.
All Flakpanzer vehicles at that time were allocated to special anti-aircraft tank platoons (so-called Panzer Flak Züge). These were used primarily to equip Panzer Divisions, and in some cases given to special units. By the end of March 1945, there were plans to create mixed platoons equipped with the Ostwinds and other Flakpanzers. Depending on the source, they were either to be used in combination with six Kugelblitz, six Ostwinds and four Wirbelwinds or with eight Ostwinds and three Sd.Kfz. 7/1 half-tracks. Due to the war late stage and the low number of anti-aircraft tanks of all types built, this reorganization was never truly implemented, so that most vehicles were simply directly attached to combat units, primarily to the commanding staff.
The Ostwind II armament proved to be very effective, but the open turret (nicknamed ‘Keksdose’ = cookie tin) left the crews vulnerable. The crew conditions esp. during wintertime were abominable, and since aiming had to rely on vision the system's efficacy was limited, esp. against low-flying targets. The situation was slightly improved when the new mobile ‘Medusa’ and ‘Basilisk’ surveillance and target acquisition systems were introduced. These combined radar and powerful visual systems and guided the FlaK crews towards incoming potential targets, what markedly improved the FlaKs' first shot hit probability. However, the radar systems rarely functioned properly, the coordination of multiple SPAAGs in the heat of a low-level air attack was a challenging task, and - to make matters worse - the new mobile radar systems were even more rare than the new SPAAGs themselves.
All Ostwind II tanks were built from recovered ‘Panther’ battle tanks of various versions. The new Panther-based SPAAGs gradually replaced most of the outdated Panzer IV AA variants as well as the Ostwind I. Their production immediately stopped in the course of 1945 when the more sophisticated 'Coelian' family of anti-aircraft tanks with fully enclosed turrets became available. This system was based on Panzer V hulls, too, and it was soon followed by the first E-50 SPAAGs with the new, powerful twin-55 mm gun.
Specifications:
Crew: Six (commander, gunner, 2× loader, driver, radio-operator/hull machine gunner)
Weight: 43.8 tonnes (43.1 long tons; 48.3 short tons)
Length (hull only): 6.87 m (22 ft 6 in)
Width: 3.42 m (11 ft 3 in)
Height: 3.53 m (11 ft 6 3/4 in)
Suspension: Double torsion bar, interleaved road wheels
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
15–80 mm (0.6 – 3.15 in)
Performance:
Maximum road speed: 46 km/h (29 mph)
Operational range: 250 km (160 mi)
Power/weight: 15.39 PS (11.5 kW)/tonne (13.77 hp/ton)
Engine:
Maybach HL230 P30 V-12 petrol engine with 700 PS (690 hp, 515 kW)
ZF AK 7-200 gear; 7 forward 1 reverse
Armament:
2× 37 mm (1.46 in) FlaK 43 cannon in twin mount with 1.200 rounds
1× 7.92 mm MG 34 machine gun in the front glacis plate with 2.500 rounds
The kit and its assembly:
This was a spontaneous build, more or less the recycling of leftover parts from a 1:72 Revell Ostwind tank on a Panzer III chassis that I had actually bought primarily for the chassis (it became a fictional Aufklärungspanzer III). When I looked at the leftover turret, I wondered about a beefed-up/bigger version with two 37 mm guns. Such an 'Ostwind II' was actually on the German drawing boards, but never realized - but what-if modelling can certainly change that. However, such a heavy weapon would have to be mounted on a bigger/heavier chassis, so the natural choice became the Panzer V, the Panther medium battle tank. This way, my ‘Ostwind II’ interpretation was born.
The hull for this fictional AA tank is a Hasegawa ‘Panther Ausf. G’ kit, which stems from 1973 and clearly shows its age, at least from today’s point of view. While everything fits well, the details are rather simple, if not crude (e. g. the gratings on the engine deck or the cupola on the turret). However, only the lower hull and the original wheels were used since I wanted to portray a revamped former standard battle tank.
The turret was a more complicated affair. It had to be completely re-constructed, to accept the enlarged twin gun and to fit onto the Panther hull. The first step was the assembly of the twin gun mount, using parts from the original Ostwind kit and additional parts from a second one. In order to save space and not to make thing uber-complicated I added the second weapon to the right side of the original gun and changed some accessories.
This, together with the distance between the barrels, gave the benchmark for the turret's reconstruction. Since the weapon had not become longer, I decided to keep things as simple as possible and just widen the open turret - I simply took the OOB Ostwind hexagonal turret (which consists of an upper and lower half), cut it up vertically and glued them onto the Panther turret's OOB base, shifting the sides just as far to the outside that the twin gun barrels would fit between them - a distance of ~0.4 inch (1 cm). At the rear the gap was simply closed with styrene sheet, while the front used shield parts from the Revell Ostwind kit that come from a ground mount for the FlaK 43. Two parts from this shield were glued together and inserted into the front gap. While this is certainly not as elegant as e. g. the Wirbelwind turret, I think that this solution was easier to integrate.
Massive PSR was necessary to blend the turret walls with the Panther turret base, and as a late modification the opening for the sight had to be moved, too. To the left of the weapons, I also added a raised protective shield for the commander.
Inside of the turret, details from the Ostwind kit(s), e. g. crew seats and ammunition clips, were recycled, too.
Painting and markings:
Since the Ostwind II would be based on a repaired/modified former Panzer V medium battle tank, I settled upon a relatively simple livery. The kit received a uniform finish in Dunkelgelb (RAL 7028), with a network of greenish-grey thin stripes added on top, to break up the tank's outlines and reminiscent of the British ‘Malta’ scheme, but less elaborate. The model and its parts were initially primed with matt sand brown from the rattle can (more reddish than RAL 7028) and then received an overall treatment with thinned RAL 7028 from Modelmaster, for an uneven, dirty and worn look. The stripes were created with thinned Tamiya XF-65 (Field Grey).
Once dry, the whole surface received a dark brown wash, details were emphasized with dry-brushing in light grey and beige. Decals were puzzled together from various German tank sheets, and the kit finally sealed with matt acrylic varnish.
The black vinyl tracks were also painted/weathered, with a wet-in-wet mix of black, grey, iron and red brown (all acrylics). Once mounted into place, mud and dust were simulated around the running gear and the lower hull with a greyish-brown mix of artist mineral pigments.
A bit of recycling and less exotic than one would expect, but it’s still a whiffy tank model that fits well into the historic gap between the realized Panzer IV AA tanks and the unrealized E-50/75 projects. Quite subtle! Creating the enlarged turret was the biggest challenge, even, even more so because it was/is an open structure and the interior can be readily seen. But the new/bigger gun fits well into it, and it even remained movable!
S135-E-007515 (12 July 2011) --- With his feet secured on a restraint on the space station remote manipulator system's robotic arm or Canadarm2, NASA astronaut Ron Garan, Expedition 28 flight engineer, carries the pump module, which was the focus of one of the primary chores accomplished on a six and a half hour spacewalk on July 12. NASA astronaut Mike Fossum, also a station flight engineer, who shared the spacewalk with Garan, is out of frame. Photo credit: NASA
The Eta Carinae star system does not lack for superlatives. Not only does it contain one of the biggest and brightest stars in our galaxy, weighing at least 90 times the mass of the sun, it is also extremely volatile and is expected to have at least one supernova explosion in the future.
As one of the first objects observed by NASA’s Chandra X-ray Observatory after its launch some 15 years ago, this double star system continues to reveal new clues about its nature through the X-rays it generates.
Astronomers reported extremely volatile behavior from Eta Carinae in the 19th century, when it became very bright for two decades, outshining nearly every star in the entire sky. This event became known as the “Great Eruption.” Data from modern telescopes reveal that Eta Carinae threw off about ten times the sun’s mass during that time. Surprisingly, the star survived this tumultuous expulsion of material, adding “extremely hardy” to its list of attributes.
Today, astronomers are trying to learn more about the two stars in the Eta Carinae system and how they interact with each other. The heavier of the two stars is quickly losing mass through wind streaming away from its surface at over a million miles per hour. While not the giant purge of the Great Eruption, this star is still losing mass at a very high rate that will add up to the sun’s mass in about a millennium.
Though smaller than its partner, the companion star in Eta Carinae is also massive, weighing in at about 30 times the mass of the sun. It is losing matter at a rate that is about a hundred times lower than its partner, but still a prodigious weight loss compared to most other stars. The companion star beats the bigger star in wind speed, with its wind clocking in almost ten times faster.
When these two speedy and powerful winds collide, they form a bow shock – similar to the sonic boom from a supersonic airplane – that then heats the gas between the stars. The temperature of the gas reaches about ten million degrees, producing X-rays that Chandra detects.
The Chandra image of Eta Carinae shows low energy X-rays in red, medium energy X-rays in green, and high energy X-rays in blue. Most of the emission comes from low and high energy X-rays. The blue point source is generated by the colliding winds, and the diffuse blue emission is produced when the material that was purged during the Great Eruption reflects these X-rays. The low energy X-rays further out show where the winds from the two stars, or perhaps material from the Great Eruption, are striking surrounding material. This surrounding material might consist of gas that was ejected before the Great Eruption.
An interesting feature of the Eta Carinae system is that the two stars travel around each other along highly elliptical paths during their five-and-a-half-year long orbit. Depending on where each star is on its oval-shaped trajectory, the distance between the two stars changes by a factor of twenty. These oval-shaped trajectories give astronomers a chance to study what happens to the winds from these stars when they collide at different distances from one another.
Throughout most of the system's orbit, the X-rays are stronger at the apex, the region where the winds collide head-on. However, when the two stars are at their closest during their orbit (a point that astronomers call “periastron”), the X-ray emission dips unexpectedly.
To understand the cause of this dip, astronomers observed Eta Carinae with Chandra at periastron in early 2009. The results provided the first detailed picture of X-ray emission from the colliding winds in Eta Carinae. The study suggests that part of the reason for the dip at periastron is that X-rays from the apex are blocked by the dense wind from the more massive star in Eta Carinae, or perhaps by the surface of the star itself.
Another factor responsible for the X-ray dip is that the shock wave appears to be disrupted near periastron, possibly because of faster cooling of the gas due to increased density, and/or a decrease in the strength of the companion star’s wind because of extra ultraviolet radiation from the massive star reaching it. Researchers are hoping that Chandra observations of the latest periastron in August 2014 will help them determine the true explanation.
These results were published in the April 1, 2014 issue of The Astrophysical Journal and are available online. The first author of the paper is Kenji Hamaguchi of Goddard Space Flight Center in Greenbelt, MD, and his co-authors are Michael Corcoran of Goddard Space Flight Center (GSFC); Christopher Russell of University of Delaware in Newark, DE; A. Pollock from the European Space Agency in Madrid, Spain; Theodore Gull, Mairan Teodoro, and Thomas I. Madura from GSFC; Augusto Damineli from Universidade de Sao Paulo in Sao Paulo, Brazil and Julian Pittard from the University of Leeds in the UK.
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington, DC. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.
Image credit: NASA/CXC/GSFC/K.Hamaguchi, et al.
Federal Reserve Chairman Ben S. Bernanke and former Chairman Alan Greenspan talk before the start of the Federal Reserve System's Centennial Commemoration in Washington, D.C., held on December 16, 2013.
A band of moderate to heavy rain sweeps thru the Bay Area. I miss this weather... It feels like it's been forever since I've seen rain!
Weather scenario/details:
At last, rain was finally making a return to California after a very dry February! Certainly, we were in for a lot of it! Although we were still in a drought, all this rain equals hazardous conditions... It may be too much of a good thing...
Here's a weather rundown: Why the sudden rains? An atmospheric river event was in store for California for early March 2016... Despite a very dry and mild February, a major pattern change toward a much wetter weather pattern was imminent. The 1st strong system of the series had hit by the first weekend of the month, bringing heavy rain, gusty winds, and heavy mountain snow. Wind & flood advisories were also issued with the first system of the series. The 1st system's strong cold front had approached the Bay Area by Saturday afternoon. Strong southerly winds have developed as the front passed thru. While this rain was to help replenish depleted water reservoirs and put a dent in the long-standing drought, the large amount of rain in a short time frame would lead to flooding and mudslides. Despite its drawbacks, the rainfall was beneficial to the state's water supply. Impacts from the 1st strong system had brought heavy rain & wind to my area in San Jose, CA. The 2nd system was expected to arrive by Sunday night and into Monday. At the time, the 2nd system appeared a bit stronger, bringing in more heavy rain, according to forecasters. Looks like this was El Nino's last hurrah this winter! Is a 'Miracle-March' imminent? Drive safe & stay dry out there, guys.
