View allAll Photos Tagged System's

Boeing Starliner Launch Conductor Louis Atchison, left, and NASA astronaut Butch Wilmore look at Boeing’s CST-100 Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 serves as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Bill Ingalls)

Boeing and NASA teams work around Boeing’s CST-100 Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 serves as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Bill Ingalls)

The quench system arm and nozzle, foreground, are seen next to the Space Launch System’s booster a few hours ahead of the second and final qualification motor (QM-2) test, Tuesday, June 28, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. During the Space Launch System flight the boosters will provide more than 75 percent of the thrust needed to escape the gravitational pull of the Earth, the first step on NASA’s Journey to Mars. Photo Credit: (NASA/Bill Ingalls)

Two of Guilford Rail System's first-generation EMDs, GP9r ST 51 and GP7 ST 12 approach Fairfield, Maine, not far from their final destination, with SAPI-1 (Hinckley, ME. to Waterville, ME. trip) on March 20th, 2005.

Overseas from the conflict in Europe, America has been designing its own VCS units to support both its own military and to hopefully sell to the URE. The ALDIS (Armored Long-Distance Infantry Support) is the first system to go into full production. It is designed to support regular tanks and infantry from a distance, and can utilize its legs to reach previously treacherous strategic positions. Each ALDIS system is equipped with a light railgun, and a short-range missile launcher. Although not designed for close combat, the ALDIS has two light machine guns affixed to the underside of its "head." The head does not serve any purpose other than carrying the guns, as it is a residual relic from the system's initial design phase. Most of the ALDIS's sensors are built into the main body, and it uses a back mounted non-combustible high-capacity battery pack for power. Each ALDIS system has one human pilot, but similar to the URE's Hornet, have a basic AI system which puts them into an "overwatch" mode. ALDIS systems have been deployed to great success, and currently have a very low pilot death count.

 

This started out as a Power-Miners inspired humanoid mech, but I didn't like how the legs clashed with the rest of it so I made something new out of them. This was a pretty fun build, I might do more like this in the future.

Ex. # 219 475 BVG Berlin arrived in Almaty in 2000 in the vein of system's revival after the 90s. It worked mostly as # 1041 being renumbered to # 1011 in 2008 and almost put out of service the same year. However, it was revived by some enthusiastic young tram driver and served another year or two since then. Seen here in 2011 about to be dismantled and scraped soon.

 

Tramway depot, Almaty, KZ

Our solar system's largest moon Ganymede, imaged by Voyager 1 on March 5, 1979. Color-composite from images acquired in orange, green, and blue filters from a distance of 194,000 km and processed to approximate natural color.

State Raiway of Thailand (SRT) diesel locomotive 4220

 

Bangkok Railway Station (Thai: สถานีรถไฟกรุงเทพ), unofficially known as Hua Lamphong Station (หัวลำโพง), is the main railway station in Bangkok, Thailand. It is in the center of the city in the Pathum Wan District, and is operated by the State Railway of Thailand.

 

The station is officially referred to by the State Railway of Thailand as Krungthep Station in Thai ('Krungthep' is the transliteration of the common Thai language name of Bangkok) and Bangkok Station in English. Hua Lamphong is the informal name of the station, used by both foreign travellers and locals. The station is often named as Hua Lamphong in travel guide books and in the public press.

 

In other areas of Thailand the station is commonly referred to as Krungthep Station, and the name Hua Lamphong is not well-known.

 

In all documents published by the State Railway of Thailand (such as train tickets, timetables, and tour pamphlets) the station is uniformly transcribed as Krungthep (กรุงเทพฯ) in Thai.

 

The station was opened on June 25, 1916 after six years' construction. The site of the railway station was previously occupied by the national railway's maintenance centre, which moved to Makkasan in June 1910. At the nearby site of the previous railway station a pillar commemorates the inauguration of the Thai railway network in 1897.

 

The station was built in an Italian Neo-Renaissance-style, with decorated wooden roofs and stained glass windows. The architecture is attributed to Turin-born Mario Tamagno, who with countryman Annibale Rigotti (1870–1968) was also responsible for the design of several other early 20th century public buildings in Bangkok. The pair designed Bang Khun Prom Palace (1906), Ananta Samakhom Throne Hall in the Royal Plaza (1907–15) and Suan Kularb Residential Hall and Throne Hall in Dusit Garden, among other buildings.

 

There are 14 platforms, 26 ticket booths, and two electric display boards. Hua Lamphong serves over 130 trains and approximately 60,000 passengers each day. Since 2004 the station has been connected by an underground passage to the MRT (Metropolitan Rapid Transit) subway system's Hua Lamphong Station.

 

The station is also a terminus of the Eastern and Oriental Express luxury trains.

 

From Wikipedia

 

FH-2 hardness testing instruments are built around a robust C-frame with exceptional stiffness and rigidity. The closed loop system is based on a precision load cell that delivers superior gauge repeatability and reproducibility results that are better than most other Rockwell hardness testers. FH-2 units comply with, or exceed, ISO and ASTM hardness standards (ASTM E18, ASTM B254, ISO 6508, JIS Z2245).

Test forces ranging from 1 to 250 kgf (550 lbf), depending on the model, are possible where precise algorithms, digital filters, and modern electronics ensure exacting force control. The test cycle can be less than 13 seconds (at a dwell time of 10 seconds). Indent depth measurement uses an optical encoder directly attached to the indentor shaft and has a resolution of 0.1 micron. Even the most basic model is equipped with Rockwell, Super Rockwell, HVT, HBT, and Depth ball measurement; and all models include plastic testing scales according to ISO 2039. There are two models in the FH2 series:

• FH-2-0, which measures Rockwell, Superficial Rockwell, HVT, HBT, H Ball indentation, and Plastic ISO 2039/1.

• FH-2-1, which measures Rockwell, Superficial Rockwell, Brinell, Vickers, HVT, HBT, H Ball indentation, and Plastic ISO 2039/1.

A sophisticated controller uses our hardness testing IMPRESSIONS™ pattern testing firmware, which allows mounting of the optional Y-axis motorized Jominy stage, or coordinate testing table (X-Y stage), for pattern testing. Taking this flexibility a step further, a CCD camera system with LED ring light can be added to the FH-2-1, which enables recording of all Brinell and Vickers indentations and automatic measurement of the results; additionally, with one touch, all results can be stored in the system's database. Automatic measurement, indent ZOOM function, conversions to other scales, other standards and many additional functions are standard features on the FH-2-1.

For convenience, both FH-2 models can be equipped with a motorized spindle that lifts the work piece to the required testing or measuring position, making them ideal for workshops, for educational purposes, and for those who need a combination of versatility and a larger degree of automation.

 

Website: Tiniusolsen.com

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard is seen on the launch pad after it was rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex 41 ahead of the Orbital Flight Test-2 (OFT-2) mission, Monday, Aug. 2, 2021 at Cape Canaveral Space Force Station in Florida. Boeing’s Orbital Flight Test-2 will be Starliner’s second uncrewed flight test and will dock to the International Space Station as part of NASA's Commercial Crew Program. The mission, currently targeted for launch at 1:20 p.m. EDT Tuesday, Aug. 3, will serve as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Aubrey Gemignani)

Lost Lake is a lake located in Whistler, British Columbia, Canada. The area around it, Lost Lake Park, is part of the municipal park system's cross-country skiing trails and, until hotel development overshadowed views of the park's swimming docks, was Whistler's long-time nude sunbathing beach. It has multiple public docks, which can be accessed by swimming in warmer months.

This might look like a double-bladed lightsaber, but these two cosmic jets actually beam outward from a newborn star in a galaxy near you. Constructed from Hubble Space Telescope image data, the stunning scene spans about half a light-year across Herbig-Haro 24 (HH 24), some 1,300 light-years or 400 parsecs away in the stellar nurseries of the Orion B molecular cloud complex. Hidden from direct view, HH 24's central protostar is surrounded by cold dust and gas flattened into a rotating accretion disk. As material from the disk falls toward the young stellar object it heats up. Opposing jets are blasted out along the system's rotation axis. Cutting through the region's interstellar matter, the narrow, energetic jets produce a series of glowing shock fronts along their path. via NASA go.nasa.gov/1NuBxLz

Cable car No. 16 was built in Muni's shops and dedicated on April 10, 1990. The blue and yellow paint job is a nod to the transit system's colors from 1939 to 1947.

 

Part of the roof from the previous No. 16 (which was known as No. 516 until 1973) was built into the present car. That original was built by Carter Bros. in 1893-1894.

 

Corner of Jackson Street and Hyde Street, San Francisco

 

DSC_2253_edit2

Platform edge at metro station Avtovo on the Kirovsko-Vyborgskaya Line (Line 1), Avtovo district, Saint Petersburg, Russia

 

Some background information:

 

The Saint Petersburg Metro is the underground railway system of the city of Saint Petersburg. It has been open since 15th November 1955. Formerly known as the V.I. Lenin Order of Lenin Leningrad Metropoliten, the system exhibits many typical Soviet designs and features exquisite decorations and artwork making it one of the most attractive and elegant metros in the world, maybe only excelled by the Moscow Metro. Due to the city's unique geology, the Saint Petersburg Metro is also one of the deepest metro systems in the world and the deepest by the average depth of all the stations. The system's deepest station, Admiralteyskaya, is located 86 metres below ground. Serving 2.1 million passengers daily (resp. 763.1 million passengers per year), the Saint Petersburg Metro is the 19th busiest metro system in the world.

 

Avtovo is a station on the Kirovsko-Vyborgskaya Line of the Saint Petersburg Metro. Designed by architect Yevgenii Levinson, it opened as part of the first Leningrad Metro line on 15th November 1955. In 2014, the British newspaper "The Guardian" included it on its list of the twelve most beautiful metro stations in the world.

 

Avtovo's unique and highly ornate design features columns faced with ornamental glass manufactured at the Lomonosov factory. Although the original plan envisaged using glass on all of the columns in the station, white marble was substituted on some due to time constraints. This marble was supposed to be temporary, but it has never been replaced. The walls are faced with white marble and adorned on the north side by a row of ornamental ventilation grilles. At the end of the platform a mosaic by V.A. Voronetskiy and A.K. Sokolov commemorates the Leningrad Blockade (1941 to 1944) during the Second World War.

 

Unlike the other stations on the first line, Avtovo is a shallow-level station, located just 12 metres below ground level and constructed using the cut and cover method. It belongs to the shallow column class of underground stations. Avtovo has as its entrance vestibule a large Neoclassical building with a domed cupola, located on the east side of Prospekt Stachek.

 

In Saint Petersburg’s history, the question of building an underground transport system arose several times, the first time in 1820, when the idea was hatched to build an underground road in a tunnel. By the end of the 19th century, certain interested parties began discussing the possibility of opening the Russian Empire's first metropolitan railway system. Almost all pre-revolutionary designs featured the concept of an elevated metro system, similar to the Paris or Vienna metros. However, as was later discovered through the experience of operating open (ground-level) metro lines in the city, such schemes would likely have resulted in a poor metro service. Unfortunately, at the time, Russian engineers did not have sufficient expertise or technical resources for the construction of deep underground tunnels through the bedrock located far beneath St Petersburg. Hence, it was finally Moscow that got the first underground railway system in the Soviet Union in 1935.

 

In 1938 the question of building a metro for Saint Petersburg (by then renamed to Leningrad), resurfaced again. The initial project was designed by the Moscow institute 'Metrogiprotrans', but on 21st January 1941, "Construction Directorate № 5 of the People's Commissariat" was founded as a body to specifically oversee the design and construction of the Leningrad Metro. By April 1941, 34 shafts for the initial phase of construction had been finished. During the Second World War construction works were frozen due to severe lack of available funding, manpower and equipment. At this time, many of the metro construction workers were employed in the construction and repair of railheads and other objects vital to the besieged city.

 

In 1946 Lenmetroproyekt was created, to finish the construction of the metro first phase. A new version of the metro project, devised by specialists, identified two new solutions to the problems to be encountered during the metro construction. Firstly, stations were to be built at a level slightly raised above that of normal track so as to prevent drainage directly into them, whilst the average tunnel width was to be reduced from the 6 metres (20 feet) standard of the Moscow Metro to 5.5 metres (18 feet).

 

On 3rd September 1947, construction in the Leningrad subway began again and eight years later, on 7 October 1955, the electricity was turned on in the metro l. On 15th November 1955, the subway grand opening was held, with the first seven stations being put into public use. These stations later became part of the Kirovsko-Vyborgskaya Line, connecting the Moscow Rail Terminal in the city centre with the Kirovsky industrial zone in the southwest. Subsequent development included lines under the Neva River in 1958, and the construction of the Vyborgsky Radius in the mid-1970s to reach the new housing developments in the north. In 1978, the line was extended past the city limits into the Leningrad Oblast.

 

By the time of the USSR's collapse, the Leningrad Metro comprised 54 stations and 94.2 kilometres (58.5 miles) of track. But development even continued in the modern, post-Soviet period. Today, the Saint Petersburg metro comprises five lines with altogether 69 stations and 118,6 kilometres (74 miles) of track. However, the present state is not meant to be the end of the story. Plans have been made to extend the Saint Petersburg Metro to nine lines with altogether 126 stations and 190 kilometres (118 miles) of track. But delays due to the difficult geology of the city's underground and to the insufficient funding have cut down these plans to 17 new stations and one new depot until 2025. At the same time, there are several short and mid-term projects on station upgrades, including escalator replacements and lighting upgrades.

 

On 3rd April 2017, a terrorist bombing caused an explosion on a train between Sennaya Ploshchad and Tekhnologicheski Institut stations, on the Line 2. 14 people died and over 50 sustained injuries, while Russian president Vladimir Putin was in the city, when the attack happened. On the same day, Russia's National anti-terrorist unit defused another explosive device at Ploshchad Vosstaniya station.