(Footage filmed Saturday, March 5, 2016 from around San Jose, CA)
The opposite end of TECO Line Streetcar System's celebration of 25 years of the Tampa Bay Lightning hockey team on Car #436 features Victor Hedman, bearer of the No. 77 shirt.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
When, towards late 1945, the Einheits-Chassis for the German combat tanks (the "E" series of medium and heavy tanks) reached the front lines, several heavily armed anti-aircraft turrets had been developed, including the 30mm Kugelblitz, based on the outdated Panzer IV, the "Coelian" turret with various armament options for the Panzer V Panther hull, and there were twin 55 mm as well as single and even 88mm cannon systems for the new E-50, E-75 and E-100 chassis'.
With these new weapons for medium- and high-altitude targets, Firepower was considerably increased, but the tank crews still had to rely on traditional visual tracking and aiming of targets. One potential solution in which the German Heeresleitung was highly interested from the start was the use of the Luftwaffe’s new radar technology for early target identification and as an aiming aid in poor weather conditions or even at night. The German Luftwaffe first introduced an airborne interception radar in 1942, but these systems were bulky and relied upon large bipolar antenna arrays. These were not suitable for any use in a ground vehicle, lest to say in a tank that would also carry weapons and ammunition.
A potential solution appeared in late 1944 with the development of the FuG 240 "Berlin". It was an airborne interception radar, too, but it was the first German radar to be based on the cavity magnetron, which eliminated the need for the large multiple dipole-based antenna arrays seen on earlier radars, thereby greatly increasing the performance of the night fighters. The FuG 240 with a rotating dish antenna was introduced by Telefunken in April 1945, primarily in Junkers Ju 88G-6 night-fighters, behind a plywood radome which considerably improved aerodynamics. This so greatly reduced drag compared to the late-model Lichtenstein and Neptun systems that the fighters regained their pre-radar speeds and made them competitive again. The FuG 240 was effective against bomber-sized targets at distances of up to 9 kilometers (5.5 mi), or down to 0.5 kilometer, which eliminated the need for a second, short-range radar system.
Right before the FuG 240's roll-out with the Luftwaffe, the Heer insisted on a ground-based derivative for its anti-aircraft units. Political pressure from Berlin convinced the RLM to share the new technology, and Telefunken was ushered to adapt the radar system to an armored ground vehicle in February 1945.
It soon became clear that the FuG 240 had several drawbacks for this task. On one side, ground clutter and the natural horizon limited the system's range and low-level effectiveness, but its 9 km range in free space made high altitude surveillance possible – just enough for the effective interception of Allied bombers that attacked important point targets. Furthermore, the whole system, together with its power supply and a dirigible dish antenna, took up a lot of space, so that its integration into a tank-based anti-aircraft vehicle like an SPAAG as an autonomous, stand-alone solution was ruled out.
A workable solution eventually came as a technical and tactical compromise: the army’s anti-aircraft tanks were to be grouped together in so-called Panzer-Fla-Züge, which consisted of several (typically four) SPAAGs and an additional, dedicated radar surveillance and command unit, so that the radar could guide the tank crews towards incoming targets – even though the gun crews still had to rely on visual targeting.
Two respective guidance vehicles developed, a light and a heavy one. The light one, intended against low-flying targets like the Ilyushin Il-2 on the Eastern front, became the 8x8 Funkmess-/Flak-Kommandowagen Sd.Kfz. 234/6. The heavy variant, with a bigger antenna and a more powerful emitter, became the Mittlerer Funkmess-/Flak-Kommandopanzer Sd.Kfz. 282. In contrast to the light and compact Sd.Kfz. 234/6, the Sd.Kfz. 282’s complete radar and observation system was installed in a new turret, so that it could be simply mounted onto the new E-50 Einheitspanzer battle tank hull.
This new, box-shaped turret had been developed by Rheinmetall, together with Telefunken, and was based on the turret design for the new 55 mm twin anti-aircraft cannon. It had a maximum armor of 60mm at the front and held all of the radar equipment, christened "Basilisk", after the monster from medieval mythology with a petrifying sight. The turret held a crew of three: a commander, a radar operator, and an observer for the optical rangefinder. The rest of the crew, the driver and a radio operator, sat in the hull. No armament was fitted, even though a light machine gun could be mounted on the roof for self-defense, even though it could not be operated from the inside. A heavier armament was not deemed necessary since the vehicle would stay close to the heavily armed tanks/SPAAGs it would typically accompany.
The Basilisk radar’s rotating dish antenna had a diameter of 90 cm (35 ½ inches) and was installed at the turret's front under a hard vinyl cover. Power of the modified FuG 240 was 25kW, with a search angle of +80/− 5° and a frequency range: 3,250–3,330MHz (~10 cm). Range was, due the bigger antenna and a higher emitter output, increased to 0.5–11.0 kilometer, even though only under ideal conditions. Power came from a dedicated generator that was connected to the E-50’s V-12 Maybach HL 234 gasoline engine.
Beyond the radar system, the vehicle was furthermore equipped with a powerful visual coincidence range finder in the turret, combined with an analogue computer, the Kommandogerät (KDO) 40 Telemeter. This system had been introduced in 1941 as a guidance tool for stationary anti-aircraft units equipped with the 88 mm and the 105 mm Flak, but it had so far – due to its size and bulk – only been deployed on an unarmored trailer
The KDO 40 and similar sights worked as follows: Light from the target entered the range finder through two windows located at either end of the instrument. At either side, the incident beam was reflected to the center of the optical bar by a pentaprism, and this optical bar was ideally made from a material with a low coefficient of thermal expansion so that optical path lengths would not change significantly with temperature. The reflected beam first passed through an objective lens and was then merged with the beam of the opposing side with an ocular prism sub-assembly to form two images of the target which were viewed by the observer through the eyepiece. Since either beam entered the instrument at a slightly different angle the resulting image, if unaltered, would appear blurry. Therefore, in one arm of the instrument, a compensator was integrated which could be adjusted by the operator to tilt the beam until the two images matched. At this point, the images were said to be in coincidence. The degree of rotation of the compensator determined the range to the target by simple triangulation, allowing the calculation of the distance to the observed object.
Fixed target reading with the device mounted in the Sd.Kfz. 282 turret was possible on targets from 3,000 to 20,000 m. Aerial courses could be recorded at all levels of flight and at a slant range between 4,000 and 18,000 m - enough for visual identification beyond an anti-aircraft group's effective gun ranges and perfectly suitable for long range observation, so that the Sd.Kfz. 282 also had excellent reconnaissance and observation capabilities. The rangefinder’s optical bar had a massive span of 400 cm (157.5 in) and went right through the turret, just above the radar device installation. The whole device, together with its armored fairing, was 4,60 m (15 ft 1 in) wide, so that it protruded from the turret on both sides over the lower hull. The odd and unwieldy installation quickly earned the vehicle nicknames like "Hirsch (stag)", "Zwo-Ender" (a young stag with just two antlers) or “Ameise” (ant). None of these were official, though. In order to protect the Telemeter on the way, the turret was normally turned by 90° and hidden under a tarpaulin, in order not to give away any details of the highly classified equipment.
However, development of the Einheitspanzer family lagged behind schedule, and in early 1945 no E-50 chassis was available for the highly specialized Sd.Kfz. 282 – battle tanks and SPGs were in higher demand. As an alternative, the turret was quickly adapted for different tank hulls, namely the Sd.Kfz. 171, the Panzer V ‘Panther’ medium tank and the heavy Sd.Kfz. 181 ‘Tiger I’. Tests with both hulls in spring 1945 were successful, but only the lighter ‘Panther’ hull was chosen because it was lighter overall, more mobile and available in sufficient numbers for a quick roll-out. In this configuration, the system received the designation Sd.Kfz. 282/1, while the original Sd.Kfz. 282 designation was reserved for the originally planned E-50 chassis variant.
The first vehicles reached, together with the new FlaK tanks, the front units in September 1945. Operating independently, they were primarily allocated to the defense of important production sites and the city of Berlin, and they supported tank divisions through early warning duties and visual long-range reconnaissance. Operationally, the Sd.Kfz. 282’s sensor setup with its combined visual and radar input turned out to be surprisingly successful. The combination of the Basilisk radar with the KDO 40 rangefinder allowed a time from initial target acquisition to the first AA shot of less than 20 seconds, which was impressive for the time – typically, simple visual target acquisition took 30 seconds or more. First shot hit probability was appreciably improved, too, and even quick passes of aircraft at low altitudes could be precalculated, if the radar was not obstructed.
However, the radar remained capricious, its performance rather limited and the unarmored antenna fairing at the turret’s front was easily damaged in combat, even by heavy machinegun fire. But the Sd.Kfz. 282 offered, when the vehicle was placed in a location with a relatively free field of view (e. g. on a wide forest clearance or in an open field), a sufficient early warning performance against incoming bombers at medium to high altitudes, and it also appreciably mobilized the bulky but valuable KDO 40 device. It now could easily be moved around and keep up with the pace of motorized battle groups that the Panzer-Fla-Züge units were supposed to protect.
Until the end of hostilities, probably thirty Sd.Kfz. 282/1s were completed from newly built (Ausf. F, recognizable through the simpler all-metal wheels) or from refurbished earlier Panzer V chassis of various types before production switched in early 1946 to the E-50 chassis which had eventually become available in sufficient numbers.
Specifications:
Crew: Five (commander, radar operator, observer, driver, radio-operator/hull machine gunner)
Weight: 41.2 tonnes (40.4 long tons; 45.3 short tons)
Length (hull only): 6.87 m (22 ft 6 in)
Width: 3.42 m (11 ft 3 in) hull only
4,60 m (15 ft 1 in) overall
Height: 2.95 m (9 ft 8 in)
Suspension: Double torsion bar, interleaved road wheels
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
15–80 mm (0.6 – 3.15 in)
Performance:
Maximum road speed: 48 km/h (30 mph)
Operational range: 250 km (160 mi)
Power/weight: 15.39 PS (11.5 kW)/tonne (13.77 hp/ton)
Engine:
Maybach HL230 P30 V-12 petrol engine with 700 PS (690 hp, 515 kW)
ZF AK 7-200 gear; 7 forward 1 reverse
Armament:
1× 7.92 mm MG 34 machine gun in the front glacis plate with 2.500 rounds
Optional MG 34 or 42 machine gun with 1.500 rounds on the turret
The kit and its assembly:
Another submission to the “Recce & Surveillance” group build at whatifmodellers.com in July 2021, and actually a good occasion to tackle a project that I had on my list for some years. A long while ago I bought a resin conversion set with a (purely fictional) Heer ‘46 anti-aircraft surveillance radar system, based on an E-50 chassis. Unfortunately, I cannot identify the manufacturer, but this 1:72 conversion set was/is nicely molded, with delicate details, no bubbles or flash and it even came with a commander figure for an optional open hatch on top as well as a pair of delicate brass antennae.
Even though I could have mounted this replacement turret onto a Trumpeter or Modelcollect E-50/75 chassis, I rather decided to create an earlier (1945 time frame) interim vehicle on a late Panzer V ‘Panther’ basis, mostly because it would be more compact and I doubt that brand new E-50/75s would have been “wasted” on second line/support vehicles like this mobile surveillance/commando post for anti-aircraft units?
The Panther chassis is the old Hasegawa kit for an Ausf. G tank from 1973, chosen because of its good fit, simplicity and the vinyl tracks, which I prefer. However, the kit clearly shows its age and some weak/soft details (e. g. the gratings on the engine deck), but it was enough for my plans and easy to handle.
Both turret and hull were built separately and basically OOB, combined with an adjusted turret ring. The Kdo 40’s “antlers” are to be glued directly to the turret’s flanks, but I reinforced the connections with wire. I also replaced the set’s brass antennae with heated sprue material and used a surplus PE detail set from a Modelcollect E-50/75 to hide the crude engine openings and change the overall look of the Panther a little. Some storage boxes as well as spare track links were added to the flanks, stuff collected from the scrap box.
To emphasize the refurbished character of the vehicle I left away the Panther’s side skirts – these were easily lost in battle, anyway, and probably have rather been allocated to battle tanks than to 2nd line support vehicles, despite leaving the Panther’s lower hull under the mudguards vulnerable.
Painting and markings:
Even though the paint scheme on this model is based on German standard colors, it is a little special. Late in real-world WWII some Panzer Vs received a unique, uniform RAL 6003 (Olivgrün) factory finish instead of the usual all-over RAL 7028 (Dunkelgelb) or the bare oxide red primer finish, onto which the frontline units would add individual camouflage, depending on the theatre of operations and whatever paint or application tool was at hand. This special green livery was adopted for the model, including the new turret. The individual camouflage consists of diagonal stripes in Dunkelgelb and Rotbraun (RAL 8017), added on top of the green basis with rather sharp and straight edges and only to the vertical surfaces. The practice to leave out the horizontal surfaces was called “Sparanstrich” (literally “economy paintwork”), an attempt to save the more and more scarce paint.
This rather odd style was actually applied to several late war Panther tanks – even though I am personally not certain about this pattern’s effectiveness? Maybe a kind of dazzle effect was sought for?
The basic green became a modern-day RAL 6003 from the rattle can (which is very close to FS 34102, just a tad lighter), applied in a rather cloudy fashion on top of an initial coat of Oxide Red primer (RAL 3009) overall, also from the rattle can. On top of that the stripes were painted with a brush, partly masked but mostly free-handedly. For some variation I used this time Tamiya XF-60 (a rather pale interpretation of Dunkelgelb which IMHO lacks a greenish hue and rather looks like a desert sand tone) and XF-64 (a rich whole milk chocolate tone) to create the additional camouflage, not fully opaque so that the impression of thinly/hastily applied paint was reinforced.
Once dry, the whole surface received a very dark brown washing with thinned acrylic paint and surface details were emphasized through dry-brushing with earth brown and beige.
For a different look (and to break up the tank’s bulky outlines) I applied camouflage nets to the model, realized with gauze bandages drenched in Tamyia XF-62 (Olive Drab) and mounted into place around the turret and at the front of the hull while still slightly wet.
Decals were puzzled together from various German tank sheets. The kit was sealed with matt acrylic varnish, what also fixed the cammo nets in place. The originally shiny black vinyl tracks were also painted/weathered, with a wet-in-wet mix of grey, iron, black and red brown (all acrylics). Once mounted into place, mud and dust were simulated around the running gear and the lower hull with a greyish-brown mix of artist mineral pigments.
Not a spectacular build, but I am happy that I eventually had the opportunity and motivation to tackle this project that had been lingering for years in the The Stash™. The result looks really good – the anonymous resin set is/was excellent, and combined with the Panther hull, the whole thing looks very credible. I am only a bit sad that the odd, almost artistic camouflage got a little lost under the cammo nets and the equipment on the hull, and the dust/dirt on the lower areas blurs the three basic colors even more. Well, you cannot have everything at once, and I might re-use this scheme on a “cleaner” future build.
This research explores The National Palace of Culture's signage system. Its different elements are documented, selected and organized in order to reveal the system's logic and its relation with the rest of what is called "The Palace of Culture".
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
In the first years of the war, the Wehrmacht had only little interest in developing self-propelled anti-aircraft guns, but as the Allies developed air superiority and dedicated attack aircraft threatened the ground troops from above, the need for more mobile and better-armed self-propelled anti-aircraft guns increased. As a stopgap solution the Wehrmacht initially adapted a variety of wheeled, half-track and tracked vehicles to serve as mobile forward air defense positions. Their tasks were to protect armor and infantry units in the field, as well as to protect temporary forward area positions such as mobile headquarters and logistic points.
These vehicles were only lightly armored, if at all, and rather mobilized the anti-aircraft weapons. As Allied fighter bombers and other ground attack aircraft moved from machine gun armament and bombing to air-to-ground rockets and large-caliber cannons, the air defense positions were even more vulnerable. The answer was to adapt a tank chassis with a specialized turret that would protect the gun crews while they fired upon approaching Allied aircraft. Furthermore, the vehicle would have the same mobility as the battle tanks it protected.
Initial German AA-tank designs were the ‘Möbelwagen’ and the ‘Wirbelwind’, both conversions of refurbished Panzer IV combat tank chassis with open platforms or turrets with four 20mm cannon. Alternatively, a single 37mm AA gun was mounted, too – but all these vehicles were just a compromise and suffered from light armor, a high silhouette and lack of crew protection.
Further developments of more sophisticated anti-aircraft tank designs started in late 1943 and led into different directions. One development line was the ‘Kugelblitz’, another Panzer IV variant, but this time the ball-shaped turret, armed with very effective 30 mm MK 103 cannon, was fully integrated into the hull, resulting in a low silhouette and a protected crew. However, the ‘Kugelblitz’ only featured two of these guns and the tilting turret was very cramped and complicated. Venting and ammunition feed problems led to serious delays and a prolonged development stage.
The ‘Coelian’ family of bigger turrets with various weapon options for the Panzer V (the ‘Panther’) was another direction, especially as a response against the armored Il-2 attack aircraft at the Eastern front and against flying targets at medium altitude. Targets at high altitude, esp. Allied bombers, were to be countered with the very effective 8.8 cm Flak, and there were also several attempts to mount this weapon onto a fully armored hull.
The primary weapon for a new low/medium altitude anti-aircraft tank was to become the heavy automatic 55 mm MK 214. Like the 30 mm MK 103 it was a former aircraft weapon, belt-fed and adapted to continuous ground use. However, in early 1944, teething troubles with the ‘Kugelblitz’ suggested that a completely enclosed turret with one or (even better) two of these new weapons, mounted on a ‘Panther’ or the new E-50/75 tank chassis, would need considerable development time. Operational vehicles were not expected to enter service before mid-1945. In order to fill this operational gap, a more effective solution than the Panzer IV AA conversions, with more range and firepower than anything else currently in service, was direly needed.
This situation led to yet another hasty stopgap solution, the so-called ‘Ostwind II’ weapon system, which consisted primarily of a new turret, mated with a standard medium battle tank chassis. It was developed in a hurry in the course of 1944 and already introduced towards the end of the same year. The ‘Ostwind II’ was a compromise in the worst sense: even though it used two 37 mm FlaK 43 guns in a new twin mount and offered better firepower than any former German AA tank, it also retained many weaknesses from its predecessors: an open turret with only light armor and a high silhouette. But due to the lack of time and resources, the ‘Ostwind II’ was the best thing that could be realized on short notice, and with the perspective of more effective solutions within one year’s time it was rushed into production.
The ‘Ostwind II’ system was an open, roughly diamond-shaped, octagonal turret, very similar in design to the Panzer IV-based ‘Wirbelwind’ and ‘Ostwind’ (which was re-designated ‘Ostwind I’). As a novelty, in order to relieve the crew from work overload, traverse and elevation of the turret was hydraulic, allowing a full elevation (-4° to +90° was possible) in just over four seconds and a full 360° traverse in 15 seconds. This had become necessary because the new turret was bigger and heaver, both the weapons and their crews required more space, so that the Ostwind II complex could not be mounted onto the Panzer IV chassis anymore and movement by hand was just a fallback option.
In order to provide the ‘Ostwind II’ with a sufficiently large chassis, it was based on the SdKfz. 171 Panzer V medium battle tank, the ‘Panther’, exploiting its bigger turret ring, armor level and performance. The Panther chassis had, by late 1944, become available for conversions in considerable numbers through damaged and/or recovered combat tanks, and updated details like new turrets or simplified road wheels were gradually introduced into production and during refurbishments. Mounting the ‘Ostwind II’ turret on the Panzer VI (Tiger) battle tank chassis had been theoretically possible, too, but it never happened, because the Tiger lacked agility and its protection level and fuel consumption were considered impractical for an SPAAG that would typically protect battle tank groups.
The ‘Ostwind II’ turret was built around a motorized mount for the automatic 3.7 cm FlaK 43 twin guns. These proven weapons were very effective against aircraft flying at altitudes up to 4,200 m, but they also had devastating effect against ground targets. The FlaK 43’s armor penetration was considerable when using dedicated ammunition: at 100 m distance it could penetrate 36 mm of a 60°-sloped armor, and at 800 m distance correspondingly 24 mm. The FlaK 43’s theoretical maximum rate of fire was 250 shots/minute, but it was practically kept at ~120 rpm in order to save ammunition and prevent wear of the barrels. The resulting weight of fire was 76.8 kg (169 lb) per minute, but this was only theoretical, too, because the FlaK 43 could only be fed manually by 6-round clips – effectively, only single shots or short bursts could be fired, but a trained crew could maintain fire through using alternating gun use. A more practical belt feed was at the time of the Ostwind II's creation not available yet, even though such a mechanism was already under development for the fully enclosed Coelian turret, which could also take the FlaK 43 twin guns, but the armament was separated from the turret crew.
The new vehicle received the official designation ‘Sd.Kfz. 171/2 Flakpanzer V’, even though ‘Ostwind II’ was more common. When production actually began and how many were built is unclear. The conversion of Panther hulls could have started in late-1944 or early-1945, with sources disagreeing. The exact number of produced vehicles is difficult to determine, either. Beside the prototype, the number of produced vehicles goes from as little as 6 to over 40. The first completed Ostwind II SPAAGs were exclusively delivered to Eastern front units and reached them in spring 1945, where they were immediately thrown into action.
All Flakpanzer vehicles at that time were allocated to special anti-aircraft tank platoons (so-called Panzer Flak Züge). These were used primarily to equip Panzer Divisions, and in some cases given to special units. By the end of March 1945, there were plans to create mixed platoons equipped with the Ostwinds and other Flakpanzers. Depending on the source, they were either to be used in combination with six Kugelblitz, six Ostwinds and four Wirbelwinds or with eight Ostwinds and three Sd.Kfz. 7/1 half-tracks. Due to the war late stage and the low number of anti-aircraft tanks of all types built, this reorganization was never truly implemented, so that most vehicles were simply directly attached to combat units, primarily to the commanding staff.
The Ostwind II armament proved to be very effective, but the open turret (nicknamed ‘Keksdose’ = cookie tin) left the crews vulnerable. The crew conditions esp. during wintertime were abominable, and since aiming had to rely on vision the system's efficacy was limited, esp. against low-flying targets. The situation was slightly improved when the new mobile ‘Medusa’ and ‘Basilisk’ surveillance and target acquisition systems were introduced. These combined radar and powerful visual systems and guided the FlaK crews towards incoming potential targets, what markedly improved the FlaKs' first shot hit probability. However, the radar systems rarely functioned properly, the coordination of multiple SPAAGs in the heat of a low-level air attack was a challenging task, and - to make matters worse - the new mobile radar systems were even more rare than the new SPAAGs themselves.
All Ostwind II tanks were built from recovered ‘Panther’ battle tanks of various versions. The new Panther-based SPAAGs gradually replaced most of the outdated Panzer IV AA variants as well as the Ostwind I. Their production immediately stopped in the course of 1945 when the more sophisticated 'Coelian' family of anti-aircraft tanks with fully enclosed turrets became available. This system was based on Panzer V hulls, too, and it was soon followed by the first E-50 SPAAGs with the new, powerful twin-55 mm gun.