 

Saint Petersburg (in Russian: Санкт-Петербу́рг) is Russia's second-largest city after Moscow, with currently 5.3 million inhabitants, part of the Saint Petersburg agglomeration with a population of 6.2 million (2015). An important Russian port on the Baltic Sea, it has a status of a federal city. Saint Petersburg is also the fourth-largest city in Europe, only excelled by Istanbul, London and Moscow. Other famous European cities like Paris, Berlin, Rome and Madrid are smaller. Furthermore, Saint Petersburg is the world’s northernmost megapolis and called "The Venice of the North", due to its many channels that traverse the city.

 

Situated on the Neva River, at the head of the Gulf of Finland on the Baltic Sea, it was founded by Tsar Peter the Great on 27th May 1703. On 1st September 1914, the name was changed from Saint Petersburg to Petrograd, on 26 January 1924 to Leningrad, and on 7 September 1991 back to Saint Petersburg. Between 1713 and 1728 and again between 1732 and 1918, Saint Petersburg was the capital of Imperial Russia. In 1918, the central government bodies moved to Moscow, which is located about 625 kilometres (388 miles) to the south-east.

 

Saint Petersburg is also the cultural capital of Russia. Today, the city is inscribed on the UNESCO World Heritage list as an area with 36 historical architectural complexes and around 4000 outstanding individual monuments of architecture, history and culture. It has 221 museums, 2,000 libraries, more than 80 theaters, 100 concert organizations, 45 galleries and exhibition halls, 62 cinemas and around 80 other cultural establishments. Saint Petersburg is home to the Hermitage, one of the largest art museums in the world.

 

Every year the city hosts around 100 festivals and various competitions of art and culture, including more than 50 international ones. In 2017, the city was visited by 7.2 million tourists and it is expected that in the years ahead the number of tourists will still be on the rise. Furthermore, many foreign consulates, international corporations, banks and businesses have offices in Saint Petersburg. The multinational Gazprom company has its headquarters in the newly erected Lakhta Center.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background (including material from fellow modeler Devilfish at whatifmodelers.com):

The SEPECAT Cheetah was a more sophisticated variable geometry wing derivative of the Anglo-French Jaguar attack aircraft, similar to the Su-7 and later Su-17/2022 evolution.

 

The Jaguar programme began in the early 1960s, in response to a British requirement for an advanced supersonic jet trainer to replace the Folland Gnat T1 and Hawker Hunter T7, and a French requirement (ECAT or École de Combat et d'Appui Tactique, "Tactical Combat Support Trainer") for a cheap, subsonic dual role trainer and light attack aircraft to replace the Fouga Magister, Lockheed T-33 and Dassault Mystère IV.

 

Cross-channel negotiations led to the formation of SEPECAT (Société Européenne de Production de l'Avion d'École de Combat et d'Appui Tactique – the "European company for the production of a combat trainer and tactical support aircraft") in 1966 as a joint venture between Breguet and the British Aircraft Corporation to produce the airframe.

 

Though based in part on the Breguet Br.121, using the same basic configuration and an innovative French-designed landing gear, the Jaguar as built also incorporated major elements designed by BAC – notably the wing and high lift devices. Production of the aircraft components would be split between Breguet and BAC and these would be assembled on two production lines; one in the UK and one in France.

 

The first of eight prototypes flew on 8 September 1968, a two-seat design fitted with the first production model Adour engine. The second prototype flew in February 1969; a total of three prototypes appeared in flight at the Paris Air Show that year. The first French "A" prototype flew in March 1969. In October a British "S" conducted its first flight.

 

A navalized "M" prototype flew in November 1969. The "M" had a strengthened airframe, an arrester hook and different undercarriage: twin nose wheel and single mainwheels. After testing in France it went to RAE at Thurleigh for carrier landing trials from their land based catapult. In July 1970 it made real take offs and landings from the French carrier Clemenceau.

 

The RAF accepted delivery of the first of 165 single-seat Jaguar GR1s (the service designation of the Jaguar S) in 1974, and it remained in service until 2007. Anyway, the Jaguar's all-weather capacity was limited and the airframe still offered development potential, so that from 1976 on the Anglo-French SEPECAT consortium looked at improved versions with radar, more powerful engines and improved avionics and aerodynamics.

 

This led in late 1975 to the Cheetah project, which incorporated a variable geometry wing that could be mounted to the Jaguar's airframe without major structural modifications.

 

The Cheetah was designed as a multirole, twin-engined aircraft designed to excel at low-level penetration of enemy defences, but also for battlefield reconnaissance and maritime patrol duties, and both naval and land-based versions were developed.

 

The Cheetah’s primary mission envisaged during the Cold War was the delivery of conventional and nuclear ordnance on the invading forces of the Warsaw Pact countries of Eastern Europe. Advanced navigation and flight computers, including the then-innovative fly-by-wire system, greatly reduced the workload of the pilot during low-level flight and eased control of the aircraft.

 

Compared with the Jaguar, the Cheetah’s nose section was widened to carry an Ericsson PS 37 X-band mono pulse radar, which used a mechanically steered parabolic dish housed in a radome. This radar performed several functions, including air-to-ground telemetry, search, track, terrain-avoidance and cartography. Air-to-air telemetry was also provided. This capability was not the system’s functional focus, but allowed the Cheetah to engage in all weather air-to-air combat and to act as a point defense interceptor with short range AAMs (e. g. up to six AIM-9 Sidewinder).

 

Honeywell provided an automatic digital flight control system for the Cheetah, one of the first such systems in a production aircraft. To assist low altitude flight and navigation, a Honeywell radar altimeter with transmitter and receiver was used, and the aircraft was also fitted with a Decca Type 72 Doppler navigation radar. TILS (Tactical Instrument Landing System), a landing-aid system made by Cutler-Hammer AIL, improved landing accuracy to 30 m.

 

From this basis, the Cheetah’s airframe was adapted to a naval version first, which featured a more rigid structure, a beefed-up landing gear for carrier operations and other suitable modifications. This evolved into the Cheetah FRS.1 for the Royal Navy. The FRS.1 was a separate development from the Jaguar, and catered to a very different specification. By the late 60's the Royal navy knew that their big carriers were due for scrapping and that plans for the proposed CVA 01 carrier were already being shelved. In a desperate attempt to hold on to naval air power, the Admiralty put forward a plan to buy two ex-US Navy Kittyhawk class supercarriers and refit them with British equipment (mostly salvaged from the outgoing carriers, Ark Royal and Eagle).

 

Because of the cancellation of TSR.2, the treasury, in a strange turn of events, agreed that air power at sea was definitively needed. They approved the acquisition of at first one, then later a second US carrier. To supplement them, two Centaur class carriers were to be retrofitted to act as tactical carriers to aid in smaller conflicts.

 

As these were not big enough to carry and deploy the larger American types being used on the supercarriers, a smaller multi-purpose aircraft was needed. With the Cheetah, BAC offered a version of the Jaguar, fitted with the variable geometry wing, then being designed for the MRCA, to aid with slower and shorter take offs and landings. Renamed the Cheetah, the FRS.1 entered service aboard the HMS Hermes in 1978, seeing service during the Falklands conflict in 1982.

 

The land-based Cheetah differed in many details from the naval version, though, the first prototype flew in early 1977 and the RAF’s GR.2 was primarily designed for the RAF Germany forces, since the continental theatre of operations was regarded as the most critical NATO flank of that time. The RAF Cheetahs were supposed to carry out conventional and nuclear point strikes against targets in the GDR, Poland and Czechoslovakia, and defend coastal lines against fast invasion fleets, esp. in the Baltic Sea.

 

The biggest visible difference to the FRS.1 was a different variable wing geometry mechanism and a modified wing shape with a dog tooth close to the pivot section and an extended leading edge fairing at the wing roots. The GR.2’s VG mechanism was more compact than the Tornado structure originally used in the FRS.1, but also simpler in order to save as much weight as possible.

 

The GR.2’s wings could be swept backwards between 16° and 72°, and the horizontal stabilizers were adapted in shape to form a quasi delta wing when the wings were fully swept back, allowing for minimal drag during the critical low-level dash towards a well-prepared enemy. The sweep angle could be altered manually by the pilot, but also automatically. The different VG wings basically improved low altitude aerodynamics and handling of the Cheetah, as well as its STOL capabilities. With its rugged undercarriage, lent from the Jaguar, the Cheetah GR.2 was, more than the bigger and heavier Tornado, suited for tactical front line service from improvised airstrips, together with the RAF’s Harrier fleet.

 

The Cheetah FRS.1 and the GR.2 carried the Jaguar’s pair of 30mm cannon, but due to the different wing structures the hardpoints for external ordnance differed. The Cheetah was typically equipped with a total of seven hardpoints: three underneath the fuselage, and more under the wings. The FRS.1 had four wing pylons which could, thanks to the Tornado ancestry, be swept together with the wings.

The GR.2’s capacity was more limited, as it carried two large tandem pylons under each wing root, each also carrying a launch rail for defensive AAMs, and a further pair of optional wing-mounted, fixed hardpoints. This facility was rarely used, though, and they were basically reserved for drop tanks for ferry flights, but could also take weapon racks. External ordnance capacity was similar to the original Jaguar, with 10,000 lb (4,500 kg).

 

The first Cheetah GR.2 entered RAF service in 1980, and replaced basically the RAF Buccaneers as well as an early part of the Jaguar GR.1 fleet (the Jaguars kept in service were later modernized to GR.3 standard).

 

The RAF Cheetahs served together with the Jaguar Force until 2007, when both types were retired. Following their retirement from flying service, some Cheetahs continue to serve as ground instructional airframes, most notably at RAF Cosford, used in the training of RAF fitters.

  

General characteristics:

Crew: One

Length: 16.83 m (55 ft 2½ in)

Wingspan: 13.97 m (45 ft 10 in) spread 16°, XXX swept 72°

Height: 4.89 m (16 ft 0½ in)

Wing area: 37.35 m² spread, 34.16 m² swept (402.05 ft² / 367.71 ft²)

Empty weight: 7,848 kg (17,286 lb)

Loaded weight: 12,200 kg (26,872 lb)

Max. takeoff weight: 15,700 kg (34,612 lb)

 

Powerplant:

2 × Rolls-Royce/Turbomeca Adour Mk 105 turbofans

with 24.50 kN (5,508 lbf) dry thrust each and 35.5 kN (7,979 lbf) with afterburner

 

Performance:

Maximum speed: Mach 1.8 (1,870 km/h, 1,161 mph) at 11,000 m (36,000 ft)

Mach 1.1 (1,350 km/h, 839 mph) at sea level

Combat radius: 908 km (490 nmi, 564 mi) (lo-lo-lo, external fuel)

Ferry range: 3,524 km (1,902 nmi, 2,190 mi)

Service ceiling: 14,000 m (45,900 ft)

Rate of climb: 200 m/s (39,400 ft/min)

Climb to 9,145 m (30,000 ft): 1 min 30 sec

 

Armament:

2× 30 mm (1.18 in) DEFA cannons in the lower front fuselage, 150 RPG

7 hardpoints; 1× center-line pylon stations Fore & Aft plus a pair of pylons in front of the main landing gear wells; twin inner pylon (Fore & Aft) plus launch rails for AAMs, and single Outer Pylon pair under the wings, non-moveable. Total capacity of 10,000 lb (4,500 kg) for a wide range of guided and unguided ordnance, including:

- Matra rocket pods with 18× SNEB 68 mm rockets each (up to seven at once)

- AS.37 Martel anti-radar missiles

- AS-30L laser guided air-to-ground missiles

- Various unguided or laser-guided bombs of up to 2.000 lb (907 kg) caliber

- 2× WE177A nuclear bombs

- 1× AN-52 nuclear bomb

- ECM protection pods

- Reconnaissance pods

- ATLIS laser/electro-optical targeting pod

- External drop tanks for extended range/loitering time

  

The kit and its assembly:

The final contribution to the “Cold War” Group Build at whatifmodelers.com, and another realization of a plan from the long agenda – and triggered by a similar build at the board from fellow modeler Devilfish who built a naval VG Jaguar with Tornado wings in 1:48. I took the opportunity and inspiration to build my interpretation of that theme, lending the Cheetah designation from Devilfish’s build, though, and some of the naval version’s background.

 

Anyway, my conversion plan had been different. I wanted to create an RAF aircraft, true to the Jaguar’s strike/recce role, and the VG mechanism and wings would come from a MiG-23 – inspired by a similar transplant with a Mirage F.1C I saw many moons ago (and a beautiful result, I want to try that stunt, too!).

I also had the donation kits stashed away: a Heller SEPECAT Jaguar A (actually, I had already piled up four kits for this task…) and an Academy MiG-23S.

 

Wing transplantation went straightforward and with surprisingly little difficulties. The MiG’s wings were cut out together with the spinal section and the lower wing gloves, so that the VG geometry remained unchanged. On the other side, this package went into a shallow gap that I carved out from the Jag’s ventral section. Some putty and body sculpting merged the parts, easier than expected.

 

The rest saw only minor modifications. A radome was implanted (from an Italeri F-18 Hornet), which needed some body sculpting around the nose and the MiG-23’s stabilizers were used, too, in order to form a clean wing shape. I tailored their trailing edges a bit, so that the shape would not remind too much of the MiG heritage.

 

An RAF style radar warning receiver, scratched from 1.5mm styrene, was installed into the French version’ fin. Under the wing roots a pair of pylons from a Matchbox F-14 were added, together with Sidewinder launch rails from a Tornado ADV (Italeri). The jet exhausts were drilled open for more depth, and some sensors/pitots added to the nose, made from wire. Cockpit and landing gear were taken OOB, even though I used a different ejection seat and faired the original dashboard over with a piece of styrene.

 

The BL 755 bombs and their twin racks come OOB from the Heller kit, the Sidewinders from an ESCI kit, IIRC.

  

Painting and markings:

The RAF was settled as an operator, but for a whiffy twist I applied the all-green scheme that the RAF’s Harrier GR.5 carried in the late Eighties – exclusively, AFAIK. While the all NATO Green upper side appears a bit dull, the Lichen Green underside and the very low waterline look rather psychedelic and unique. Anyway, it works well on the Cheetah, and I can imagine that other RAF aircraft would also look cool in this simple scheme?

 

The basic colors I used are Humbrol 105 (Army Green) and 120 (Light Green, FS 34227), both are pretty approximates. The basic paintwork was later panel-shaded with lighter mixes of these two tones – actually brightened up with RAF Cockpit Green (Humbrol 78). In fact, the Heller Jaguar is almost totally devoid of any surface detail... A light black ink wash was also used to emphasize edges and deepen the contrast. The wings’ leading edges were painted in a very dark green (Humbrol 91) and the cockpit interior was painted in dark grey (FS 36076 from Model Master). The landing gear struts were painted light grey, while the wells and covers became Zinc Chromate Yellow.

 

The decals are a mix of the OOB Heller sheet and aftermarket sheets for RAF Jaguars, an Italeri Tornado and a Harrier GR.5. A coat of matt acrylic varnish finally sealed everything and the ordnance was mounted.

  

An interesting conversion, and the result looks very plausible! I am certain that this thing would make people seriously wonder and think when displayed on a convention. The VG Jag looks very natural – but not much sexier than the original? Anyway, the transplantation does not look out of place, because the Jaguar’s layout is very similar to the Panavia Tornado, so that the VG wing does not appear like the total fake it actually is. ^^

Postojna Cave (Slovene: Postojnska jama; German: Adelsberger Grotte; Italian: Grotte di Postumia) is a 20,570 m long Karst cave system near Postojna, Slovenia. It is the longest cave system in the country as well as one of its top tourism sites.

The caves were created by the Pivka River.

The cave was first described in the 17th century by Johann Weichard Valvasor (Slovene: Janez Vajkard Valvasor), and a new area of the cave was discovered accidentally in 1818 by local Luka Čeč, when he was preparing the then known parts of the cave for a visit by Francis I, the first Emperor of Austria. In 1819, the caves were opened to the public, and Čeč went on to become the first official tourist guide for the caves. Electric lighting was added in 1884, preceding even Ljubljana, the capital of Carniola, the Austro-Hungarian province the cave was part of at the time, and further enhancing the cave system's popularity. In 1872 rails were laid in the cave along with first cave train for tourists. At first, these were pushed along by the guides themselves, later at the beginning of the 20th century a gas locomotive was introduced. After 1945, the gas locomotive was replaced by an electric one. 5.3 km of the caves are open to the public, the longest publicly accessible depth of any cave system in the world.

 

The caves are also home to the endemic olm, the largest trogloditic amphibian in the world. Part of the tour through the caves used to include a pool with some olms in it, though these have been removed recently due to the effect of flashes from visitngs tourists cameras had on the sensitive skin of the olms.

 

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen inside the Vertical Integration Facility before being rolled out to the launch pad at Space Launch Complex 41 ahead of the Orbital Flight Test mission, Wednesday, Dec. 18, 2019 at Cape Canaveral Air Force Station in Florida. The Orbital Flight Test with be Starliner’s maiden mission to the International Space Station for NASA's Commercial Crew Program. The mission, currently targeted for a 6:36 a.m. EST launch on Dec. 20, will serve as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Joel Kowsky)

Boeing and NASA teams work around Boeing’s CST-100 Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 serves as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Bill Ingalls)

The United Launch Alliance (ULA) Centaur stage for NASA’s Lucy mission is lifted by crane into the Vertical Integration Facility near Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida on Sept. 16, 2021. Lucy is scheduled to launch no earlier than Saturday, Oct. 16, on a ULA Atlas V 401 rocket from Pad 41. NASA’s Launch Services Program based at Kennedy Space Center is managing the launch. Over its 12-year primary mission, Lucy will explore a record-breaking number of asteroids, flying by one asteroid in the solar system’s main belt and seven Trojan asteroids. Additionally, Lucy’s path will circle back to Earth three times for gravity assists, making it the first spacecraft ever to return to the vicinity of Earth from the outer solar system. Photo credit: NASA/Kim Shiflett

NASA image use policy.

 

White Sands Missile Range Fire Department team members listen to a prelanding briefing as they, NASA, and Boeing teams prepare for the landing of Boeing’s CST-100 Starliner spacecraft at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 serves as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Bill Ingalls)

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The ZSU-37-6 (“ZSU” stands for Zenitnaya Samokhodnaya Ustanovka / Зенитная Самоходная Установка = "anti-aircraft self-propelled mount"), also known as Object 511 during its development phase and later also as “ZSU-37-6 / Лена”, was a prototype for a lightly armored Soviet self-propelled, radar guided anti-aircraft weapon system that was to replace the cannon-armed ZSU-23-4 “Shilka” SPAAG.

The development of the "Shilka" began in 1957 and the vehicle was brought into service in 1965. The ZSU-23-4 was intended for AA defense of military facilities, troops, and mechanized columns on the march. The ZSU-23-4 combined a proven radar system, the non-amphibious chassis based on the GM-575 tracked vehicle, and four 23 mm autocannons. This delivered a highly effective combination of mobility with heavy firepower and considerable accuracy, outclassing all NATO anti-aircraft guns at the time. The system was widely fielded throughout the Warsaw Pact and among other pro-Soviet states. Around 2,500 ZSU-23-4s, of the total 6,500 produced, were exported to 23 countries.

 

The development of a potential successor started in 1970. At the request of the Soviet Ministry of Defense, the KBP Instrument Design Bureau in Tula started work on a new mobile anti-aircraft system as a replacement for the 23mm ZSU-23-4. The project was undertaken to improve on the observed shortcomings of the ZSU-23-4 (short range and no early warning) and to counter new ground attack aircraft in development, such as the A-10 Thunderbolt II, which was designed to be highly resistant to 23 mm cannons.

 

KBP studies demonstrated that a cannon of at least 30 mm caliber was necessary to counter these threats, and that a bigger caliber weapon would offer some more benefits. Firstly, to destroy a given target, such a weapon would only require from a third to a half of the number of shells that the ZSU-23-4’s 23 mm cannon would need. Secondly, comparison tests revealed that firing with an identical mass of 30 mm projectiles instead of 23 mm ammunition at a MiG-17 (or similarly at NATO's Hawker Hunter or Fiat G.91…) flying at 300 m/s would result in a 1.5 times greater kill probability. An increase in the maximum engagement altitude from 2,000 to 4,000 m and higher effectiveness when engaging lightly armored ground targets were also cited as potential benefits.

 

The initial requirements set for the new mobile weapon system were to achieve twice the performance in terms of the ZSU-23-4’s range, altitude and combat effectiveness. Additionally, the system should have a reaction time, from target acquisition to firing, no greater than 10 seconds, so that enemy helicopters that “popped up” from behind covers and launched fire-and-forget weapons at tanks or similar targets could be engaged effectively.

From these specifications KBP developed two schools of thought that proposed different concepts and respective vehicle prototypes: One design team followed the idea of an anti-aircraft complex with mixed cannon and missile armament, which made it effective against both low and high-flying targets but sacrificed short-range firepower. The alternative proposed by another team was a weapon carrier armed only with a heavy gatling-type gun, tailored to counter targets flying at low altitudes, esp. helicopters, filling a similar niche as the ZSU-23-4 and leaving medium to high altitude targets to specialized anti-aircraft missiles. The latter became soon known as “Object 511”.

 

Object 511 was based on the tracked and only lightly armored GM-577 chassis, produced by Minsk Tractor Works (MTZ). It featured six road wheels on each side, a drive sprocket at the rear and three return rollers. The chassis was primarily chosen because it was already in use for other anti-aircraft systems like the 2K11 “Krug” complex and could be taken more or less “off the rack”. A new feature was a hydropneumatic suspension, which was chosen in order to stabilize the chassis as firing platform and also to cope with the considerably higher all-up weight of the vehicle (27 tons vs. the ZSU-23-4’s 19 tons). Other standard equipment of Object 511 included heating, ventilation, navigational equipment, night vision aids, a 1V116 intercom and an external communications system with an R-173 receiver.

 

The hull was - as the entire vehicle - protected from small arms fire (7,62mm) and shell splinters, but not heavily armored. An NBC protection system was integrated into the chassis, as well as an automatic fire suppression system and an automatic gear change. The main engine bay, initially with a 2V-06-2 water-cooled multi-fuel diesel engine with 450 hp (331 kW) was in the rear. It was later replaced by a more powerful variant of the same engine with 510 hp (380 kW).

The driver sat in the front on the left side, with a small gas turbine APU to his right to operate the radar and hydraulic systems independently from the main engine.

Between these hull segments, the chassis carried a horseshoe-shaped turret with full 360° rotation. It was relatively large and covered more than the half of the hull’s roof, because it held the SPAAGs main armament and ammunition supply, the search and tracking radar equipment as well as a crew of two: the commander with a cupola on the right side and the gunner/radar operator on the left side, with the cannon installation and its feeding system between them. In fact, it was so large that Object 511’s engine bay was only accessible when the turret was rotated 90° to the side – unacceptable for an in-service vehicle (which would probably have been based on a bigger chassis), but accepted for the prototype which was rather focused on the turret and its complex weapon and radar systems.

 

Object 511’s centerpiece was the newly-developed Gryazev-Shipunov GSh-6-37 cannon, a heavy and experimental six-barreled 37mm gatling gun. This air-cooled weapon with electrical ignition was an upscaled version of the naval AO-18 30mm gun, which was part of an automated air defense system for ships, the AK-630 CIWS complex. Unlike most modern American rotary cannons, the GSh-6-37 was gas-operated rather than hydraulically driven, allowing it to "spin up" to maximum rate of fire more quickly. This resulted in more rounds and therefore weight of fire to be placed on target in a short burst, reduced reaction time and allowed hits even in a very small enemy engagement window.

 

The GSh-6-37 itself weighed around 524 kg (1.154 lb), the whole system, including the feed system and a full magazine, weighed 7,493 pounds (3,401 kg). The weapon had a total length of 5.01 m (16’ 7“), its barrels were 2.81 m (9’ 2½”) long. In Object 511’s turret it had an elevation between +80° and -11°, moving at 60°/sec, and a full turret rotation only took 3 seconds. Rate of fire was 4,500 rounds per minute, even though up to 5.500 RPM were theoretically possible and could be cleared with an emergency setting. However, the weapon would typically only fire short bursts of roundabout 50 rounds each, or longer bursts of 1-2 (maximum) seconds to save ammunition and to avoid overheating and damage – initially only to the barrels, but later also to avoid collateral damage from weapon operation itself (see below). Against ground targets and for prolonged, safe fire, the rate of fire could alternatively be limited to 150 RPM.

The GSh-6-37 fired 1.09 kg shells (each 338mm long) at 1,070 m/s (3.500 ft/s), developing a muzzle energy of 624,000 joules. This resulted in an effective range of 6,000 m (19.650 ft) against aerial and 7,000 m (23.0000 ft) against ground targets. Maximum firing range was past 7,160 m (23,490 ft), with the projectiles self-destructing beyond that distance. In a 1 sec. burst, the weapon delivered an impressive weight of fire of almost 100 kg.

The GSh-6-37 was belt-fed, with a closed-circuit magazine to avoid spilling casings all around and hurting friendly troops in the SPAAG’s vicinity. Typical types of ammunition were OFZT (proximity-fused incendiary fragmentation) and BZT (armor-piercing tracer, able to penetrate more than 60 mm of 30° sloped steel armor at 1.000 m/3.275’ distance). Since there was only a single ammunition supply that could not be switched, these rounds were normally loaded in 3:1 ratio—three OFZT, then one BZT, every 10th BZT round marked with a tracer. Especially the fragmentation rounds dealt extensive collateral damage, as the sheer numbers of fragments from detonating shells was sufficient to damage aircraft flying within a 200-meter radius from the impact center. This, coupled with the high density of fire, created a very effective obstacle for aerial targets and ensured a high hit probability even upon a casual and hurried attack.

 

The gun was placed in the turret front’s center, held by a massive mount with hydraulic dampers. The internal ammunition supply in the back of the turret comprised a total of 1.600 rounds, but an additional 800 rounds could be added in an external reserve feed bin, attached to the back of the turret and connected to the internal belt magazine loop through a pair of ports in the turret’s rear, normally used to reload the GSh-6-37.

 

A rotating, electronically scanned E-band (10 kW power) target acquisition radar array was mounted on the rear top of the turret that, when combined with the turret front mounted J-band (150 kW power) mono-pulse tracking radar, its dish antenna hidden under a fiberglass fairing to the right of the main weapon, formed the 1RL144 (NATO: Hot Shot) pulse-Doppler 3D radar system. Alongside, the 1A26 digital computer, a laser rangefinder co-axial to the GSh-6-37, and the 1G30 angle measurement system formed the 1A27 targeting complex.

Object 511’s target acquisition offered a 360-degree field of view, a detection range of around 18 km and could detect targets flying as low as 15 m. The array could be folded down and stowed when in transit, lying flat on the turret’s roof. The tracking radar had a range of 16 km, and a C/D-band IFF system was also fitted. The radar system was highly protected against various types of interference and was able to work properly even if there were mountains on the horizon, regardless of the background. The system made it possible to fire the GSh-6-37 on the move, against targets with a maximum target speed of up to 500 m/s, and it had an impressive reaction time of only 6-8 seconds.

Thanks to its computerized fire control system, the 1A27 was highly automated and reduced the SPAAG’s crew to only three men, making a dedicated radar operator (as on the ZSU-23-4) superfluous and saving internal space in the large but still rather cramped turret.

 

Development of Object 511 and its systems were kicked-off in 1972 but immediately slowed down with the introduction of the 9K33 “Osa” missile system, which seemed to fill the same requirement but with greater missile performance. However, after some considerable debate it was felt that a purely missile-based system would not be as effective at dealing with very low flying attack helicopters attacking at short range with no warning, as had been proven so successful in the 1973 Arab-Israeli War. Since the reaction time of a gun system was around 8–10 seconds, compared to approximately 30 seconds for a missile-based system, development of Object 511 was restarted in 1973.