Specifications:
Crew: Six (commander, gunner, 2× loader, driver, radio-operator/hull machine gunner)
Weight: 43.8 tonnes (43.1 long tons; 48.3 short tons)
Length (hull only): 6.87 m (22 ft 6 in)
Width: 3.42 m (11 ft 3 in)
Height: 3.53 m (11 ft 6 3/4 in)
Suspension: Double torsion bar, interleaved road wheels
Fuel capacity: 720 litres (160 imp gal; 190 US gal)
Armor:
15–80 mm (0.6 – 3.15 in)
Performance:
Maximum road speed: 46 km/h (29 mph)
Operational range: 250 km (160 mi)
Power/weight: 15.39 PS (11.5 kW)/tonne (13.77 hp/ton)
Engine:
Maybach HL230 P30 V-12 petrol engine with 700 PS (690 hp, 515 kW)
ZF AK 7-200 gear; 7 forward 1 reverse
Armament:
2× 37 mm (1.46 in) FlaK 43 cannon in twin mount with 1.200 rounds
1× 7.92 mm MG 34 machine gun in the front glacis plate with 2.500 rounds
The kit and its assembly:
This was a spontaneous build, more or less the recycling of leftover parts from a 1:72 Revell Ostwind tank on a Panzer III chassis that I had actually bought primarily for the chassis (it became a fictional Aufklärungspanzer III). When I looked at the leftover turret, I wondered about a beefed-up/bigger version with two 37 mm guns. Such an 'Ostwind II' was actually on the German drawing boards, but never realized - but what-if modelling can certainly change that. However, such a heavy weapon would have to be mounted on a bigger/heavier chassis, so the natural choice became the Panzer V, the Panther medium battle tank. This way, my ‘Ostwind II’ interpretation was born.
The hull for this fictional AA tank is a Hasegawa ‘Panther Ausf. G’ kit, which stems from 1973 and clearly shows its age, at least from today’s point of view. While everything fits well, the details are rather simple, if not crude (e. g. the gratings on the engine deck or the cupola on the turret). However, only the lower hull and the original wheels were used since I wanted to portray a revamped former standard battle tank.
The turret was a more complicated affair. It had to be completely re-constructed, to accept the enlarged twin gun and to fit onto the Panther hull. The first step was the assembly of the twin gun mount, using parts from the original Ostwind kit and additional parts from a second one. In order to save space and not to make thing uber-complicated I added the second weapon to the right side of the original gun and changed some accessories.
This, together with the distance between the barrels, gave the benchmark for the turret's reconstruction. Since the weapon had not become longer, I decided to keep things as simple as possible and just widen the open turret - I simply took the OOB Ostwind hexagonal turret (which consists of an upper and lower half), cut it up vertically and glued them onto the Panther turret's OOB base, shifting the sides just as far to the outside that the twin gun barrels would fit between them - a distance of ~0.4 inch (1 cm). At the rear the gap was simply closed with styrene sheet, while the front used shield parts from the Revell Ostwind kit that come from a ground mount for the FlaK 43. Two parts from this shield were glued together and inserted into the front gap. While this is certainly not as elegant as e. g. the Wirbelwind turret, I think that this solution was easier to integrate.
Massive PSR was necessary to blend the turret walls with the Panther turret base, and as a late modification the opening for the sight had to be moved, too. To the left of the weapons, I also added a raised protective shield for the commander.
Inside of the turret, details from the Ostwind kit(s), e. g. crew seats and ammunition clips, were recycled, too.
Painting and markings:
Since the Ostwind II would be based on a repaired/modified former Panzer V medium battle tank, I settled upon a relatively simple livery. The kit received a uniform finish in Dunkelgelb (RAL 7028), with a network of greenish-grey thin stripes added on top, to break up the tank's outlines and reminiscent of the British ‘Malta’ scheme, but less elaborate. The model and its parts were initially primed with matt sand brown from the rattle can (more reddish than RAL 7028) and then received an overall treatment with thinned RAL 7028 from Modelmaster, for an uneven, dirty and worn look. The stripes were created with thinned Tamiya XF-65 (Field Grey).
Once dry, the whole surface received a dark brown wash, details were emphasized with dry-brushing in light grey and beige. Decals were puzzled together from various German tank sheets, and the kit finally sealed with matt acrylic varnish.
The black vinyl tracks were also painted/weathered, with a wet-in-wet mix of black, grey, iron and red brown (all acrylics). Once mounted into place, mud and dust were simulated around the running gear and the lower hull with a greyish-brown mix of artist mineral pigments.
A bit of recycling and less exotic than one would expect, but it’s still a whiffy tank model that fits well into the historic gap between the realized Panzer IV AA tanks and the unrealized E-50/75 projects. Quite subtle! Creating the enlarged turret was the biggest challenge, even, even more so because it was/is an open structure and the interior can be readily seen. But the new/bigger gun fits well into it, and it even remained movable!
The River Tummel (Scottish Gaelic: Uisge Theimheil) is a river in Perth and Kinross, Scotland. Water from the Tummel is used in the Tummel hydro-electric power scheme, operated by SSE.
As a tributary of the River Tay, the Tummel is included as part of the River Tay Special Area of Conservation. The designation notes the river system's importance for salmon, otters, brook lampreys, river lampreys and sea lampreys.
Discharging from Loch Rannoch, it flows east to a point near the Falls of Tummel, where it bends to the southeast, a direction which it maintains until it falls into the River Tay, just below Logierait, after a course of 58 miles (93 km) from its source in Stob Ghabbar (3,565 ft (1,087 m)). Its only considerable affluent is the Garry, 24 miles (39 km) long, an impetuous river which issues from Loch Garry (2.5 mi (4.0 km) and 1,334 ft (407 m) above sea level). Some 2 miles from its outlet from Loch Rannoch the river expands into Dunalastair Water (or Dunalastair Reservoir), a man made loch formed by a weir, part of the Tummel Hydro Electric power scheme. About midway in its course the Tummel expands into Loch Tummel, between which and the confluence with the Garry occur the Pass and Falls of the Tummel, which are rather in the nature of rapids, the descent altogether amounting to 15 ft (4.6 m). Loch Tummel was previously 4.43 km (2.75 mi) long and 39 m (128 ft) deep, but with the construction of the Clunie Dam in 1950, the water level was raised by 4.5 metres, and Loch Tummel is now approximately 11 km (7 mi) long.
The scenery throughout this reach is most picturesque, culminating at the point above the eastern extremity of the loch, known as the "Queen's View" (Queen Victoria made the view famous in 1866, although it is said to have been named after Queen Isabel, wife of Robert the Bruce). The chief places of interest on the river are Kinloch Rannoch; Dunalastair, a rocky hill in well-wooded grounds, the embellishment of which was largely due to Alexander Robertson of Struan, the Jacobite and poet, from whom the spot takes its name (the stronghold of Alexander); Foss; Faskally House (beautifully situated on the left bank); Pitlochry; and Ballinluig.
The ancient name of the river, in its upper reaches at least, was the Dubhag.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The ZSU-37-6 (“ZSU” stands for Zenitnaya Samokhodnaya Ustanovka / Зенитная Самоходная Установка = "anti-aircraft self-propelled mount"), also known as Object 511 during its development phase and later also as “ZSU-37-6 / Лена”, was a prototype for a lightly armored Soviet self-propelled, radar guided anti-aircraft weapon system that was to replace the cannon-armed ZSU-23-4 “Shilka” SPAAG.
The development of the "Shilka" began in 1957 and the vehicle was brought into service in 1965. The ZSU-23-4 was intended for AA defense of military facilities, troops, and mechanized columns on the march. The ZSU-23-4 combined a proven radar system, the non-amphibious chassis based on the GM-575 tracked vehicle, and four 23 mm autocannons. This delivered a highly effective combination of mobility with heavy firepower and considerable accuracy, outclassing all NATO anti-aircraft guns at the time. The system was widely fielded throughout the Warsaw Pact and among other pro-Soviet states. Around 2,500 ZSU-23-4s, of the total 6,500 produced, were exported to 23 countries.
The development of a potential successor started in 1970. At the request of the Soviet Ministry of Defense, the KBP Instrument Design Bureau in Tula started work on a new mobile anti-aircraft system as a replacement for the 23mm ZSU-23-4. The project was undertaken to improve on the observed shortcomings of the ZSU-23-4 (short range and no early warning) and to counter new ground attack aircraft in development, such as the A-10 Thunderbolt II, which was designed to be highly resistant to 23 mm cannons.
KBP studies demonstrated that a cannon of at least 30 mm caliber was necessary to counter these threats, and that a bigger caliber weapon would offer some more benefits. Firstly, to destroy a given target, such a weapon would only require from a third to a half of the number of shells that the ZSU-23-4’s 23 mm cannon would need. Secondly, comparison tests revealed that firing with an identical mass of 30 mm projectiles instead of 23 mm ammunition at a MiG-17 (or similarly at NATO's Hawker Hunter or Fiat G.91…) flying at 300 m/s would result in a 1.5 times greater kill probability. An increase in the maximum engagement altitude from 2,000 to 4,000 m and higher effectiveness when engaging lightly armored ground targets were also cited as potential benefits.
The initial requirements set for the new mobile weapon system were to achieve twice the performance in terms of the ZSU-23-4’s range, altitude and combat effectiveness. Additionally, the system should have a reaction time, from target acquisition to firing, no greater than 10 seconds, so that enemy helicopters that “popped up” from behind covers and launched fire-and-forget weapons at tanks or similar targets could be engaged effectively.
From these specifications KBP developed two schools of thought that proposed different concepts and respective vehicle prototypes: One design team followed the idea of an anti-aircraft complex with mixed cannon and missile armament, which made it effective against both low and high-flying targets but sacrificed short-range firepower. The alternative proposed by another team was a weapon carrier armed only with a heavy gatling-type gun, tailored to counter targets flying at low altitudes, esp. helicopters, filling a similar niche as the ZSU-23-4 and leaving medium to high altitude targets to specialized anti-aircraft missiles. The latter became soon known as “Object 511”.
Object 511 was based on the tracked and only lightly armored GM-577 chassis, produced by Minsk Tractor Works (MTZ). It featured six road wheels on each side, a drive sprocket at the rear and three return rollers. The chassis was primarily chosen because it was already in use for other anti-aircraft systems like the 2K11 “Krug” complex and could be taken more or less “off the rack”. A new feature was a hydropneumatic suspension, which was chosen in order to stabilize the chassis as firing platform and also to cope with the considerably higher all-up weight of the vehicle (27 tons vs. the ZSU-23-4’s 19 tons). Other standard equipment of Object 511 included heating, ventilation, navigational equipment, night vision aids, a 1V116 intercom and an external communications system with an R-173 receiver.
The hull was - as the entire vehicle - protected from small arms fire (7,62mm) and shell splinters, but not heavily armored. An NBC protection system was integrated into the chassis, as well as an automatic fire suppression system and an automatic gear change. The main engine bay, initially with a 2V-06-2 water-cooled multi-fuel diesel engine with 450 hp (331 kW) was in the rear. It was later replaced by a more powerful variant of the same engine with 510 hp (380 kW).
The driver sat in the front on the left side, with a small gas turbine APU to his right to operate the radar and hydraulic systems independently from the main engine.
Between these hull segments, the chassis carried a horseshoe-shaped turret with full 360° rotation. It was relatively large and covered more than the half of the hull’s roof, because it held the SPAAGs main armament and ammunition supply, the search and tracking radar equipment as well as a crew of two: the commander with a cupola on the right side and the gunner/radar operator on the left side, with the cannon installation and its feeding system between them. In fact, it was so large that Object 511’s engine bay was only accessible when the turret was rotated 90° to the side – unacceptable for an in-service vehicle (which would probably have been based on a bigger chassis), but accepted for the prototype which was rather focused on the turret and its complex weapon and radar systems.
Object 511’s centerpiece was the newly-developed Gryazev-Shipunov GSh-6-37 cannon, a heavy and experimental six-barreled 37mm gatling gun. This air-cooled weapon with electrical ignition was an upscaled version of the naval AO-18 30mm gun, which was part of an automated air defense system for ships, the AK-630 CIWS complex. Unlike most modern American rotary cannons, the GSh-6-37 was gas-operated rather than hydraulically driven, allowing it to "spin up" to maximum rate of fire more quickly. This resulted in more rounds and therefore weight of fire to be placed on target in a short burst, reduced reaction time and allowed hits even in a very small enemy engagement window.