 

A fully functional prototype, now officially dubbed “ZSU-37-6“ to reflect its role and armament and christened “Лена” (Lena, after the Russian river in Siberia), was completed in 1975 at the Ulyanovsk Mechanical Factory, but it took until 1976 that the capricious weapon and the 1A27 radar system had been successfully integrated and made work. System testing and trials were conducted between September 1977 and December 1978 on the Donguzskiy range, where the vehicle was detected by American spy satellites and erroneously identified as a self-propelled artillery system with a fully rotating turret (similar to the American M109), as a potential successor for the SAU-122/2S1 Gvozdika or SAU-152/2S3 Akatsiya SPGs that had been introduced ten years earlier, with a lighter weapon of 100-120mm caliber and an autoloader in the large turret.

 

The tests at Donguzskiy yielded mixed results. While the 1A27 surveillance and acquisition radar complex turned out to be quite effective, the GSh-6-37 remained a constant source of problems. The gun was highly unreliable and afforded a high level of maintenance. Furthermore, it had a massive recoil of 6.250 kp/61 kN when fired (the American 30 mm GAU-8 Avenger “only” had a recoil of 4.082 kp/40 kN). As a result, targets acquired by the 1A27 system were frequently lost after a single burst of fire, so that they had to be tracked anew before the next shot could be placed.

To make matters even words, the GSh-6-37 was noted for its high and often uncomfortable vibration and extreme noise, internally and externally. Pressure shock waves from the gun muzzles made the presence of unprotected personnel in the weapon’s proximity hazardous. The GSh-6-37’s massive vibrations shook the whole vehicle and led to numerous radio and radar system failures, tearing or jamming of maintenance doors and access hatches and the cracking of optical sensors. The effects were so severe that the gun’s impact led after six months to fatigue cracks in the gun mount, the welded turret hull, fuel tanks and other systems. One spectacular and fateful showcase of the gun’s detrimental powers was a transmission failure during a field test/maneuver in summer 1978 – which unfortunately included top military brass spectators and other VIPs, who were consequently not convinced of the ZSU-37-6 and its weapon.

 

The GSh-6-37’s persisting vibration and recoil problems, as well as its general unreliability if it was not immaculately serviced, could not be satisfactorily overcome during the 2 years of state acceptance trials. Furthermore, the large and heavy turret severely hampered Object 511’s off-road performance and handling, due to the high center of gravity and the relatively small chassis, so that the weapon system’s full field potential could not be explored. Had it found its way into a serial production vehicle, it would certainly have been based on a bigger and heavier chassis, e.g. from an MBT. Other novel features tested with Object 511, e.g. the hydropneumatic suspension and the automated 1A27 fire control system, proved to be more successful.

 

However, the troublesome GSh-6-37 temporarily attained new interest in 1979 through the Soviet Union’s engagement in Afghanistan, because it became quickly clear that conventional battle tanks, with long-barreled, large caliber guns and a very limited lift angle were not suited against small targets in mountainous regions and for combat in confined areas like narrow valleys or settlements. The GSh-6-37 appeared as a promising alternative weapon, and plans were made to mount it in a more strongly armored turret onto a T-72 chassis. A wooden mockup turret was built, but the project was not proceeded further with. Nevertheless, the concept of an armored support vehicle with high firepower and alternative armament would persist and lead, in the course of the following years, to a number of prototypes that eventually spawned the BMPT "Terminator" Tank Support Fighting Vehicle.

 

More tests and attempts to cope with the gun mount continued on a limited basis through 1979, but in late 1980 trials and development of Object 511 and the GSh-6-37 were stopped altogether: the 2K22 “Tunguska” SPAAG with mixed armament, developed in parallel, was preferred and officially accepted into service. In its original form, the 2K22 was armed with four 9M311 (NATO: SA-19 “Grison”) short-range missiles in the ready-to-fire position and two 2A38 30mm autocannons, using the same 1A27 radar system as Object 511. The Tunguska entered into limited service from 1984, when the first batteries, now armed with eight missiles, were delivered to the army, and gradually replaced the ZSU-23-4.

 

Having become obsolete, the sole Object 511 prototype was retired in 1981 and mothballed. It is today part of the Military Technical Museum collection at Ivanovskaya, near Moscow, even though not part of the public exhibition and in a rather derelict state, waiting for restoration and eventual display.

  

Specifications:

Crew: Three (commander, gunner, driver)

Weight: about 26,000 kg (57,300 lb)

Length: 7.78 m (25 ft 5 1/2 in) with gun facing forward

6.55 m (21 ft 5 1/2 in) hull only

Width: 3.25 m (10 ft 8 in)

Height: 3.88 m (12 ft 9 in) overall,

2.66 m (8 8 1/2 ft) with search radar stowed

Suspension: Hydropneumatic

Ground clearance: 17–57 cm

Fuel capacity: 760 l (200 US gal, 170 imp gal)

 

Armor:

Unknown, but probably not more than 15 mm (0.6”)

 

Performance:

Speed: 65 km/h (40 mph) maximum on the road

Climbing ability: 0.7 m (2.3')

Maximum climb gradient: 30°

Trench crossing ability: 2.5 m (8.2')

Fording depth: 1.0 m (3.3')

Operational range: 500 km (310 mi)

Power/weight: 24 hp/t

 

Engine:

1× 2V-06-2S water-cooled multi-fuel diesel engine with 510 hp (380 kW)

1× auxiliary DGChM-1 single-shaft gas turbine engine with 70 hp at 6,000 rpm,

connected with a direct-current generator

 

Transmission:

Hydromechanical

 

Armament:

1× GSh-6-37 six-barreled 37mm (1.5 in) Gatling gun with 1.600 rounds,

plus 800 more in an optional, external auxiliary magazine

  

The kit and its assembly:

This fictional SPAAG was intended as a submission to the “Prototypes” group build at whatifmodellers.com in August 2020. Inspiration came from a Trumpeter 1:72 2P25/SA-6 launch platform which I had recently acquired with a kit lot – primarily because of the chassis, which would lend itself for a conversion into “something else”.

 

The idea to build an anti-aircraft tank with a gatling gun came when I did research for my recent YA-14 build and its armament. When checking the American GAU-8 cannon from the A-10 I found that there had been plans to use this weapon for a short-range SPAAG (as a replacement for the US Army’s M163), and there had been plans for even heavier weapons in this role. For instance, there had been the T249 “Vigilante” prototype: This experimental system consisted of a 37 mm T250 six-barrel Gatling gun, mounted on a lengthened M113 armored personnel carrier platform, even though with a very limited ammunition supply, good only for 5 sec. of fire – it was just a conceptual test bed. But: why not create a Soviet counterpart? Even more so, since there is/was the real-world GSh-6-30 gatling gun as a potential weapon, which had, beyond use in the MiG-27, also been used in naval defense systems. Why not use/create an uprated/bigger version, too?

 

From this idea, things evolved in a straightforward fashion. The Trumpeter 2P25 chassis and hull were basically taken OOB, just the front was modified for a single driver position. However, the upper hull had to be changed in order to accept the new, large turret instead of the triple SA-6 launch array.

 

The new turret is a parts combination: The basis comes from a Revell 1:72 M109 howitzer kit, the 155 mm barrel was replaced with a QuickBoost 1:48 resin GSh-6-30 gun for a MiG-27, and a co-axial laser rangefinder (a piece of styrene) was added on a separate mount. Unfortunately, the Revell kit does not feature a movable gun barrel, so I decided to implant a functional joint, so that the model’s weapon could be displayed in raised and low position – primarily for the “action pictures”. The mechanism was scratched from styrene tubes and a piece of foamed plastic as a “brake” that holds the weapon in place and blocks the view into the turret from the front when the weapon is raised high up. The hinge was placed behind the OOB gun mantle, which was cut into two pieces and now works as in real life.

Further mods include the dish antenna for the tracking radar (a former tank wheel), placed on a disc-shaped pedestal onto the turret front’s right side, and the retractable rotating search radar antenna, scratched from various bits and pieces and mounted onto the rear of the turret – its roof had to be cleaned up to make suitable space next to the commander’s cupola.

 

Another challenge was the adaptation of the new turret to the hull, because the original SA-6 launch array has only a relatively small turret ring, and it is placed relatively far ahead on the hull. The new, massive turret had to be mounted further backwards, and the raised engine cowling on the back of the hull did not make things easier.

As a consequence, I had to move the SA-6 launcher ring bearing backwards, through a major surgical intervention in the hull roof (a square section was cut out, shortened, reversed and glued back again into the opening). In order to save the M109’s turret ring for later, I gave it a completely new turret floor and transplanted the small adapter ring from the SA-6 launch array to it. Another problem arose from the bulged engine cover: it had to be replaced with something flat, otherwise the turret would not have fitted. I was lucky to find a suitable donor in the spares box, from a Leopard 1 kit. More complex mods than expected, and thankfully most of the uglier changes are hidden under the huge turret. However, Object 511 looks pretty conclusive and menacing with everything in place, and the weapon is now movable in two axis’. The only flaw is a relatively wide gap between the turret and the hull, due to a step between the combat and engine section and the relatively narrow turret ring.

  

Painting and markings:

AFAIK, most Soviet tank prototypes in the Seventies/Eighties received a simple, uniform olive green livery, but ,while authentic, I found this to look rather boring. Since my “Object 511” would have taken part in military maneuvers, I decided to give it an Eighties Soviet Army three-tone camouflage, which was introduced during the late Eighties. It consisted of a relatively bright olive green, a light and cold bluish grey and black-grey, applied in large patches.

This scheme was also adapted by the late GDR’s Volksarmee (called “Verzerrungsanstrich” = “Distortion scheme”) and maybe – even though I am not certain – this special paint scheme might only have been used by Soviet troops based on GDR soil? However, it’s pretty unique and looks good, so I adapted it for the model.

 

Based upon visual guesstimates from real life pictures and some background info concerning NVA tank paint schemes, the basic colors became Humbrol 86 (Light Olive Green; RAL 6003), Revell 57 (Grey; RAL 7000) and Revell 06 (Tar Black; RAL 9021). Each vehicle had an individual paint scheme, in this case it was based on a real world NVA lorry.

 

On top of the basic colors, a washing with a mix of red brown and black acrylic paint was applied, and immediately dried with a soft cotton cloth so that it only remained in recesses and around edges, simulating dirt and dust. Some additional post-shading with lighter/brighter versions of the basic tones followed.

Decals came next – the Red Stars were a rather dramatic addition and came from the Trumpeter kit’s OOB sheet. The white “511” code on the flanks was created with white 3 mm letters from TL Modellbau.

 

The model received a light overall dry brushing treatment with light grey (Revell 75). As a finishing touch I added some branches as additional camouflage. These are bits of dried moss (collected on the local street), colorized with simple watercolors and attached with white glue. Finally, everything was sealed and stabilized with a coat of acrylic matt varnish and some pigments (a greyish-brown mix of various artist mineral pigments) were dusted into the running gear and onto the lower hull surfaces with a soft brush.

  

An effective kitbashing, and while mounting the different turret to the hull looks simple, the integration of unrelated hull and turret so that they actually fit and “work” was a rather fiddly task, and it’s effectively not obvious at all (which is good but “hides” the labour pains related to the mods). However, the result looks IMHO good, like a beefed-up ZSU-23-4 “Schilka”, just what this fictional tank model is supposed to depict.

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard launches from Space Launch Complex 41, Thursday, May 19, 2022, at Cape Canaveral Space Force Station in Florida. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test and will dock to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 launched at 6:54 p.m. ET, and will serve as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Joel Kowsky)

Boeing and NASA teams work around Boeing’s CST-100 Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 serves as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Bill Ingalls)

Freshly restored former Maidstone Corporation Sunbeam trolleybus 72 (HKR11) was decked out in flags to celebrate the so-called Wedding of the Century, the marriage of HRH Prince Charles and Lady Diana Spencer. Amid much national rejoicing, the happy event duly took place a few days later. Sadly, we all know how that turned out.

 

The location is the Sandtoft Trolleybus Museum, a place of regular pilgrimage over several decades. Dating from 1947, HKR11 served the Kentish county town for 20 years until the trolleybus system’s demise in March 1967. It carries bodywork by Northern Coachbuilders.

 

July 1981

Yashica FR-1 camera

Agfa CT18 film.

This dramatic image features Hokusai in the foreground, famous for its extensive set of rays, some of which extend for over a thousand kilometers across Mercury's surface. The extensive, bright rays indicate that Hokusai is one of the youngest large craters on Mercury. Check out previously featured images to see high-resolution details of its central peaks, rim and ejecta blanket, and impact melt on its floor.

 

This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map was acquired with an average resolution of 200 meters/pixel.

 

The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015.

 

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

 

NASA image use policy.

 

NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.

 

Follow us on Twitter

 

Like us on Facebook

 

Find us on Instagram

Here's a look at our solar system's seventh planet out, as seen by Voyager 2 on Jan. 23,1986. This is a natural-color view oriented with the south pole just up and left of center.

 

Uranus is 51,118 km (31,763 miles) across—almost exactly four times larger than Earth. Around its core of water, methane, and ammonia ices is a thick atmosphere of hydrogen, helium, and methane, the latter of which gives it its pale blue color.

Workers inside the Astrotech Space Operations Facility in Titusville, Florida, monitor the progress as NASA’s Lucy spacecraft is lifted by crane for its transfer to a rotation stand on Aug. 4, 2021. Lucy is scheduled to launch no earlier than Saturday, Oct. 16, on a United Launch Alliance Atlas V 401 rocket from Launch Pad 41 at Cape Canaveral Space Force Station. NASA’s Launch Services Program based at Kennedy Space Center is managing the launch. Over its 12-year primary mission, Lucy will explore a record-breaking number of asteroids, flying by one asteroid in the solar system’s main belt and seven Trojan asteroids. Additionally, Lucy’s path will circle back to Earth three times for gravity assists, making it the first spacecraft ever to return to the vicinity of Earth from the outer solar system. Photo credit: NASA/Kim Shiflett

NASA image use policy.

 

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen on the launch pad at Space Launch Complex 41 ahead of the Orbital Flight Test mission, Thursday, Dec. 19, 2019, at Cape Canaveral Air Force Station in Florida. The uncrewed Orbital Flight Test will be Starliner’s maiden mission to the International Space Station for NASA's Commercial Crew Program. The mission, currently targeted for a 6:36 a.m. EST launch on Dec. 20, will serve as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Joel Kowsky)

Vermont Rail System's Trains Magazine Charter heads west up the Green Mountain mainline at Healdville on a sunny late-September afternoon in 2024. Leading the way to Rutland was GMRC 405, an ALCO RS1 originally built for the Rutland Railroad.

NASA Administrator Jim Bridenstine, NASA Deputy Administrator Jim Morhard, Kennedy Space Center Director Bob Cabana, and NASA Astronauts Josh Cassada and Suni Williams, who are assigned to Boeing’s first operation flight of Starliner, and NASA astronauts Nicole Mann, Michael Fincke, and Boeing astronaut Chris Ferguson, who are assigned to Boeing’s Crew Flight Test, are seen during a press conference ahead of the Boeing Orbital Flight Test mission, Thursday, Dec. 19, 2019 at NASA’s Kennedy Space Center in Florida. The uncrewed Orbital Flight Test will be Starliner’s maiden mission to the International Space Station for NASA's Commercial Crew Program. The mission, currently targeted for a 6:36 a.m. EST launch on Dec. 20, will serve as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Joel Kowsky)

Overseas from the conflict in Europe, America has been designing its own VCS units to support both its own military and to hopefully sell to the URE. The ALDIS (Armored Long-Distance Infantry Support) is the first system to go into full production. It is designed to support regular tanks and infantry from a distance, and can utilize its legs to reach previously treacherous strategic positions. Each ALDIS system is equipped with a light railgun, and a short-range missile launcher. Although not designed for close combat, the ALDIS has two light machine guns affixed to the underside of its "head." The head does not serve any purpose other than carrying the guns, as it is a residual relic from the system's initial design phase. Most of the ALDIS's sensors are built into the main body, and it uses a back mounted non-combustible high-capacity battery pack for power. Each ALDIS system has one human pilot, but similar to the URE's Hornet, have a basic AI system which puts them into an "overwatch" mode. ALDIS systems have been deployed to great success, and currently have a very low pilot death count.

 

This started out as a Power-Miners inspired humanoid mech, but I didn't like how the legs clashed with the rest of it so I made something new out of them. This was a pretty fun build, I might do more like this in the future.

The Space Launch System’s booster is seen a few hours ahead of the second and final qualification motor (QM-2) test, Tuesday, June 28, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. During the Space Launch System flight the boosters will provide more than 75 percent of the thrust needed to escape the gravitational pull of the Earth, the first step on NASA’s Journey to Mars. Photo Credit: (NASA/Bill Ingalls)

M/V Stewart J. Cort was the first 1000-foot vessel on the Great Lakes when she entered service for Bethlehem Steel Corporation in 1972. Her bow and stern sections, built by Ingalls Shipbuilding, Pascagoula, Mississippi, were joined together and called “Stubby” for the trip to the Great Lakes. At Erie Marine, Erie, Pennsylvania, “Stubby” was cut apart and joined with the midbody built there. The Cort is the only 1000-footer with pilot house forward. All crew accommodations are also forward. Her self-unloading system’s shuttle boom is contained within the after cabin structure. Interlake Leasing III secured the bareboat charter of the Cort in 2005.

In 1990, Santa Fe, prior to the merger with Burlington Northern, placed in service a large number of GP60Ms, painted them in the famous "Warbonnet" passenger train livery, and operated them on the system's hottest trains, such as 199 (Chicago-Richmond UPS trailers). 125 leads a quartet of GP60Ms over Tehachapi Loop, CA. August 15, 1990. © 2014 Peter Ehrlich

After the disaster that was the Grouse I, the URE commissioned EP Industries to design a new system instead of relying on their in-house production and design crews. Using modified plans for the Grouse, EP Industries crafted the Grouse II, a far superior version. The system's limbs remain very similar to the original's, but the torso was completely reworked. In addition, the head was outfitted with better armor and sensor systems, bringing it up to date with the Greco-Roman's Gladius systems. Small changes to the Grouse II's armor and mechanics have made it more agile and sturdy than ever before.

 

Even though the orbital defense force is still made primarily of modified Grouse I's, the Grouse II can be outfitted with a variant version of the original jetpack, allowing for atmospheric and sub-orbital flight.

 

A little display I built for the Grouse II. Nothing much else to say.

 

Likes and comments are highly appreciated. Thanks for viewing!

How I yearn for another cometary visitation! Considering that this was essentially a dirty snowball from the dawn of creation, in the process of being sublimated by tenuous solar radiation at a distance of some 140 million miles from our daystar, this visitor was certainly posessed of rapturous beauty! Another half decent photo of Comet Hale-Bopp, 1997, which I never got around to digitizing before.

I recall shooting this with an amazingly short exposure of 4 or 5 seconds with Konica's wonderful and sadly long extinct ISO 3200 Astro Print film. Spring of '97 was a time of extremely active auroras, and it was rare that I could shoot the comet without also picking up the emerald hue of the Northern Lights.

Our little gem of a solar system is coccooned in a cloud of millions of these remnant snowballs, orbiting silently in the frozen darkness far beyond Pluto ... As our arm of the Milky Way pinwheels around the galactic center, we can only hope that the passing gravitational field of a neighboring sun will soon perturb another of these into a plunge towards our stellar system's inner precincts ....

Taken w/ Kiev 19 35mm SLR & 24mm f2.8 Vivitar lens.

CSXT 1972 has arrived in Chicagoland as the leader of M512 from Nashville to the BRC. Here, the locomotive proudly displays its "Family Lines System" livery - the number 1972 representing the year of the system's formation - as it gets signals through Steger, IL to approach the diamond crossing with CN at Chicago Heights.

NASA and Boeing teams prepare for the landing of Boeing’s CST-100 Starliner spacecraft at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 serves as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Bill Ingalls)

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen as it is rollout out of the Vertical Integration Facility to the launch pad at Space Launch Complex 41 ahead of the Orbital Flight Test mission, Wednesday, Dec. 18, 2019 at Cape Canaveral Air Force Station in Florida. The Orbital Flight Test with be Starliner’s maiden mission to the International Space Station for NASA's Commercial Crew Program. The mission, currently targeted for a 6:36 a.m. EST launch on Dec. 20, will serve as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Joel Kowsky)

The geothermal areas of Yellowstone include several geyser basins in Yellowstone National Park as well as other geothermal features such as hot springs, mud pots, and fumaroles. The number of thermal features in Yellowstone is estimated at 10,000. A study that was completed in 2011 found that a total of 1,283 geysers have erupted in Yellowstone, 465 of which are active during an average year. These are distributed among nine geyser basins, with a few geysers found in smaller thermal areas throughout the Park. The number of geysers in each geyser basin are as follows: Upper Geyser Basin (410), Midway Geyser Basin (59), Lower Geyser Basin (283), Norris Geyser Basin (193), West Thumb Geyser Basin (84), Gibbon Geyser Basin (24), Lone Star Geyser Basin (21), Shoshone Geyser Basin (107), Heart Lake Geyser Basin (69), other areas (33). Although famous large geysers like Old Faithful are part of the total, most of Yellowstone's geysers are small, erupting to only a foot or two. The hydrothermal system that supplies the geysers with hot water sits within an ancient active caldera. Many of the thermal features in Yellowstone build up sinter, geyserite, or travertine deposits around and within them.

 

The various geyser basins are located where rainwater and snowmelt can percolate into the ground, get indirectly superheated by the underlying Yellowstone hotspot, and then erupt at the surface as geysers, hot springs, and fumaroles. Thus flat-bottomed valleys between ancient lava flows and glacial moraines are where most of the large geothermal areas are located. Smaller geothermal areas can be found where fault lines reach the surface, in places along the circular fracture zone around the caldera, and at the base of slopes that collect excess groundwater. Due to the Yellowstone Plateau's high elevation the average boiling temperature at Yellowstone's geyser basins is 199 °F (93 °C). When properly confined and close to the surface it can periodically release some of the built-up pressure in eruptions of hot water and steam that can reach up to 390 feet (120 m) into the air (see Steamboat Geyser, the world's tallest geyser). Water erupting from Yellowstone's geysers is superheated above that boiling point to an average of 204 °F (95.5 °C) as it leaves the vent. The water cools significantly while airborne and is no longer scalding hot by the time it strikes the ground, nearby boardwalks, or even spectators. Because of the high temperatures of the water in the features it is important that spectators remain on the boardwalks and designated trails. Several deaths have occurred in the park as a result of falls into hot springs.

 

Prehistoric Native American artifacts have been found at Mammoth Hot Springs and other geothermal areas in Yellowstone. Some accounts state that the early people used hot water from the geothermal features for bathing and cooking. In the 19th century Father Pierre-Jean De Smet reported that natives he interviewed thought that geyser eruptions were "the result of combat between the infernal spirits". The Lewis and Clark Expedition traveled north of the Yellowstone area in 1806. Local natives that they came upon seldom dared to enter what we now know is the caldera because of frequent loud noises that sounded like thunder and the belief that the spirits that possessed the area did not like human intrusion into their realm. The first white man known to travel into the caldera and see the geothermal features was John Colter, who had left the Lewis and Clark Expedition. He described what he saw as "hot spring brimstone". Beaver trapper Joseph Meek recounted in 1830 that the steam rising from the various geyser basins reminded him of smoke coming from industrial smokestacks on a cold winter morning in Pittsburgh, Pennsylvania. In the 1850s famed trapper Jim Bridger called it "the place where Hell bubbled up".

 

The heat that drives geothermal activity in the Yellowstone area comes from brine (salty water) that is 1.5–3 miles (7,900–15,800 ft; 2,400–4,800 m) below the surface. This is actually below the solid volcanic rock and sediment that extends to a depth of 3,000 to 6,000 feet (900 to 1,800 m) and is inside the hot but mostly solid part of the pluton that contains Yellowstone's magma chamber. At that depth the brine is superheated to temperatures that exceed 400 °F (204 °C) but is able to remain a liquid because it is under great pressure (like a huge pressure cooker).

 

Convection of the churning brine and conduction from surrounding rock transfers heat to an overlaying layer of fresh groundwater. Movement of the two liquids is facilitated by the highly fractured and porous nature of the rocks under the Yellowstone Plateau. Some silica is dissolved from the fractured rhyolite into the hot water as it travels through the fractured rock. Part of this hard mineral is later redeposited on the walls of the cracks and fissures to make a nearly pressure-tight system. Silica precipitates at the surface to form either geyserite or sinter, creating the massive geyser cones, the scalloped edges of hot springs, and the seemingly barren landscape of geyser basins.

 

There are at least five types of geothermal features found at Yellowstone:

 

Fumaroles: Fumaroles, or steam vents, are the hottest hydrothermal features in the park. They have so little water that it all flashes into steam before reaching the surface. At places like Roaring Mountain, the result is loud hissing of steam and gases.

Geysers: Geysers such as Old Faithful are a type of geothermal feature that periodically erupt scalding hot water. Increased pressure exerted by the enormous weight of the overlying rock and water prevents deeper water from boiling. As the hot water rises it is under less pressure and steam bubbles form. They, in turn, expand on their ascent until the bubbles are too big and numerous to pass freely through constrictions. At a critical point the confined bubbles actually lift the water above, causing the geyser to splash or overflow. This decreases the pressure of the system and violent boiling results. Large quantities of water flash into tremendous amounts of steam that force a jet of water out of the vent: an eruption begins. Water (and heat) is expelled faster than the geyser's recharge rate, gradually decreasing the system's pressure and eventually ending the eruption.

Hot springs: Hot springs such as Grand Prismatic Spring are the most common hydrothermal features in the park. Their plumbing has no constrictions. Superheated water cools as it reaches the surface, sinks, and is replaced by hotter water from below. This circulation, called convection, prevents water from reaching the temperature needed to set off an eruption. Many hot springs give rise to streams of heated water.

Mudpots: Mudpots such as Fountain Paint Pots are acidic hot springs with a limited water supply. Some microorganisms use hydrogen sulfide (rotten egg smell), which rises from deep within the earth, as an energy source. They convert the gas into sulfuric acid, which breaks down rock into clay.

Travertine terraces: Travertine terraces, found at Mammoth Hot Springs, are formed from limestone (a rock type made of calcium carbonate). Thermal waters rise through the limestone, carrying high amounts of dissolved carbonate. Carbon dioxide is released at the surface and calcium carbonate deposited as travertine, the chalky white rock of the terraces. These features constantly and quickly change due to the rapid rate of deposition.

Geyser basins

 

The Norris Geyser Basin 44°43′43″N 110°42′16″W is the hottest geyser basin in the park and is located near the northwest edge of Yellowstone Caldera near Norris Junction and on the intersection of three major faults. The Norris-Mammoth Corridor is a fault that runs from Norris north through Mammoth to the Gardiner, Montana, area. The Hebgen Lake fault runs from northwest of West Yellowstone, Montana, to Norris. This fault experienced an earthquake in 1959 that measured 7.4 on the Richter scale (sources vary on exact magnitude between 7.1 and 7.8; see 1959 Hebgen Lake earthquake). Norris Geyser Basin is so hot and dynamic because these two faults intersect with the ring fracture zone that resulted from the creation of the Yellowstone Caldera of 640,000 years ago.

 

The Basin consists of three main areas: Porcelain Basin, Back Basin, and One Hundred Springs Plain. Unlike most of other geyser basins in the park, the waters from Norris are acidic rather than alkaline (for example, Echinus Geyser has a pH of ~3.5). The difference in pH allows for a different class of bacterial thermophiles to live at Norris, creating different color patterns in and around the Norris Basin waters.