The GSh-6-37 itself weighed around 524 kg (1.154 lb), the whole system, including the feed system and a full magazine, weighed 7,493 pounds (3,401 kg). The weapon had a total length of 5.01 m (16’ 7“), its barrels were 2.81 m (9’ 2½”) long. In Object 511’s turret it had an elevation between +80° and -11°, moving at 60°/sec, and a full turret rotation only took 3 seconds. Rate of fire was 4,500 rounds per minute, even though up to 5.500 RPM were theoretically possible and could be cleared with an emergency setting. However, the weapon would typically only fire short bursts of roundabout 50 rounds each, or longer bursts of 1-2 (maximum) seconds to save ammunition and to avoid overheating and damage – initially only to the barrels, but later also to avoid collateral damage from weapon operation itself (see below). Against ground targets and for prolonged, safe fire, the rate of fire could alternatively be limited to 150 RPM.
The GSh-6-37 fired 1.09 kg shells (each 338mm long) at 1,070 m/s (3.500 ft/s), developing a muzzle energy of 624,000 joules. This resulted in an effective range of 6,000 m (19.650 ft) against aerial and 7,000 m (23.0000 ft) against ground targets. Maximum firing range was past 7,160 m (23,490 ft), with the projectiles self-destructing beyond that distance. In a 1 sec. burst, the weapon delivered an impressive weight of fire of almost 100 kg.
The GSh-6-37 was belt-fed, with a closed-circuit magazine to avoid spilling casings all around and hurting friendly troops in the SPAAG’s vicinity. Typical types of ammunition were OFZT (proximity-fused incendiary fragmentation) and BZT (armor-piercing tracer, able to penetrate more than 60 mm of 30° sloped steel armor at 1.000 m/3.275’ distance). Since there was only a single ammunition supply that could not be switched, these rounds were normally loaded in 3:1 ratio—three OFZT, then one BZT, every 10th BZT round marked with a tracer. Especially the fragmentation rounds dealt extensive collateral damage, as the sheer numbers of fragments from detonating shells was sufficient to damage aircraft flying within a 200-meter radius from the impact center. This, coupled with the high density of fire, created a very effective obstacle for aerial targets and ensured a high hit probability even upon a casual and hurried attack.
The gun was placed in the turret front’s center, held by a massive mount with hydraulic dampers. The internal ammunition supply in the back of the turret comprised a total of 1.600 rounds, but an additional 800 rounds could be added in an external reserve feed bin, attached to the back of the turret and connected to the internal belt magazine loop through a pair of ports in the turret’s rear, normally used to reload the GSh-6-37.
A rotating, electronically scanned E-band (10 kW power) target acquisition radar array was mounted on the rear top of the turret that, when combined with the turret front mounted J-band (150 kW power) mono-pulse tracking radar, its dish antenna hidden under a fiberglass fairing to the right of the main weapon, formed the 1RL144 (NATO: Hot Shot) pulse-Doppler 3D radar system. Alongside, the 1A26 digital computer, a laser rangefinder co-axial to the GSh-6-37, and the 1G30 angle measurement system formed the 1A27 targeting complex.
Object 511’s target acquisition offered a 360-degree field of view, a detection range of around 18 km and could detect targets flying as low as 15 m. The array could be folded down and stowed when in transit, lying flat on the turret’s roof. The tracking radar had a range of 16 km, and a C/D-band IFF system was also fitted. The radar system was highly protected against various types of interference and was able to work properly even if there were mountains on the horizon, regardless of the background. The system made it possible to fire the GSh-6-37 on the move, against targets with a maximum target speed of up to 500 m/s, and it had an impressive reaction time of only 6-8 seconds.
Thanks to its computerized fire control system, the 1A27 was highly automated and reduced the SPAAG’s crew to only three men, making a dedicated radar operator (as on the ZSU-23-4) superfluous and saving internal space in the large but still rather cramped turret.
Development of Object 511 and its systems were kicked-off in 1972 but immediately slowed down with the introduction of the 9K33 “Osa” missile system, which seemed to fill the same requirement but with greater missile performance. However, after some considerable debate it was felt that a purely missile-based system would not be as effective at dealing with very low flying attack helicopters attacking at short range with no warning, as had been proven so successful in the 1973 Arab-Israeli War. Since the reaction time of a gun system was around 8–10 seconds, compared to approximately 30 seconds for a missile-based system, development of Object 511 was restarted in 1973.
A fully functional prototype, now officially dubbed “ZSU-37-6“ to reflect its role and armament and christened “Лена” (Lena, after the Russian river in Siberia), was completed in 1975 at the Ulyanovsk Mechanical Factory, but it took until 1976 that the capricious weapon and the 1A27 radar system had been successfully integrated and made work. System testing and trials were conducted between September 1977 and December 1978 on the Donguzskiy range, where the vehicle was detected by American spy satellites and erroneously identified as a self-propelled artillery system with a fully rotating turret (similar to the American M109), as a potential successor for the SAU-122/2S1 Gvozdika or SAU-152/2S3 Akatsiya SPGs that had been introduced ten years earlier, with a lighter weapon of 100-120mm caliber and an autoloader in the large turret.
The tests at Donguzskiy yielded mixed results. While the 1A27 surveillance and acquisition radar complex turned out to be quite effective, the GSh-6-37 remained a constant source of problems. The gun was highly unreliable and afforded a high level of maintenance. Furthermore, it had a massive recoil of 6.250 kp/61 kN when fired (the American 30 mm GAU-8 Avenger “only” had a recoil of 4.082 kp/40 kN). As a result, targets acquired by the 1A27 system were frequently lost after a single burst of fire, so that they had to be tracked anew before the next shot could be placed.
To make matters even words, the GSh-6-37 was noted for its high and often uncomfortable vibration and extreme noise, internally and externally. Pressure shock waves from the gun muzzles made the presence of unprotected personnel in the weapon’s proximity hazardous. The GSh-6-37’s massive vibrations shook the whole vehicle and led to numerous radio and radar system failures, tearing or jamming of maintenance doors and access hatches and the cracking of optical sensors. The effects were so severe that the gun’s impact led after six months to fatigue cracks in the gun mount, the welded turret hull, fuel tanks and other systems. One spectacular and fateful showcase of the gun’s detrimental powers was a transmission failure during a field test/maneuver in summer 1978 – which unfortunately included top military brass spectators and other VIPs, who were consequently not convinced of the ZSU-37-6 and its weapon.
The GSh-6-37’s persisting vibration and recoil problems, as well as its general unreliability if it was not immaculately serviced, could not be satisfactorily overcome during the 2 years of state acceptance trials. Furthermore, the large and heavy turret severely hampered Object 511’s off-road performance and handling, due to the high center of gravity and the relatively small chassis, so that the weapon system’s full field potential could not be explored. Had it found its way into a serial production vehicle, it would certainly have been based on a bigger and heavier chassis, e.g. from an MBT. Other novel features tested with Object 511, e.g. the hydropneumatic suspension and the automated 1A27 fire control system, proved to be more successful.
However, the troublesome GSh-6-37 temporarily attained new interest in 1979 through the Soviet Union’s engagement in Afghanistan, because it became quickly clear that conventional battle tanks, with long-barreled, large caliber guns and a very limited lift angle were not suited against small targets in mountainous regions and for combat in confined areas like narrow valleys or settlements. The GSh-6-37 appeared as a promising alternative weapon, and plans were made to mount it in a more strongly armored turret onto a T-72 chassis. A wooden mockup turret was built, but the project was not proceeded further with. Nevertheless, the concept of an armored support vehicle with high firepower and alternative armament would persist and lead, in the course of the following years, to a number of prototypes that eventually spawned the BMPT "Terminator" Tank Support Fighting Vehicle.
More tests and attempts to cope with the gun mount continued on a limited basis through 1979, but in late 1980 trials and development of Object 511 and the GSh-6-37 were stopped altogether: the 2K22 “Tunguska” SPAAG with mixed armament, developed in parallel, was preferred and officially accepted into service. In its original form, the 2K22 was armed with four 9M311 (NATO: SA-19 “Grison”) short-range missiles in the ready-to-fire position and two 2A38 30mm autocannons, using the same 1A27 radar system as Object 511. The Tunguska entered into limited service from 1984, when the first batteries, now armed with eight missiles, were delivered to the army, and gradually replaced the ZSU-23-4.
Having become obsolete, the sole Object 511 prototype was retired in 1981 and mothballed. It is today part of the Military Technical Museum collection at Ivanovskaya, near Moscow, even though not part of the public exhibition and in a rather derelict state, waiting for restoration and eventual display.
Specifications:
Crew: Three (commander, gunner, driver)
Weight: about 26,000 kg (57,300 lb)
Length: 7.78 m (25 ft 5 1/2 in) with gun facing forward
6.55 m (21 ft 5 1/2 in) hull only
Width: 3.25 m (10 ft 8 in)
Height: 3.88 m (12 ft 9 in) overall,
2.66 m (8 8 1/2 ft) with search radar stowed
Suspension: Hydropneumatic
Ground clearance: 17–57 cm
Fuel capacity: 760 l (200 US gal, 170 imp gal)
Armor:
Unknown, but probably not more than 15 mm (0.6”)
Performance:
Speed: 65 km/h (40 mph) maximum on the road
Climbing ability: 0.7 m (2.3')
Maximum climb gradient: 30°
Trench crossing ability: 2.5 m (8.2')
Fording depth: 1.0 m (3.3')
Operational range: 500 km (310 mi)
Power/weight: 24 hp/t
Engine:
1× 2V-06-2S water-cooled multi-fuel diesel engine with 510 hp (380 kW)
1× auxiliary DGChM-1 single-shaft gas turbine engine with 70 hp at 6,000 rpm,
connected with a direct-current generator
Transmission:
Hydromechanical
Armament:
1× GSh-6-37 six-barreled 37mm (1.5 in) Gatling gun with 1.600 rounds,
plus 800 more in an optional, external auxiliary magazine
The kit and its assembly:
This fictional SPAAG was intended as a submission to the “Prototypes” group build at whatifmodellers.com in August 2020. Inspiration came from a Trumpeter 1:72 2P25/SA-6 launch platform which I had recently acquired with a kit lot – primarily because of the chassis, which would lend itself for a conversion into “something else”.
The idea to build an anti-aircraft tank with a gatling gun came when I did research for my recent YA-14 build and its armament. When checking the American GAU-8 cannon from the A-10 I found that there had been plans to use this weapon for a short-range SPAAG (as a replacement for the US Army’s M163), and there had been plans for even heavier weapons in this role. For instance, there had been the T249 “Vigilante” prototype: This experimental system consisted of a 37 mm T250 six-barrel Gatling gun, mounted on a lengthened M113 armored personnel carrier platform, even though with a very limited ammunition supply, good only for 5 sec. of fire – it was just a conceptual test bed. But: why not create a Soviet counterpart? Even more so, since there is/was the real-world GSh-6-30 gatling gun as a potential weapon, which had, beyond use in the MiG-27, also been used in naval defense systems. Why not use/create an uprated/bigger version, too?
From this idea, things evolved in a straightforward fashion. The Trumpeter 2P25 chassis and hull were basically taken OOB, just the front was modified for a single driver position. However, the upper hull had to be changed in order to accept the new, large turret instead of the triple SA-6 launch array.
The new turret is a parts combination: The basis comes from a Revell 1:72 M109 howitzer kit, the 155 mm barrel was replaced with a QuickBoost 1:48 resin GSh-6-30 gun for a MiG-27, and a co-axial laser rangefinder (a piece of styrene) was added on a separate mount. Unfortunately, the Revell kit does not feature a movable gun barrel, so I decided to implant a functional joint, so that the model’s weapon could be displayed in raised and low position – primarily for the “action pictures”. The mechanism was scratched from styrene tubes and a piece of foamed plastic as a “brake” that holds the weapon in place and blocks the view into the turret from the front when the weapon is raised high up. The hinge was placed behind the OOB gun mantle, which was cut into two pieces and now works as in real life.
Further mods include the dish antenna for the tracking radar (a former tank wheel), placed on a disc-shaped pedestal onto the turret front’s right side, and the retractable rotating search radar antenna, scratched from various bits and pieces and mounted onto the rear of the turret – its roof had to be cleaned up to make suitable space next to the commander’s cupola.
Another challenge was the adaptation of the new turret to the hull, because the original SA-6 launch array has only a relatively small turret ring, and it is placed relatively far ahead on the hull. The new, massive turret had to be mounted further backwards, and the raised engine cowling on the back of the hull did not make things easier.
As a consequence, I had to move the SA-6 launcher ring bearing backwards, through a major surgical intervention in the hull roof (a square section was cut out, shortened, reversed and glued back again into the opening). In order to save the M109’s turret ring for later, I gave it a completely new turret floor and transplanted the small adapter ring from the SA-6 launch array to it. Another problem arose from the bulged engine cover: it had to be replaced with something flat, otherwise the turret would not have fitted. I was lucky to find a suitable donor in the spares box, from a Leopard 1 kit. More complex mods than expected, and thankfully most of the uglier changes are hidden under the huge turret. However, Object 511 looks pretty conclusive and menacing with everything in place, and the weapon is now movable in two axis’. The only flaw is a relatively wide gap between the turret and the hull, due to a step between the combat and engine section and the relatively narrow turret ring.
Painting and markings:
AFAIK, most Soviet tank prototypes in the Seventies/Eighties received a simple, uniform olive green livery, but ,while authentic, I found this to look rather boring. Since my “Object 511” would have taken part in military maneuvers, I decided to give it an Eighties Soviet Army three-tone camouflage, which was introduced during the late Eighties. It consisted of a relatively bright olive green, a light and cold bluish grey and black-grey, applied in large patches.
This scheme was also adapted by the late GDR’s Volksarmee (called “Verzerrungsanstrich” = “Distortion scheme”) and maybe – even though I am not certain – this special paint scheme might only have been used by Soviet troops based on GDR soil? However, it’s pretty unique and looks good, so I adapted it for the model.
Based upon visual guesstimates from real life pictures and some background info concerning NVA tank paint schemes, the basic colors became Humbrol 86 (Light Olive Green; RAL 6003), Revell 57 (Grey; RAL 7000) and Revell 06 (Tar Black; RAL 9021). Each vehicle had an individual paint scheme, in this case it was based on a real world NVA lorry.
On top of the basic colors, a washing with a mix of red brown and black acrylic paint was applied, and immediately dried with a soft cotton cloth so that it only remained in recesses and around edges, simulating dirt and dust. Some additional post-shading with lighter/brighter versions of the basic tones followed.
Decals came next – the Red Stars were a rather dramatic addition and came from the Trumpeter kit’s OOB sheet. The white “511” code on the flanks was created with white 3 mm letters from TL Modellbau.
The model received a light overall dry brushing treatment with light grey (Revell 75). As a finishing touch I added some branches as additional camouflage. These are bits of dried moss (collected on the local street), colorized with simple watercolors and attached with white glue. Finally, everything was sealed and stabilized with a coat of acrylic matt varnish and some pigments (a greyish-brown mix of various artist mineral pigments) were dusted into the running gear and onto the lower hull surfaces with a soft brush.
An effective kitbashing, and while mounting the different turret to the hull looks simple, the integration of unrelated hull and turret so that they actually fit and “work” was a rather fiddly task, and it’s effectively not obvious at all (which is good but “hides” the labour pains related to the mods). However, the result looks IMHO good, like a beefed-up ZSU-23-4 “Schilka”, just what this fictional tank model is supposed to depict.
Soaring 368 metres into the sky, Berlin’s TV Tower is the city’s most visible landmark. But the tower on Alexanderplatz is not just literally a must-see sight, it is also the highest building in Europe open to the general public. And from the dizzying height of its viewing platform, you have spectacular 360-degree panoramic views out across the entire city and beyond!
The Berlin TV Tower was inaugurated on 3 October 1969 – shortly before East Germany held its twentieth anniversary celebrations. For Walter Ulbricht, then East Germany’s head of state, the TV Tower, constructed in just four years, was emblematic of the communist system's superiority – unequivocal evidence that the GDR was building a better future. The tower was designed by Hermann Henselmann and the group of architects around Fritz Dieter, Günter Franke and Werner Neumann. Source: www.visitberlin.de
At the corner of Hay and George a work team puts the finishing touches on laying the conduit which will carry the system's communications systems, power and utilities. (The purple pipe will carry water).
Warehouse and debris falling into the ocean as the shoreline erodes on Tern Island in the French Frigate Shoals, Hawaii.
Camera: Olympus OM-1
Lens: Olympus OM-System S Zuiko MC Auto-Zoom f/4 35-70mm. Yellow.
Film: Ferrania P30
Developer: Rodinal 1:50
From a slide dated March, 1990 - Location not recorded - Springfield Terminal was Guilford Rail System's smallest railroad. Because it had union contracts that were more favorable to management, Guilford moved some BM employees on to the ST payroll and painted the ST name on some engines.
After chasing a coal train up to Shay Maine, I stopped at the location of the former Illinois Traction System's Substation at Loveless.
The framework of the building itself is still in great shape, even if all the components for generating electric are long gone. What I believe to have been duct work for cooling fans (I imagine it get quite hot inside when things were humming along...) on top of the build are now starting to rust and topple. Not bad considering that stuff was probably last used at least 50 years ago.
I took the chance to take several details shots inside and out and will be posting them over the next few days.
-Illinois Traction System Loveless Substation
-NS (ex-C&NW/IT) Monterey Mine Lead, near MP ME4
-Wheeler Rd Crossing, S of Carlinville, IL
-June 20, 2015
IMG_9852_edited-1
Welcome to Wednesday, one and all. The Xmas week is disappearing rapidly in the rear view mirror of life and everyone's bracing a shoulder against the start of the new year and all the change it promises. If you're visiting the south coast of NSW this summer, I hope you manage to get down to the beach for a couple of sunrises while you're here - there's really nothing like them. Should you visit Seven Mile Beach before our planet's rotation orients this solar system's star above the horizon you can enjoy views like this. If you're lucky you'll also see dolphins, sea eagles and out-of-shape joggers trying to make good on a new years resolution. Hell, you might even see me! Imagine how amazing that would be!!!! Alright team, on with your day, and remember never, ever make eye contact while eating a banana :)
Like it? Put it on your wall - shop.andyhutchinson.com.au/p682521297
Find all previous Photos of the Day in the archive - shop.andyhutchinson.com.au/f892423141
Just want to buy me a coffee? ko-fi.com/A622C34
Bobak Ferdowsi, a system's engineer at NASA's Jet Propulsion Laboratory, speaks with a member of "invenTeam" at the White House Science Fair. Olivia Van Amsterdam, 16, Katelyn Sweeney, 17, and their team of student engineers from Natick, MA, invented a 120 lb remotely operated vehicle (ROV) that can help search-and-rescue dive teams search for bodies in dangerous, icy waters. The fourth White House Science Fair was held at the White House and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)
Many places in western Britain and across the Channel in Brittany, claim to be the Camelot of Arthurian legend. One of the strongest of these claimants is this place, West Camel in Somerset. The little river that flows through the village and its neighbour, Queen Camel, is called the Cam. One of the springs that feed it has always been called "Arthur's Well", and it is well known to local people that King Arthur and his knights dwell under a nearby hill, playing chess until Judgement Day.
But they were not Arthurian studies that brought me here. In a gazetteer of British Modernist houses, West Camel is listed as having no fewer than eight. They are given as the work of Petter & Warren and Lt. Col. P. N. Nissen, and were erected in 1925. I think I unconsciously made the connection between the name Nissen and the eponymous hut, but it was a surprise when I turned off the A303 to find myself looking at a row of four Nissen huts, each divided into two houses. The Nissen hut had been invented during the First World War. During the Second a larger, better appointed, prefabricated version, the Quonset hut, was developed by the American military. Perhaps these houses represented an attempt to interest the authorities in the system's suitability for housing. I'm rather glad the idea never took off, but these houses are certainly an interesting curiosity.
On Saturday, October 7, more than 1,700 of Rochester Regional Health’s friends and employees gathered at the Joseph A. Floreano Rochester Riverside Convention Center for the system’s signature celebration.
At the corner of Hay and George a work team puts the finishing touches on laying the conduit which will carry the system's communications systems, power and utilities. (The purple pipe will carry water).
26/9/2015 Langford CrossingBritish Rail Class 365
British Rail Class 365 Networker Express
The standard class interior of a pre-refurbishment First Capital Connect Class 365
In service1995 - Current
ManufacturerABB York
Family nameNetworker
Constructed1994 - 1995[1]
Refurbishment2007 - ? (Hornsey Depot)
Whole fleet re-liveried from NSE to First Capital Connect in 2006 - 2007.
Second refurbishment: 2013-2016 (Ilford Depot)
Number built41 trainsets
Number in service40 trainsets
(one was written off in the Potters Bar rail crash in 2002)
Formation4 cars per trainset
Fleet numbers365501 - 365541
Operator(s)GTR (Great Northern)
Specifications
Car length20.89 m (68 ft 6 in) (DMCO)
20.06 m (65 ft 10 in) (Other vehicles)
Width2.81 m (9 ft 3 in)[1]
Height3.77 m (12 ft 4 in)
Maximum speed100 mph (161 km/h)[1]
Weight151.62 t (149.23 long tons; 167.13 short tons)
Power output1,256 kW (1,684 hp)
Electric system(s)25 kV AC Overhead
750 V DC Contact shoe (removed)
Track gauge1,435 mm (4 ft 8 1⁄2 in)
The British Rail Class 365 "Networker Express" are dual-voltage (25 kV AC and 750 V DC) electric multiple units built by ABB at York, from 1994 to 1995. These were the last units to be built at the York factory before its closure. All Class 365 units in service have received front-end cab modifications to equip them with cab air conditioning, installed by WAGN, the design of which has given them the nickname "Happy Train".
Class 365 with original front end
In the early 1990s, the Networker family was entering large-scale service in the Network SouthEast sector - both third-rail EMUs (Class 465/466) and DMUs (Class 165/166) were in service, with proposals for others, including a so-called "Universal Networker", intended as Class 371 and 381, that would have dual-voltage capability. However, by 1992, no work had been done in the development of these due to a lack of funding, so a replacement plan was required. For this, the Class 465 was modified for longer-distance services - a prototype was converted from an existing unit (designated as Class 465/3) to determine suitability, before funding was authorised for the purchase of 41 dual-voltage EMUs, each of four cars. These became the Class 365.[3][4][5]
Description[edit]
Although specified as a dual-voltage unit, Class 365s have never operated with this capability since they were built with only one system of traction current pickup. Units 365501 to 365516, which worked briefly for Network SouthEast before the franchise was given to Connex South Eastern, were originally supplied only with DC shoe gear for use on the 750 V third-rail system[6] (with the exception of unit 365502, which ran briefly on the AC network during testing and commissioning and was the main reason for this unit being chosen as the one subleased from Connex South Eastern to WAGN to bolster unit availability in the aftermath of the Potters Bar Crash in 2002). In this configuration the maximum speed was 90 mph (145 km/h).[7]
When they transferred to West Anglia Great Northern for use with 25 kV AC overhead line traction supply, the shoes and associated equipment were removed and a Brecknell Willis high speed pantograph was installed, along with other operator and voltage-specific modifications and testing by Bombardier Transportation at its Doncaster Works, shortly before the works were closed.
However, the 365s retain the original 750 V DC bus, meaning that when on 25 kV overhead lines the current is collected as AC, rectified to DC for the onboard systems, and then inverted back to AC for the 3-phase traction motors. For running on overhead lines the maximum speed was raised to 100 mph (161 km/h).
Basic equipment consists of;
DMOC A - 4x 3-phase AC traction motors, traction inverter, sander
TOSL - Compressor, auxiliary converter, disabled toilet
PTOSL - Pantograph, transformer, auxiliary converter, small toilet
DMOC B - 4x 3-phase AC traction motors, traction inverter, sander
Dynamic (rheostatic) braking on the two Driving Motor coaches is available in addition to disc brakes, via a system of brake blending.
In common with the whole Networker fleet, wheel slide protection (WSP) operates on every axle. Under braking conditions a blowdown valve releases air from the brake cylinder of any axle if the rotational speed varies significantly from the average axle speed on the train.