 

The Ragged Hills that lie between Back Basin and One Hundred Springs Plain are thermally altered glacial kames. As glaciers receded the underlying thermal features began to express themselves once again, melting remnants of the ice and causing masses of debris to be dumped. These debris piles were then altered by steam and hot water flowing through them. Madison lies within the eroded stream channels cut through lava flows formed after the caldera eruption. The Gibbon Falls lies on the caldera boundary as does Virginia Cascades.

 

Algae on left bacteria on right at the intersection of flows from the Constant & Whirlgig Geysers at Norris Geyser Basin

The tallest active geyser in the world, Steamboat Geyser,[11] is located in Norris Basin. Unlike the slightly smaller but much more famous Old Faithful Geyser located in Upper Geyser Basin, Steamboat has an erratic and lengthy timetable between major eruptions. During major eruptions, which may be separated by intervals of more than a year (the longest recorded span between major eruptions was 50 years), Steamboat erupts over 300 feet (90 m) into the air. Steamboat does not lie dormant between eruptions, instead displaying minor eruptions of approximately 40 feet (12 m).

 

Norris Geyser Basin periodically undergoes a large-scale, basin-wide thermal disturbance lasting a few weeks. Water levels fluctuate, and temperatures, pH, colors, and eruptive patterns change throughout the basin. During a disturbance in 1985, Porkchop Geyser continually jetted steam and water; in 1989, the same geyser apparently clogged with silica and blew up, throwing rocks more than 200 feet (61 m). In 2003 a park ranger observed it bubbling heavily, the first such activity seen since 1991. Activity increased dramatically in mid-2003. Because of high ground temperatures and new features beside the trail much of Back Basin was closed until October. In 2004 the boardwalk was routed around the dangerous area and now leads behind Porkchop Geyser.

 

North of Norris, Roaring Mountain is a large, acidic hydrothermal area (solfatara) with many fumaroles. In the late 19th and early 20th centuries, the number, size, and power of the fumaroles were much greater than today. The fumaroles are most easily seen in the cooler, low-light conditions of morning and evening.

 

The Gibbon Geyser Basin 44°41′58″N 110°44′34″W includes several thermal areas in the vicinity of the Gibbon River between Gibbon Falls and Norris. The most accessible feature in the basin is Beryl Spring, with a small boardwalk right along the Grand Loop Road. Artists' Paintpots is a small hydrothermal area south of Norris Junction that includes colorful hot springs and two large mudpots.

 

The Monument Geyser Basin 44°41′03″N 110°45′14″W has no active geysers, but its 'monuments' are siliceous sinter deposits similar to the siliceous spires discovered on the floor of Yellowstone Lake. Scientists hypothesize that this basin's structures formed from a hot water system in a glacially dammed lake during the waning stages of the Pinedale Glaciation. The basin is on a ridge reached by a very steep one-mile (1.6 km) trail south of Artists' Paint Pots. Other areas of thermal activity in Gibbon Geyser Basin lie off-trail.

 

South of Norris along the rim of the caldera is the Upper Geyser Basin 44°27′52″N 110°49′45″W, which has the highest concentration of geothermal features in the park. This complement of features includes the most famous geyser in the park, Old Faithful Geyser, as well as four other predictable large geysers. One of these large geysers in the area is Castle Geyser which is about 1,400 feet (430 m) northwest of Old Faithful. Castle Geyser has an interval of approximately 13 hours between major eruptions, but is unpredictable after minor eruptions. The other three predictable geysers are Grand Geyser, Daisy Geyser, and Riverside Geyser. Biscuit Basin and Black Sand Basin are also within the boundaries of Upper Geyser Basin.

 

The hills surrounding Old Faithful and the Upper Geyser Basin are reminders of Quaternary rhyolitic lava flows. These flows, occurring long after the catastrophic eruption of 640,000 years ago, flowed across the landscape like stiff mounds of bread dough due to their high silica content.

 

Evidence of glacial activity is common, and it is one of the keys that allows geysers to exist. Glacier till deposits underlie the geyser basins providing storage areas for the water used in eruptions. Many landforms, such as Porcupine Hills north of Fountain Flats, are made up of glacial gravel and are reminders that 70,000 to 14,000 years ago, this area was buried under ice.

 

Signs of the forces of erosion can be seen everywhere, from runoff channels carved across the sinter in the geyser basins to the drainage created by the Firehole River. Mountain building is evident on the drive south of Old Faithful, toward Craig Pass. Here the Rocky Mountains reach a height of 8,262 feet (2,518 m), dividing the country into two distinct watersheds.

 

Midway Geyser Basin 44°31′04″N 110°49′56″W is much smaller than the other basins found alongside the Firehole River. Despite its small size, it contains two large features, the 200-by-300-foot-wide (60 by 90 m) Excelsior Geyser which pours over 4,000 U.S. gallons (15,000 L; 3,300 imp gal) per minute into the Firehole River. The largest hot spring in Yellowstone, the 370-foot-wide (110 m) and 121-foot-deep (37 m) Grand Prismatic Spring is found here. Also in the basin is Turquoise Pool and Opal Pool.

 

Lower Geyser Basin

Blue spring with steam rising from it; irregular blotches of red and orange residue are on the banks, along with dead tree trunks.

Silex Spring at Fountain Paint Pot

 

Farther north is the Lower Geyser Basin 44°32′58″N 110°50′09″W, which is the largest geyser basin in area, covering approximately 11 square miles. Due to its large size, it has a much less concentrated set of geothermal features, including Fountain Paint Pots. Fountain Paint Pots are mud pots, that is, a hot spring that contains boiling mud instead of water. The mud is produced by a higher acidity in the water which enables the spring to dissolve surrounding minerals to create an opaque, usually grey, mud. Also there is Firehole Spring, Celestine Pool, Leather Pool, Red Spouter, Jelly spring, and a number of fumaroles.

 

Geysers in Lower Geyser Basin include Great Fountain Geyser, whose eruptions reach 100 to 200 feet (30–61 m) in the air, while waves of water cascade down its sinter terraces., the Fountain group of Geysers (Clepsydra Geyser which erupts nearly continuously to heights of 45 feet (14 m), Fountain Geyser, Jelly Geyser, Jet Geyser, Morning Geyser, and Spasm Geyser), the Pink Cone group of geysers (Dilemma Geyser, Labial Geyser, Narcissus Geyser, Pink Geyser, and Pink Cone Geyser), the White Dome group of geysers (Crack Geyser, Gemini Geyser, Pebble Geyser, Rejuvenated Geyser, and White Dome Geyser), as well as Sizzler Geyser.

 

Clepsydra Geyser erupting. July 2019

Fountain Paint Pots

White Dome Geyser

West Thumb Geyser Basin

Several pools of blue water in ashen rock basin.

West Thumb Geyser Basin

Blackened basin with orange streaks; steam is rising from it with fir trees in the background.

Overflow areas of Silex springs

 

The West Thumb Geyser Basin 44°25′07″N 110°34′23″W, including Potts Basin to the north, is the largest geyser basin on the shores of Yellowstone Lake. The heat source of the thermal features in this location is thought to be relatively close to the surface, only 10,000 feet (3,000 m) down. West Thumb is about the same size as another famous volcanic caldera, Crater Lake in Oregon, but much smaller than the great Yellowstone Caldera which last erupted about 640,000 years ago. West Thumb is a caldera within a caldera.

 

West Thumb was created approximately 162,000 years ago when a magma chamber bulged up under the surface of the earth and subsequently cracked it along ring fracture zones. This in turn released the enclosed magma as lava and caused the surface above the emptied magma chamber to collapse. Water later filled the collapsed area of the caldera, forming an extension of Yellowstone Lake. This created the source of heat and water that feed the West Thumb Geyser Basin today.

 

The thermal features at West Thumb are not only found on the lake shore, but extend under the surface of the lake as well. Several underwater hydrothermal features were discovered in the early 1990s and can be seen as slick spots or slight bulges in the summer. During the winter, the underwater thermal features are visible as melt holes in the icy surface of the lake. The surrounding ice can reach three feet (one yard) in thickness.

 

Perhaps the most famous hydrothermal feature at West Thumb is a geyser on the lake shore known as Fishing Cone. Walter Trumbull of the 1870 Washburn-Langford-Doane Expedition described a unique event while a man was fishing adjacent to the cone: "...in swinging a trout ashore, it accidentally got off the hook and fell into the spring. For a moment it darted about with wonderful rapidity, as if seeking an outlet. Then it came to the top, dead, and literally boiled." Fishing Cone erupted frequently to the height of 40 feet (12 m) in 1919 and to lesser heights in 1939. One fisherman was badly burned in Fishing Cone in 1921. Fishing at the geyser is now prohibited.

 

Early visitors would arrive at West Thumb via stagecoach from the Old Faithful area. They had a choice of continuing on the stagecoach or boarding the steamship Zillah to continue the journey by water to Lake Hotel. The boat dock was located near the south end of the geyser basin near Lakeside Spring.

 

Backcountry Geyser Basins

The Heart Lake 44°18′00″N 110°30′56″W, Lone Star 44°24′50″N 110°49′04″W, and Shoshone Geyser Basins 44°21′16″N 110°47′57″W are located away from the road and require at least several miles of hiking to reach. These areas lack the boardwalks and other safety features of the developed areas. As falling into geothermal features can be fatal, it is usually advisable to visit these areas with an experienced guide or at the very least, travelers need to ensure they remain on well-marked trails.

 

The Heart Lake Geyser Basin contains several groups of geysers and deep blue hot springs near Heart Lake in the south-central portion of Yellowstone, southeast of most of the main geyser basins. Lying in the Snake River watershed east of Lewis Lake and south of Yellowstone Lake, Heart Lake was named sometime before 1871 for Hart Hunney, a hunter. Other explorers in the region incorrectly assumed that the lake's name was spelled 'heart' because of its shape. The Heart Lake Geyser Basin begins a couple miles from the lake and descends along Witch Creek to the lakeshore. Five groups of hydrothermal features comprise the basin, and all of them contain geysers, although some are dormant.

 

Between Shoshone Lake and Old Faithful is the Lone Star Geyser Basin, of which the primary feature is Lone Star Geyser, named for its isolation from the nearby geysers of the Upper Geyser Basin. The basin is reachable on foot or bicycle via a 3 mile road that is closed to vehicles.

 

The Shoshone Geyser Basin, reached by hiking or by boat, contains one of the highest concentrations of geysers in the world – more than 80 in an area 1,600 by 800 feet (490 by 240 m). Hot springs and mudpots dot the landscape between the geyser basin and Shoshone Lake.

 

Hot Spring Basin is located 15 miles (24 km) north-northeast of Fishing Bridge and has one of Yellowstone's largest collections of hot springs and fumaroles. The geothermal features there release large amounts of sulfur. This makes water from the springs so acidic that it has dissolved holes in the pants of people who sit on wet ground and causes mounds of sulfur three feet (1 m) high to develop around fumaroles. The very hot acidic water and steam have also created voids in the ground that are only covered by a thin crust.

 

Mammoth Hot Springs is a large complex of hot springs on a hill of travertine in Yellowstone National Park adjacent to Fort Yellowstone and the Mammoth Hot Springs Historic District. It was created over thousands of years as hot water from the spring cooled and deposited calcium carbonate (over two tons flow into Mammoth each day in a solution). Because of the huge amount of geothermal vents, travertine flourishes. Although these springs lie outside the caldera boundary, their energy has been attributed to the same magmatic system that fuels other Yellowstone geothermal areas.

 

The thermal features at Mud Volcano and Sulphur Caldron are primarily mud pots and fumaroles because the area is situated on a perched water system with little water available. Fumaroles or "steam vents" occur when the ground water boils away faster than it can be recharged. Also, the vapors are rich in sulfuric acid that leaches the rock, breaking it down into clay. Because no water washes away the acid or leached rock, it remains as sticky clay to form a mud pot. Hydrogen sulfide gas is present deep in the earth at Mud Volcano and is oxidized to sulfuric acid by microbial activity, which dissolves the surface soils to create pools and cones of clay and mud. Along with hydrogen sulfide, steam, carbon dioxide, and other gases explode through the layers of mud.

 

A series of shallow earthquakes associated with the volcanic activity in Yellowstone struck this area in 1978. Soil temperatures increased to nearly 200 °F (93 °C). The slope between Sizzling Basin and Mud Geyser, once covered with green grass and trees, became a barren landscape of fallen trees known as "the cooking hillside".

 

Yellowstone National Park is a national park located in the western United States, largely in the northwest corner of Wyoming and extending into Montana and Idaho. It was established by the 42nd U.S. Congress with the Yellowstone National Park Protection Act and signed into law by President Ulysses S. Grant on March 1, 1872. Yellowstone was the first national park in the U.S. and is also widely held to be the first national park in the world. The park is known for its wildlife and its many geothermal features, especially the Old Faithful geyser, one of its most popular. While it represents many types of biomes, the subalpine forest is the most abundant. It is part of the South Central Rockies forests ecoregion.

 

While Native Americans have lived in the Yellowstone region for at least 11,000 years, aside from visits by mountain men during the early-to-mid-19th century, organized exploration did not begin until the late 1860s. Management and control of the park originally fell under the jurisdiction of the U.S. Department of the Interior, the first Secretary of the Interior to supervise the park being Columbus Delano. However, the U.S. Army was eventually commissioned to oversee the management of Yellowstone for 30 years between 1886 and 1916. In 1917, the administration of the park was transferred to the National Park Service, which had been created the previous year. Hundreds of structures have been built and are protected for their architectural and historical significance, and researchers have examined more than a thousand archaeological sites.

 

Yellowstone National Park spans an area of 3,468.4 sq mi (8,983 km2), comprising lakes, canyons, rivers, and mountain ranges. Yellowstone Lake is one of the largest high-elevation lakes in North America and is centered over the Yellowstone Caldera, the largest super volcano on the continent. The caldera is considered a dormant volcano. It has erupted with tremendous force several times in the last two million years. Well over half of the world's geysers and hydrothermal features are in Yellowstone, fueled by this ongoing volcanism. Lava flows and rocks from volcanic eruptions cover most of the land area of Yellowstone. The park is the centerpiece of the Greater Yellowstone Ecosystem, the largest remaining nearly intact ecosystem in the Earth's northern temperate zone. In 1978, Yellowstone was named a UNESCO World Heritage Site.