Internal LED Passenger Information Display Systems (PIDS) and Auto-Announcers are fitted across the entire fleet.
Current operations[edit]
GTR (Great Northern)[edit]
Class 365, No. 365530 arriving at Cambridge on 15 May 2004, with a service from King's Lynn. This unit is operated by Great Northern and has a modified front end with cab air conditioning. It is shown still painted in obsolete Network SouthEast livery.
Great Northern, which took over the service formerly operated by First Capital Connect until 14 September 2014, and previously WAGN until 1 April 2006, uses Class 365s on outer-suburban services from King's Cross. These services are shared with older Class 317 and Class 321 units, although 365s are seen more frequently. Services generally fall into two categories:
King's Cross to Peterborough
King's Cross to Cambridge and on to King's Lynn
These services usually stop more frequently than the East Coast expresses with which they share the southern section of the East Coast Main Line, although there are exceptions, notably the non-stop services to Cambridge (many of which go on to King's Lynn), operated almost solely by Class 365 units.
First Capital Connect 365538 rolls into Cambridge on a service from London Kings Cross.
All 40 units in service have received an interior refresh by FCC. This involved retrimming the carpet, dado panels and seat moquette, and the two toilets were repainted. Externally these units are all in FCC livery, with the exception of four units carrying WAGN's special advertising liveries.
Starting from January 2014, the first trains in the fleet will undergo a refurbishment by Bombardier Transportation at their Ilford site, some of which will be completed on a two-part basis with a second stage starting from the summer of 2014.[8] The first unit to be put back into service is 365 517, which began operations on 16 January 2014.[8] The initial refurbishment comprises new seat upholstery, new flooring, interior and exterior repaint and an engineering overhaul to maintain reliability.[8]
The second stage of upgrades will bring the units in line with the latest disability regulations by installing two wheelchair bays, new external door buttons and vestibule grab handles, a new wheelchair-accessible toilet, a new fully automated passenger information system with audio and visual announcements, and a call-for-aid in the wheelchair and toilet areas. This will be retrofitted to units that have already undergone refurbishment prior to the start of works.[8] Work is due to be completed in Autumn 2016.[9]
In this video clip, it shows my area getting pummeled with a heavy shower (maybe a thundershower) during midday of Monday, March 7, 2016. The weather was actually nice and partly cloudy during the morning hours. However, as the day went on, I've noticed cumulus clouds around the area trying to tower. That's a good indication of an unstable airmass aloft. The same system that had brought heavy rain to our area just the previous evening was still slowly departing. It was this system's main low that was hovering above the region this day, which explains the thunderstorm activity... Even SoCal saw a decent line of t-storms move thru this same morning. However, we got some of the action up here as well, though not as 'great'. I didn't have my car at the time as well, since my dad used it to do his errands...ugh! I need my own storm chasing vehicle! Anyways, this brief heavy shower was the 'last hurrah' for this storm system before it headed eastward. This storm system was storm number 2 in an ongoing atmospheric river event...
Weather scenario & details:
An atmospheric river event was in store for California for early March 2016, despite a very dry & mild February. The 1st storm had hit by the 1st weekend of the month, bringing heavy rain & gusty winds. As we started the 2nd week of March, a 2nd strong system had brought more of the same thing across California. While we were still on the heels of that 1st storm that had battered us early month, a new storm had pushed in. Rainfall from this 2nd storm were to be 1-2 inches in NorCal and 0.50-1 inch in SoCal. Flooding was a concern, since the ground was already saturated from the 1st storm. In addition, t-storms were possible with this 2nd system due to its (more) unstable air mass. Even a line of strong t-storms had drifted right thru the Los Angeles area Monday morning (March 7, 2016). Although we need all the rain we can get due to our ongoing drought, the copious amounts that were falling in a short time have proven to be too much of a good thing...
Looking ahead:
Right when we were giving up on El Niño, especially after seeing such a dry February, a parade of strong winter storms were (finally) aimed at our drought-parched state. Impacts from the storms so far (Storms 1 and 2 in this atmospheric river event) had brought heavy rain & wind to my area in San Jose, CA within the first week of March 2016. At this moment (as of March 7), it looks like more rain was still in store for California in the foreseeable future. Looks like this was El Nino's last hurrah this winter! Are we on the verge of a 'Miracle-March'? Fingers crossed...we still have a long way to go in terms of relieving our serious drought here.
(Footage filmed Monday, March 7, 2016 around San Jose, CA)
**Full video here:
CALVO BUILDING
Calvo Building is one of the beaux-art buildings constructed on the commercial street of Escolta in Manila in 1938 designed by Architect Fernando Ocampo. This building was spared from World War II and repurposed for many businesses, including the establishment of Republic Broadcasting System's DZBB which became GMA Network, one of the largest multimedia companies in the Philippines.
Date Taken: December 9, 2023
Medium: Canon EOS 4000D
Copyright 2023. All Rights Reserved.
Reference:
Heritage and some Kapuso history: the Calvo Building at Escolta. (2011, 10 16). Retrieved from The Urban Roamer:https://www.theurbanroamer.com/heritage-and-some-kapuso-history-the-calvo-building-at-escolta/
From Wikipedia...
The MV Kalakala (pronounced kah-lah-kah-lah)[1] was a ferry that operated on Puget Sound from 1935 until her retirement in 1967.
Kalakala was notable for her unique streamlined superstructure, art deco styling, and luxurious amenities. The vessel was a popular attraction for locals and tourists, and was voted second only to the Space Needle in popularity among visitors to Seattle during the 1962 Seattle World's Fair. The ship is known as the world's first streamlined vessel for its unique art deco styling..
She was constructed in 1926 as Peralta for the Key System's ferry service on San Francisco Bay. On 6 May 1933 Peralta burned as a result of an arson fire at the terminal where she was moored, resulting in the complete destruction of her superstructure. The hull was still intact and on 12 October 1933 the vessel was sold to the Puget Sound Navigation Company (PSNC), also known by its marketing name, the "Black Ball Line". PSNC funded a refit to restore the vessel as a ferry.
In November 1934, William Thorniley, publicist for PSNC and president of the Olympic Peninsula Travel Association, named the new ferry Kalakala, which was said to mean "bird" in the Pacific Northwest Native American trade language Chinook Jargon.[3][4][5][6] Thorniley launched a national promotional campaign beginning with large billboard signs that simply said "KALAKALA!" Later, they said "KALAKALA, Seattle, WA" and featured a picture of the vessel as well.
The new bridge and wheelhouse were built entirely out of copper, from fear that the steel used in the rest of the vessel would interfere with the ship's compass.[7] Set back from her streamlined superstructure for aesthetics, it was impossible to see the bow of the vessel from the bridge. As visibility also depended on round portholes rather than a fully-glazed wheelhouse, she was known for being difficult to handle when docking.
Kalakala was well known for a heavy shaking vibration that ran throughout the vessel when in operation. This was probably due to poor alignment of the engines in the original construction of the vessel. When the propeller was replaced with a new 5-bladed version in 1956, the vibration was reduced by 40%.[8] Although the company wished the vessel to be known as the Silver Swan, the vessel soon attracted other, less complementary nicknames, including the Silver Slug, Silver Beetle, Galloping Ghost of the Pacific Coast, and, among Seattle's Scandinavian community, Kackerlacka, which means "cockroach"
In February 1946, Kalakala was issued Federal Communications Commission (FCC) license #001 for the first commercial radar syste
The Kalakala moored at Hylebos Waterway in Tacoma, Washington in November 2007.
After her retirement in 1967, the vessel was sold to a seafood processing company and towed to Alaska to work as a factory ship. After working as a crabbing ship for a couple of years, the Kalakala was beached in Kodiak, Alaska in 1970 and used to process shrimp.
Peter Bevis discovered the rusting hulk on a fishing trip in 1984. The Kalakala had been turned into a cannery and the internal structure had been reworked to create a building with cement floors, drywall, and ceiling tiles. After complicated financial negotiations and hard work, they managed to refloat her and tow her back to Seattle in 1998. The vessel has since been a source of controversy as her owners were unable to raise sufficient funds to refurbish the vessel or even to keep her moored in Seattle's Union Bay.
The vessel was sold in 2004 to a private investor, who moved her to an anchorage in Neah Bay provided by the Makah people. Soon after arriving at Neah Bay the Kalakala was evicted by the Makah, who also brought a lawsuit against the owners. The vessel has since been relocated to Tacoma, Washington.
In February 2008, Kalakala owner Steve Rodrigues announced his intention to acquire additional vintage ferry vessels and to restore them and the Kalakala as either ferries powered by wind and solar technologies or as museums. The Kalakala was scheduled for work on its hull and superstructure in dry dock in 2010,[11] but this never happened. After six years in Tacoma, the Kalakala began listing, and officials worried of environmental damage the ferry might pose.[12] The state had also passed a state law focusing on the removal of abandoned and/or neglected vessels in Washington state waterways so pressure is being applied to the owner to do something with the Kalakala.
Artistic projects
Several art projects arose from their fascination with the Kalakala, including a full-length album of solo cello compositions recorded onboard the vessel in November 2003, called "Songs From a Parallel Universe." There is also an as-yet unreleased film, also filmed on the Kalakala, about the "Ghost Dance."
There was also a live concert featuring the Icelandic band múm, Serena Tideman and Eyvind Kang, on board the Kalakala.
A temporary "pirate radio" station broadcasting from the Kalakala is featured in the 2005 documentary film "Pirate Radio."
Regionalbahn Kassel hybrid tram-train 753 is a RegioCitadis type and was built by Alstom in 2005. It can run on the tramway system's electric supply or its own diesel engine on RegioTram routes. It is seen at Rathaus on 17 September 2007.
Bangkok Railway Station (Thai: สถานีรถไฟกรุงเทพ), unofficially known as Hua Lamphong Station (หัวลำโพง), is the main railway station in Bangkok, Thailand. It is in the center of the city in the Pathum Wan District, and is operated by the State Railway of Thailand.
Contents [hide]
1 Naming
2 History
3 Gallery
4 Notes
5 References
Naming[edit]
The station is officially referred to by the State Railway of Thailand as Krungthep Station in Thai ('Krungthep' is the transliteration of the common Thai language name of Bangkok) and Bangkok Station in English.[1] Hua Lamphong is the informal name of the station, used by both foreign travellers and locals. The station is often named as Hua Lamphong in travel guide books and in the public press.[citation needed]
In other areas of Thailand the station is commonly referred to as Krungthep Station, and the name Hua Lamphong is not well-known.
In all documents published by the State Railway of Thailand (such as train tickets, timetables, and tour pamphlets) the station is uniformly transcribed as Krungthep (กรุงเทพฯ) in Thai.[1]
History[edit]
The station was opened on June 25, 1916 after six years' construction. The site of the railway station was previously occupied by the national railway's maintenance centre, which moved to Makkasan in June 1910. At the nearby site of the previous railway station a pillar commemorates the inauguration of the Thai railway network in 1897.
The station was built in an Italian Neo-Renaissance-style, with decorated wooden roofs and stained glass windows. The architecture is attributed to Turin-born Mario Tamagno, who with countryman Annibale Rigotti (1870–1968) was also responsible for the design of several other early 20th century public buildings in Bangkok. The pair designed Bang Khun Prom Palace (1906), Ananta Samakhom Throne Hall in the Royal Plaza (1907–15) and Suan Kularb Residential Hall and Throne Hall in Dusit Garden, among other buildings.
There are 14 platforms, 26 ticket booths, and two electric display boards. Hua Lamphong serves over 130 trains and approximately 60,000 passengers each day. Since 2004 the station has been connected by an underground passage to the MRT (Metropolitan Rapid Transit) subway system's Hua Lamphong Station.
The station is also a terminus of the Eastern and Oriental Express luxury trains.
Southern Jupiter looms some 37,000 kilometers away in this JunoCam image from December 11. The image data was captured near Juno's third perijove or closest approach to Jupiter, the spacecraft still in its 53 day long looping orbit. With the south polar region on the left, the large whitish oval toward the right is massive, counterclockwise rotating storm system. Smaller than the more famous Great Red Spot, the oval storm is only about half the diameter of planet Earth, one of a string of white ovals currently in the southern hemisphere of the Solar System's, ruling gas giant. via NASA ift.tt/2hZSClv
GOVERNOR ANNOUNCES STOP VIOLENCE AGAINST WOMEN ACT
PROGRAM GRANT AWARDS
CHARLESTON -- Governor Earl Ray Tomblin today, June 29, 2016, awarded $1,087,599.00 in STOP Violence Against Women Grant Program funds for twenty-eight (28) projects statewide. The purpose of these funds is to establish or enhance teams whose core members include victim service providers, law enforcement, and prosecution to improve the criminal justice system's response to violence against women. Grants provide personnel, equipment, training, technical assistance, and information systems for the establishment or enhancement of these teams. Additionally, statewide projects are funded to provide training and educational opportunities for all victim service providers, law enforcement, prosecution, and court personnel throughout the state.
STOP funds are awarded from the Office on Violence Against Women, Office of the U.S. Department of Justice. The funds are administered by the Division of Justice and Community Services.
Funds were awarded to the following:
CABELL
Branches Domestic Violence Shelter, Inc.$55,446.00
These funds provide for the enhancement and the continuation of the Cabell County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Cabell County Prosecutor's Office, Branches Domestic Violence Shelter, CONTACT of Huntington, and the Huntington Police Department.
Contact:Ms. Amanda McComas
Phone: (304) 529-2382
Email: mccomas@branchesdvs.org
CALHOUN
Family Crisis Intervention Center$19,799.00
These funds provide for the enhancement and the continuation of the Calhoun County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Calhoun County Prosecutor's Office, the Family Crisis Intervention Center, and the Calhoun County Sheriff's Department.
Contact:Ms Emly S. Larkins
Phone: (304) 428-2333
Email: eelarkins@suddenlink.net
FAYETTE
Comprehensive Women's Service Council$32,671.00
These funds provide for the enhancement and the continuation of the Fayette County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Fayette County Prosecutor's Office, the Comprehensive Women’s Service Council, and the Fayette County Sheriff’s Department.
Contact:Ms. Patricia M. Bailey
Phone: (304) 255-2559
Email: Pbailey@wrcwv.org
GRANT
Family Crisis Center, Inc.$17,683.00
These funds provide for the enhancement and the continuation of the Grant County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Grant County Prosecutor’s Office, the Family Crisis Center, and the Grant County Sheriff’s Department.
Contact:Ms. Sony Fazzalore
Phone: (304) 788-6061
Email: fcc911@frontier.com
GREENBRIER
Family Refuge Center$53,040.00
These funds provide for the enhancement and the continuation of the Greenbrier County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Greenbrier County Prosecutor's Office, the Family Refuge Center, the Lewisburg Police Department, and the Greenbrier County Sheriff’s Department.
Contact:Ms. Kenosha Davenport
Phone: (304) 645-6334
Email: kenoshad@familyrefugecenter.org
HARRISON
Task Force on Domestic Violence, "HOPE, Inc."$43,176.00
These funds provide for the enhancement and the continuation of the Harrison County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Harrison County Prosecutor's Office, the Task Force on Domestic Violence “HOPE, Inc.”, the Bridgeport Police Department and the Clarksburg Police Department.
Contact:Ms. Harriet Sutton
Phone: (304) 367-1100
Email: hmsutton@hopeincwv.org
KANAWHA
Kanawha County Commission$46,429.00
These funds provide for the enhancement and the continuation of the Kanawha County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Kanawha County Prosecutor's Office, the YWCA Resolve Family Abuse Program, the Family Counseling Connection – REACH Program, Beginning My Empowerment Thru Emmanuel's Kingdom (BEMEEK) Outreach Program, the Kanawha County Sheriff’s Department, and the Charleston Police Department.
Contact:Ms. Gale A. Teare
Phone: (304) 357-0499
Email: galeteare@kcso.us
MARION
Task Force on Domestic Violence, "HOPE, Inc."$51,078.00
These funds provide for the enhancement and the continuation of the Marion County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Marion County Prosecutor's Office, the Task Force on Domestic Violence, "HOPE, Inc.", the Marion County Sheriff's Department, and the Fairmont Police Department.
Contact:Ms. Harriet Sutton
Phone: (304) 367-1100
Email: hmsutton@hopeincwv.org
MARSHALL
Marshall County Commission$25,259.00
These funds provide for the enhancement and the continuation of the Marshall County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Marshall County Prosecutor's Office, the YWCA Family Violence Prevention Program, and the Marshall County Sheriff's Department.
Contact:Ms. Betsy Frohnapfel
Phone: (304) 845-0482
Email: bfrohnapfel@marshallcountywv.org
MINERAL
Family Crisis Center, Inc.$17,683.00
These funds provide for the enhancement and the continuation of the Mineral County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Mineral County Prosecutor's Office, the Family Crisis Center, and the Mineral County Sheriff’s Department.
Contact:Ms. Sonya Fazzalore
Phone: (304) 788-6061
Email: fcc911@frontier.com
MINGO
Tug Valley Recovery Shelter, Inc.$43,576.00
These funds provide for the enhancement and the continuation of the Mingo County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Mingo County Prosecutor's Office, the Tug Valley Recovery Shelter, and the Mingo County Sheriff's Department.
Contact:Ms. Kim Ryan
Phone: (304) 235-6121
Email: k.s.ryan@hotmail.com
MINGO, LOGAN
Tug Valley Recovery Shelter, Inc.$32,596.00
These funds provide for the enhancement and the continuation of the Logan County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Logan County Prosecutor's Office, the Tug Valley Recovery Shelter, and the Logan County Sheriff’s Department.
Contact:Ms. Kim Ryan
Phone: (304) 235-6121
Email: k.s.ryan@hotmail.com
MONONGALIA
The Rape & Domestic Violence Information Center, Inc.$54,599.00
These funds provide for the enhancement and the continuation of the Monongalia County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Monongalia County Prosecutor's Office, the Rape and Domestic Violence Information Center, the Morgantown Police Department, the Monongalia County Sheriff’s Department, and the Star City Police Department.
Contact:Ms. Judy King
Phone: (304) 292-5100
Email: rdvic99@earthlink.net
Monroe
Family Refuge Center$23,825.00
These funds provide for the enhancement and the continuation of the Monroe County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Monroe County Prosecutor's Office, the Family Refuge Center, and the Monroe County Sheriff's Department.
Contact:Ms. Kenosha Davenport
Phone: (304) 645-6334
Email: kenoshad@familyresourcecenter.org
NICHOLAS
Comprehensive Women's Service Council$36,904.00
These funds provide for the enhancement and the continuation of the Nicholas County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Nicholas County Prosecutor's Office, the Comprehensive Women’s Service Council and the Nicholas County Sheriff's Department.
Contact:Ms. Patricia M. Bailey
Phone: (304) 255-2559
Email: pbailey@wrcwv.org
OHIO
Ohio County Commission$87,614.00
These funds provide for the enhancement and the continuation of the Ohio County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Ohio County Prosecutor's Office, the YWCA Family Violence Prevention Program, the YWCA Cultural Diversity and Community Outreach Program, and the Ohio County Sheriff’s Department.
Contact:Mr. Scott R. Smith
Phone: (304) 234-3631
Email: ssmith@wvocpa.org
POCAHONTAS
Family Refuge Center $6,000.00
These funds provide for the enhancement of the Pocahontas County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Pocahontas County Prosecutor’s Office, the Family Refuge Center and the Pocahontas County Sheriff’s Department.
Contact:Ms. Kenosha Davenport
Phone: (304) 645-6334
Email: kenoshad@familyrefugecenter.org
PRESTON
The Rape & Domestic Violence Information Center, Inc.$35,643.00
These funds provide for the enhancement and the continuation of the Preston County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Preston County Prosecutor's Office, the Rape and Domestic Violence Information Center, and the Preston County Sheriff's Department.
Contact:Ms. Judy King
Phone: (304) 292-5100
Email: rdvic99@earthlink.net
PUTNAM
Putnam County Commission$25,421.00
These funds provide for the enhancement and the continuation of the Putnam County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Putnam County Prosecutor's Office, Branches Domestic Violence Shelter, the Family Counseling Connection - REACH Program, and the Putnam County Sheriff's Department.
Contact:Sheriff Steve Deweese
Phone: (304) 586-0256
Email: tcraigo@putnamwv.org
RALEIGH
Comprehensive Women's Service Council$60,535.00
These funds provide for the enhancement and the continuation of the Raleigh County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Raleigh County Prosecutor's Office, the Comprehensive Women’s Service Council, and the Beckley Police Department.
Contact:Ms. Patricia M. Bailey
Phone: (304) 255-2559
Email: pbailey@wrcwv.org
RANDOLPH
Women's Aid in Crisis$16,767.00
These funds provide for the enhancement and the continuation of the Randolph County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Randolph County Prosecutor's Office, Women's Aid in Crisis, and the Randolph County Sheriff’s Department.
Contact:Ms. Marcia R. Drake
Phone: (304) 626-8433
Email: mdrake@waicwv.org
ROANE
Family Crisis Intervention Center$17,398.00
These funds provide for the enhancement and the continuation of the Roane County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Roane County Prosecutor's Office, the Family Crisis Intervention Center, the Spencer Police Department, and the Roane County Sheriff's Department.
Contact:Ms. Emily S. Larkins
Phone: (304) 428-2333
Email: eelarkins@suddenlink.net
UPSHUR
Upshur County Commission$26,496.00
These funds provide for the enhancement and the continuation of the Upshur County STOP Team to improve the criminal justice system's response to victims of domestic violence, sexual assault, stalking and dating violence. The core Team includes the Upshur County Prosecutor's Office, Women's Aid in Crisis, and the Buckhannon Police Department.
Contact:Mr. David E. Godwin
Phone: (304) 472-9699
Email: degodwin@upshurcounty.org
STATEWIDE
West Virginia Prosecuting Attorneys Institute$39,284.00
These funds provide for the development and continuation of strengthening prosecution strategies and best practices as well as improve prosecution-based victim services in cases involving violence against women through training and the development of resources.
Contact:Ms. Sherry Eling
Phone: (304) 558-3348
Email: sherry.s.eling@wv.gov
West Virginia Foundation for Rape Information and Services$56,689.00
These funds provide for finalizing the development of an Advocate Guide and Protocol with participating correctional facilities in the state for service provision; convert training materials into e-learning resources; and work with Rape Crisis Centers on service implementation in order to work towards compliance with PREA requirements.
Contact:Ms. Nancy Hoffman
Phone: (304) 366-9500
Email: wvfris@frontier.com
West Virginia Supreme Court of Appeals$54,104.00
These funds provide for updating and printing the Domestic Violence Benchbook; to provide the salary of a DV Case Coordinator for the pilot program of the Kanawha County Domestic Violence Court; to maintain the Domestic Violence Registry back-up internet site; and to provide continued training for court personnel in the area of domestic violence, sexual assault, stalking and dating violence.
Contact:Ms. Angela Saunders
Phone: (304) 558-0145
Email: Angela.saunders@courtswv.gov
West Virginia Coalition Against Domestic Violence$43,763.00
These funds provide for the continued enhancement of the statewide domestic and sexual violence database; to provide training and technical assistance for STOP Teams and Domestic Violence Programs on cultural diversity and cultural competency; and to promote dating violence protocols.
Contact:Ms. Tonia Thomas
Phone: (304) 965-3552
Email: tthomas@wvcadv.org
West Virginia Foundation for Rape Information and Serivces$64,121.00
These funds provide for training activities, the on-going development and capacity building of service providers to victims of sexual assault, dating violence and stalking crimes, and to provide training and resources for these programs in order to provide services to sexual assault, dating violence, and stalking victims.
Contact:Ms. Nancy Hoffman
Phone: (304) 366-9500
Email: wvfris@frountier.com
Division of Justice & Community Services contact:
Sarah J. Brown
Senior Justice Programs Specialist
Division of Justice and Community Services
1204 Kanawha Boulevard, East
Charleston, West Virginia 25301
Phone: (304) 558-8814, Extension 53337
Email: Sarah.J.Brown@wv.gov
Photos available for media use. All photos should be attributed “Photo courtesy of Office of the Governor.”