 

Hundreds of species of mammals, birds, fish, reptiles, and amphibians have been documented, including several that are either endangered or threatened. The vast forests and grasslands also include unique species of plants. Yellowstone Park is the largest and most famous megafauna location in the contiguous United States. Grizzly bears, cougars, wolves, and free-ranging herds of bison and elk live in this park. The Yellowstone Park bison herd is the oldest and largest public bison herd in the United States. Forest fires occur in the park each year; in the large forest fires of 1988, nearly one-third of the park was burnt. Yellowstone has numerous recreational opportunities, including hiking, camping, boating, fishing, and sightseeing. Paved roads provide close access to the major geothermal areas as well as some of the lakes and waterfalls. During the winter, visitors often access the park by way of guided tours that use either snow coaches or snowmobiles.

 

Teton County is a county in the U.S. state of Wyoming. As of the 2020 United States Census, the population was 23,331. Its county seat is Jackson. Its west boundary line is also the Wyoming state boundary shared with Idaho and the southern tip of Montana. Teton County is part of the Jackson, WY-ID Micropolitan Statistical Area.

 

Teton County contains the Jackson Hole ski area, all of Grand Teton National Park, and 40.4% of Yellowstone National Park's total area, including over 96.6% of its water area (largely in Yellowstone Lake).

 

Wyoming is a state in the Mountain West subregion of the Western United States. It borders Montana to the north and northwest, South Dakota and Nebraska to the east, Idaho to the west, Utah to the southwest, and Colorado to the south. With a population of 576,851 in 2020, Wyoming is the least populous state despite being the 10th largest by area, with the second-lowest population density after Alaska. The state capital and most populous city is Cheyenne, which had an estimated population of 63,957 in 2018.

 

Wyoming's western half consists mostly of the ranges and rangelands of the Rocky Mountains; its eastern half consists of high-elevation prairie, and is referred to as the High Plains. Wyoming's climate is semi-arid in some parts and continental in others, making it drier and windier overall than other states, with greater temperature extremes. The federal government owns just under half of Wyoming's land, generally protecting it for public uses. The state ranks sixth in the amount of land—-and fifth in the proportion of its land—-that is owned by the federal government. Its federal lands include two national parks (Grand Teton and Yellowstone), two national recreation areas, two national monuments, and several national forests, as well as historic sites, fish hatcheries, and wildlife refuges.

 

Indigenous peoples inhabited the region for thousands of years. Historic and currently federally recognized tribes include the Arapaho, Crow, Lakota, and Shoshone. Part of the land that is now Wyoming came under American sovereignty via the Louisiana Purchase, part via the Oregon Treaty, and, lastly, via the Mexican Cession. With the opening of the Oregon Trail, the Mormon Trail, and the California Trail, vast numbers of pioneers travelled through parts of the state that had once been traversed mainly by fur trappers, and this spurred the establishment of forts, such as Fort Laramie, that today serve as population centers. The Transcontinental Railroad supplanted the wagon trails in 1867 with a route through southern Wyoming, bringing new settlers and the establishment of founding towns, including the state capital of Cheyenne. On March 27, 1890, Wyoming became the union's 44th state.

 

Farming and ranching, and the attendant range wars, feature prominently in the state's history. Today, Wyoming's economy is largely based on tourism and the extraction of minerals such as coal, natural gas, oil, and trona. Its agricultural commodities include barley, hay, livestock, sugar beets, wheat, and wool.

 

Wyoming was the first state to allow women the right to vote (not counting New Jersey, which had allowed it until 1807), and the right to assume elected office, as well as the first state to elect a female governor. In honor of this part of its history, its most common nickname is "The Equality State" and its official state motto is "Equal Rights". It is among the least religious states in the country, and is known for having a political culture that leans towards libertarian conservatism. The Republican presidential nominee has carried the state in every election since 1968.

Workers inside the Astrotech Space Operations Facility in Titusville, Florida, begin to extend one of the solar arrays on NASA’s Lucy spacecraft on Aug. 19, 2021. Both solar arrays will be opened to make sure they operate correctly. In view installed on top of the spacecraft is the high gain antenna. Lucy is scheduled to launch no earlier than Saturday, Oct. 16, on a United Launch Alliance Atlas V 401 rocket from Space Launch Complex 41 at Cape Canaveral Space Force Station. NASA’s Launch Services Program based at Kennedy Space Center is managing the launch. Over its 12-year primary mission, Lucy will explore a record-breaking number of asteroids, flying by one asteroid in the solar system’s main belt and seven Trojan asteroids. Additionally, Lucy’s path will circle back to Earth three times for gravity assists, making it the first spacecraft ever to return to the vicinity of Earth from the outer solar system. Photo credit: NASA/Glenn Benson

NASA image use policy.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

In the late 1970s the Mikoyan OKB began development of a hypersonic high-altitude reconnaissance aircraft. Designated "Izdeliye 301" (also known as 3.01), the machine had an unusual design, combining a tailless layout with variable geometry wings. The two engines fueled by kerosene were located side by side above the rear fuselage, with the single vertical fin raising above them, not unlike the Tu-22 “Blinder” bomber of that time, but also reminiscent of the US-American SR-71 Mach 3 reconnaissance aircraft.

 

Only few and rather corny information leaked into the West, and the 301 was believed not only to act as a reconnaissance plane , it was also believed to have (nuclear) bombing capabilities. Despite wind tunnel testing with models, no hardware of the 301 was ever produced - aven though the aircraft could have become a basis for a long-range interceptor that would replace by time the PVO's Tupolew Tu-28P (ASCC code "Fiddler"), a large aircraft armed solely with missiles.

 

Despite limitations, the Tu-28P served well in its role, but the concept of a very fast interceptor aircraft, lingered on, since the Soviet Union had large areas to defend against aerial intruders, esp. from the North and the East. High speed, coupled with long range and the ability to intercept an incoming target at long distances independently from ground guidance had high priority for the Soviet Air Defence Forces. Even though no official requirement was issued, the concept of Izdeliye 301 from the Seventies was eventually developed further into the fixed-wing "Izdeliye 701" ultra-long-range high-altitude interceptor in the 1980ies.

 

The impulse for this new approach came when Oleg S. Samoylovich joined the Mikoyan OKB after having worked at Suchoi OKB on the T-60S missile carrier project. Similar in overall design to the former 301, the 701 was primarily intended as a kind of successor for the MiG-31 Foxhound for the 21st century, which just had completed flight tests and was about to enter PVO's front line units.

 

Being based on a long range cruise missile carrier, the 701 would have been a huge plane, featuring a length of 30-31m, a wing span of 19m (featuring a highly swept double delta wing) and having a maximum TOW of 70 tons! Target performance figures included a top speed of 2.500km/h, a cruising speed of 2.100km/h at 17.000m and an effective range of 7.000km in supersonic or 11.000km in subsonic mode. Eventually, the 701 program was mothballed, too, being too ambitious and expensive for a specialized development that could also have been a fighter version of the Tu-22 bomber!

 

Anyway, while the MiG-31 was successfully introduced in 1979 and had evolved in into a capable long-range interceptor with a top speed of more than Mach 3 (limited to Mach 2.8 in order to protect the aircraft's structural integrity), MiG OKB decided in 1984 to take further action and to develop a next-generation technology demonstrator, knowing that even the formidable "Foxhound" was only an interim solution on the way to a true "Four plus" of even a 6th generation fighter. Other new threats like low-flying cruise missiles, the USAF's "Project Pluto" or the assumed SR-71 Mach 5 successor “Aurora” kept Soviet military officials on the edge of their seats, too.

 

Main objective was to expand the Foxhound's state-of the-art performance, and coiple it with modern features like aerodynamic instability, supercruise, stealth features and further development potential.

 

The aircraft's core mission objectives comprised:

- Provide strategic air defense and surveillance in areas not covered by ground-based air defense systems (incl. guidance of other aircraft with less sophisticated avionics)

- Top speed of Mach 3.2 or more in a dash and cruise at Mach 3.0 for prolonged periods

- Long range/high speed interception of airspace intruders of any kind, including low flying cruise missiles, UAVs and helicopters

- Intercept cruise missiles and their launch aircraft from sea level up to 30.000m altitude by reaching missile launch range in the lowest possible time after departing the loiter area

 

Because funding was scarce and no official GOR had been issued, the project was taken on as a private venture. The new project was internally known as "Izdeliye 710" or "71.0". It was based on both 301 and 701 layout ideas and the wind tunnel experiences with their unusual layouts, as well as Oleg Samoylovich's experience with the Suchoi T-4 Mach 3 bomber project and the T-60S.

 

"Izdeliye 710" was from the start intended only as a proof-of-concept prototype, yet fully functional. It would also incorporate new technologies like heat-resistant ceramics against kinetic heating at prolonged high speeds (the airframe had to resist temperatures of 300°C/570°F and more for considerable periods), but with potential for future development into a full-fledged interceptor, penetrator and reconnaissance aircraft.

 

Overall, “Izdeliye 710" looked like a shrinked version of a mix of both former MiG OKB 301 and 701 designs, limited to the MiG-31's weight class of about 40 tons TOW. Compared with the former designs, the airframe received an aerodynamically more refined, partly blended, slender fuselage that also incorporated mild stealth features like a “clean” underside, softened contours and partly shielded air intakes. Structurally, the airframe's speed limit was set at Mach 3.8.

 

From the earlier 301 design,the plane retained the variable geometry wing. Despite the system's complexity and weight, this solution was deemed to be the best approach for a combination of a high continuous top speed, extended loiter time in the mission’s patrol areas and good performance on improvised airfields. Minimum sweep was a mere 10°, while, fully swept at 68°, the wings blended into the LERXes. Additional lift was created through the fuselage shape itself, so that aerodynamic surfaces and therefore drag could be reduced.

 

Pilot and radar operator sat in tandem under a common canopy with rather limited sight. The cockpit was equipped with a modern glass cockpit with LCD screens. The aircraft’s two engines were, again, placed in a large, mutual nacelle on the upper rear fuselage, fed by large air intakes with two-dimensional vertical ramps and a carefully modulated airflow over the aircraft’s dorsal area.

 

Initially, the 71.0 was to be powered by a pair of Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each, and with 152 kN (34,172 lbf) with full afterburner. These were the same engines that powered the MiG-31, but there were high hopes for the Kolesov NK-101 engine: a variable bypass engine with a maximum thrust in the 200kN range, at the time of the 71.0's design undergoing bench tests and originally developed for the advanced Suchoj T-4MS strike aircraft.

With the D-30F6, the 71.0 was expected to reach Mach 3.2 (making the aircraft capable of effectively intercepting the SR-71), but the NK-101 would offer in pure jet mode a top speed in excess of Mach 3.5 and also improve range and especially loiter time when running as a subsonic turbofan engine.

 

A single fin with an all-moving top and an additional deep rudder at its base was placed on top of the engine nacelle. Additional maneuverability at lower speed was achieved by retractable, all-moving foreplanes, stowed in narrow slits under the cockpit. Longitudinal stability at high speed was improved through deflectable stabilizers: these were kept horizontal for take-off and added to the overall lift, but they could be folded down by up to 60° in flight, acting additionally as stabilizer strakes.

 

Due to the aircraft’s slender shape and unique proportions, the 71.0 quickly received the unofficial nickname "жура́вль" (‘Zhurávl' = Crane). The aircaft’s stalky impression was emphasized even more through its unusual landing gear arrangement: Due to the limited internal space for the main landing gear wells between the weapons bay, the wing folding mechanisms and the engine nacelle, MiG OKB decided to incorporate a bicycle landing gear, normally a trademark of Yakovlew OKB designs, but a conventional landing gear could simply not be mounted, or its construction would have become much too heavy and complex.

 

In order to facilitate operations from improvised airfields and on snow the landing gear featured twin front wheels on a conventional strut and a single four wheel bogie as main wheels. Smaller, single stabilizer wheels were mounted on outriggers that retracted into slender fairings at the wings’ fixed section trailing edge, reminiscent of early Tupolev designs.

 

All standard air-to-air weaponry, as well as fuel, was to be carried internally. Main armament would be the K-100 missile (in service eventually designated R-100), stored in a large weapons bay behind the cockpit on a rotary mount. The K-100 had been under development at that time at NPO Novator, internally coded ‘Izdeliye 172’. The K-100 missile was an impressive weapon, and specifically designed to attack vital and heavily defended aerial targets like NATO’s AWACS aircraft at BVR distance.

 

Being 15’ (4.57 m) long and weighing 1.370 lb (620 kg), this huge ultra-long-range weapon had a maximum range of 250 mi (400 km) in a cruise/glide profile and attained a speed of Mach 6 with its solid rocket engine. This range could be boosted even further with a pair of jettisonable ramjets in tubular pods on the missile’s flanks for another 60 mi (100 km). The missile could attack targets ranging in altitude between 15 – 25,000 meters.

 

The weapon would initially be allocated to a specified target through the launch aircraft’s on-board radar and sent via inertial guidance into the target’s direction. Closing in, the K-100’s Agat 9B-1388 active seeker would identify the target, lock on, and independently attack it, also in coordination with other K-100’s shot at the same target, so that the attack would be coordinated in time and approach directions in order to overload defense and ensure a hit.

 

The 71.0’s internal mount could hold four of these large missiles, or, alternatively, the same number of the MiG-31’s R-33 AAMs. The mount also had a slot for the storage of additional mid- and short-range missiles for self-defense, e .g. three R-60 or two R-73 AAMs. An internal gun was not considered to be necessary, since the 71.0 or potential derivatives would fight their targets at very long distances and rather rely on a "hit-and-run" tactic, sacrificing dogfight capabilities for long loitering time in stand-by mode, high approach speed and outstanding acceleration and altitude performance.

 

Anyway, provisions were made to carry a Gsh-301-250 gun pod on a retractable hardpoint in the weapons bay instead of a K-100. Alternatively, such pods could be carried externally on four optional wing root pylons, which were primarily intended for PTB-1500 or PTB-3000 drop tanks, or further missiles - theoretically, a maximum of ten K-100 missiles could be carried, plus a pair of short-range AAMs.

 

Additionally, a "buddy-to-buffy" IFR set with a retractable drogue (probably the same system as used on the Su-24) was tested (71.2 was outfitted with a retractable refuelling probe in front of the cockpit), as well as the carriage of simple iron bombs or nuclear stores, to be delivered from very high altitudes. Several pallets with cameras and sensors (e .g. a high resolution SLAR) were also envisioned, which could easily replace the missile mounts and the folding weapon bay covers for recce missions.

 

Since there had been little official support for the project, work on the 710 up to the hardware stage made only little progress, since the MiG-31 already filled the long-range interceptor role in a sufficient fashion and offered further development potential.

A wooden mockup of the cockpit section was presented to PVO and VVS officials in 1989, and airframe work (including tests with composite materials on structural parts, including ceramic tiles for leading edges) were undertaken throughout 1990 and 1991, including test rigs for the engine nacelle and the swing wing mechanism.

 

Eventually, the collapse of the Soviet Union in 1991 suddenly stopped most of the project work, after two prototype airframes had been completed. Their internal designations were Izdeliye 71.1 and 71.2, respectively. It took a while until the political situation as well as the ex-Soviet Air Force’s status were settled, and work on Izdeliye 710 resumed at a slow pace.

 

After taking two years to be completed, 71.1 eventually made its roll-out and maiden flight in summer 1994, just when MiG-31 production had ended. MiG OKB still had high hopes in this aircraft, since the MiG-31 would have to be replaced in the next couple of years and "Izdeliye 710" was just in time for the potential procurement process. The first prototype wore a striking all-white livery, with dark grey ceramic tiles on the wings’ leading edges standing out prominently – in this guise and with its futuristic lines the slender aircraft reminded a lot of the American Space Shuttle.

 

71.1 was primarily intended for engine and flight tests (esp. for the eagerly awaited NK-101 engines), as well as for the development of the envisioned ramjet propulsion system for full-scale production and further development of Izdeliye 710 into a Mach 3+ interceptor. No mission avionics were initially fitted to this plane, but it carried a comprehensive test equipment suite and ballast.

 

Its sister ship 71.2 flew for the first time in late 1994, wearing a more unpretentious grey/bare metal livery. This plane was earmarked for avionics development and weapons integration, especially as a test bed for the K-100 missile, which shared Izdeliye 710’s fate of being a leftover Soviet project with an uncertain future and an even more corny funding outlook.

 

Anyway, aircraft 71.2 was from the start equipped with a complete RP-31 ('Zaslon-M') weapon control system, which had been under development at that time as an upgrade for the Russian MiG-31 fleet being part of the radar’s development program secured financial support from the government and allowed the flight tests to continue. The RP-31 possessed a maximum detection range of 400 km (250 mi) against airliner-sized targets at high altitude or 200 km against fighter-sized targets; the typical width of detection along the front was given as 225 km. The system could track 24 airborne targets at one time at a range of 120 km, 6 of which could be simultaneously attacked with missiles.

 

With these capabilities the RP-31 suite could, coupled with an appropriate carrier airframe, fulfil the originally intended airspace control function and would render a dedicated and highly vulnerable airspace control aircraft (like the Beriev A-50 derivative of the Il-76 transport) more or less obsolete. A group of four aircraft equipped with the 'Zaslon-M' suite would be able to permanently control an area of airspace across a total length of 800–900 km, while having ultra-long range weapons at hand to counter any intrusion into airspace with a quicker reaction time than any ground-based fighter on QRA duty. The 71.0, outfitted with the RP-31/K-100 system, would have posed a serious threat to any aggressor.

 

In March 1995 both prototypes were eventually transferred to the Kerchenskaya Guards Air Base at Savasleyka in the Oblast Vladimir, 300 km east of Mocsow, where they received tactical codes of '11 Blue' and '12 Blue'. Besides the basic test program and the RP-31/K-100 system tests, both machines were directly evaluated against the MiG-31 and Su-27 fighters by the Air Force's 4th TsBPi PLS, based at the same site.

 

Both aircraft exceeded expectations, but also fell short in certain aspects. The 71.0’s calculated top speed of Mach 3.2 was achieved during the tests with a top speed of 3,394 km/h (2.108 mph) at 21,000 m (69.000 ft). Top speed at sea level was confirmed at 1.200 km/h (745 mph) indicated airspeed.

Combat radius with full weapon load and internal fuel only was limited to 1,450 km (900 mi) at Mach 0.8 and at an altitude of 10,000 m (33,000 ft), though, and it sank to a mere 720 km (450 mi) at Mach 2.35 and at an altitude of 18,000 m (59,000 ft). Combat range with 4x K-100 internally and 2 drop tanks was settled at 3,000 km (1,860 mi), rising to 5,400 km (3,360 mi) with one in-flight refueling, tested with the 71.2. Endurance at altitude was only slightly above 3 hours, though. Service ceiling was 22,800 m (74,680 ft), 2.000 m higher than the MiG-31.

 

While these figures were impressive, Soviet officials were not truly convinced: they did not show a significant improvement over the simpler MiG-31. MiG OKB tried to persuade the government into more flight tests and begged for access to the NK-101, but the Soviet Union's collapse halted this project, too, so that both Izdeliye 710 had to keep the Soloviev D-30F6.

 

Little is known about the Izdeliye 710 project’s progress or further developments. The initial tests lasted until at least 1997, and obviously the updated MiG-31M received official favor instead of a completely new aircraft. The K-100 was also dropped, since the R-33 missile and later its R-37 derivative sufficiently performed in the long-range aerial strike role.

 

Development on the aircraft as such seemed to have stopped with the advent of modernized Su-27 derivatives and the PAK FA project, resulting in the Suchoi T-50 prototype. Unconfirmed reports suggest that one of the prototypes (probably 71.1) was used in the development of the N014 Pulse-Doppler radar with a passive electronically scanned array antenna in the wake of the MFI program. The N014 was designed with a range of 420 km, detection target of 250km to 1m and able to track 40 targets while able to shoot against 20.

 

Most interestingly, Izdeliye 710 was never officially presented to the public, but NATO became aware of its development through satellite pictures in the early Nineties and the aircraft consequently received the ASCC reporting codename "Fastback".

 

Until today, only the two prototypes have been known to exist, and it is assumed – had the type entered service – that the long-range fighter had received the official designation "MiG-41".

  

General characteristics:

Crew: 2 (Pilot, weapon system officer)

Length (incl. pitot): 93 ft 10 in (28.66 m)

Wingspan:

- minimum 10° sweep: 69 ft 4 in (21.16 m)

- maximum 68° sweep: 48 ft 9 in (14,88 m)

Height: 23 ft 1 1/2 in (7,06 m )

Wing area: 1008.9 ft² (90.8 m²)

Weight: 88.151 lbs (39.986 kg)

 

Performance:

Maximum speed:

- Mach 3.2 (2.050 mph (3.300 km/h) at height

- 995 mph (1.600 km/h) supercruise speed at 36,000 ft (11,000 m)

- 915 mph (1.470 km/h) at sea level

Range: 3.705 miles (5.955 km) with internal fuel

Service ceiling: 75.000 ft (22.500 m)

Rate of climb: 31.000 ft/min (155 m/s)

 

Engine:

2x Soloviev D-30F6 afterburning turbofans with a dry thrust of 93 kN (20,900 lbf) each

and with 152 kN (34,172 lbf) with full afterburner.

 

Armament:

Internal weapons bay, main armament comprises a flexible missile load; basic ordnance of 4x K-100 ultra long range AAMs plus 2x R-73 short-range AAMs: other types like the R-27, R-33, R-60 and R-77 have been carried and tested, too, as well as podded guns on internal and external mounts. Alternatively, the weapon bay can hold various sensor pallets.

Four hardpoints under the wing roots, the outer pair “wet” for drop tanks of up to 3.000 l capacity, ECM pods or a buddy-buddy refueling drogue system. Maximum payload mass is 9000 kg.

  

The kit and its assembly

The second entry for the 2017 “Soviet” Group Build at whatifmodelers.com – a true Frankenstein creation, based on the scarce information about the real (but never realized) MiG 301 and 701 projects, the Suchoj T-60S, as well as some vague design sketches you can find online and in literature.

This one had been on my project list for years and I already had donor kits stashed away – but the sheer size (where will I leave it once done…?) and potential complexity kept me from tackling it.

 

The whole thing was an ambitious project and just the unique layout with a massive engine nacelle on top of the slender fuselage instead of an all-in-one design makes these aircraft an interesting topic to build. The GB was a good motivator.

 

“My” fictional interpretation of the MiG concepts is mainly based on a Dragon B-1B in 1:144 scale (fuselage, wings), a PM Model Su-15 two seater (donating the nose section and the cockpit, as well as wing parts for the fin) and a Kangnam MiG-31 (for the engine pod and some small parts). Another major ingredient is a pair of horizontal stabilizers from a 1:72 Hasegawa A-5 Vigilante.

 

Fitting the cockpit section took some major surgery and even more putty to blend the parts smoothly together. Another major surgical area was the tail; the "engine box" came to be rather straightforward, using the complete rear fuselage section from the MiG-31 and adding the intakes form the same kit, but mounted horizontally with a vertical splitter.

 

Blending the thing to the cut-away tail section of the B-1 was quite a task, though, since I not only wanted to add the element to the fuselage, but rather make it look a bit 'organic'. More than putty was necessary, I also had to made some cuts and transplantations. And after six PSR rounds I stopped counting…

 

The landing gear was built from scratch – the front wheel comes mostly from the MiG-31 kit. The central bogie and its massive leg come from a VEB Plasticart 1:100 Tu-20/95 bomber, plus some additional struts. The outriggers are leftover landing gear struts from a Hobby Boss Fw 190, mated with wheels which I believe come from a 1:200 VEB Plasticart kit, an An-24. Not certain, though. The fairings are slender MiG-21 drop tanks blended into the wing training edge. For the whole landing gear, the covers were improvised with styrene sheet, parts from a plastic straw(!) or leftover bits from the B-1B.

 

The main landing gear well was well as the weapons’ bay themselves were cut into the B-1B underside and an interior scratched from sheet and various leftover materials – I tried to maximize their space while still leaving enough room for the B-1B kit’s internal VG mechanism.

The large missiles (two were visible fitted and the rotary launcher just visibly hinted at) are, in fact, AGM-78 ‘Standard’ ARMs in a fantasy guise. They look pretty Soviet, though, like big brothers of the already not small R-33 missiles from the MiG-31.

 

While not in the focus of attention, the cockpit interior is completely new, too – OOB, the Su-15 cockpit only has a floor and rather stubby seats, under a massive single piece canopy. On top of the front wheel well (from a Hasegawa F-4) I added a new floor and added side consoles, scratched from styrene sheet. F-4 dashboards improve the decoration, and I added a pair of Soviet election seats from the scrap box – IIRC left over from two KP MiG-19 kits.

The canopy was taken OOB, I just cut it into five parts for open display. The material’s thickness does not look too bad on this aircraft – after all, it would need a rather sturdy construction when flying at Mach 3+ and withstanding the respective pressures and temperatures.

  

Painting

As a pure whif, I was free to use a weirdo design - but I rejected this idea quickly. I did not want a garish splinter scheme or a bright “Greenbottle Fly” Su-27 finish.

With the strange layout of the aircraft, the prototype idea was soon settled – and Soviet prototypes tend to look very utilitarian and lusterless, might even be left in grey. Consequently, I adapted a kind of bare look for this one, inspired by the rather shaggy Soviet Tu-22 “Blinder” bombers which carried a mix of bare metal and white and grey panels. With additional black leading edges on the aerodynamic surfaces, this would create a special/provisional but still purposeful look.

 

For the painting, I used a mix of several metallizer tones from ModelMaster and Humbrol (including Steel, Magnesium, Titanium, as well as matt and polished aluminum, and some Gun Metal and Exhaust around the engine nozzles, partly mixed with a bit of blue) and opaque tones (Humbrol 147 and 127). The “scheme” evolved panel-wise and step by step. The black leading edges were an interim addition, coming as things evolved, and they were painted first with black acrylic paint as a rough foundation and later trimmed with generic black decal stripes (from TL Modellbau). A very convenient and clean solution!

 

The radomes on nose and tail and other di-electric panels became dark grey (Humbrol 125). The cockpit tub was painted with Soviet Cockpit Teal (from ModelMaster), while the cockpit opening and canopy frames were kept in a more modest medium grey (Revell 57). On the outside of the cabin windows, a fat, deep yellow sealant frame (Humbrol 93, actually “Sand”) was added.

 

The weapon bay was painted in a yellow-ish primer tone (seen on pics of Tu-160 bombers) while the landing gear wells received a mix of gold and sand; the struts were painted in a mixed color, too, made of Humbrol 56 (Aluminum) and 34 (Flat White). The green wheel discs (Humbrol 131), a typical Soviet detail, stand out well from the rather subdued but not boring aircraft, and they make a nice contrast to the red Stars and the blue tactical code – the only major markings, besides a pair of MiG OKB logos under the cockpit.

 

Decals were puzzled together from various sheets, and I also added a lot of stencils for a more technical look. In order to enhance the prototype look further I added some photo calibration markings on the nose and the tail, made from scratch.

  

A massive kitbashing project that I had pushed away for years - but I am happy that I finally tackled it, and the result looks spectacular. The "Firefox" similarity was not intended, but this beast really looks like a movie prop - and who knwos if the Firefox was not inspired by the same projects (the MiG 301 and 701) as my kitbash model?

The background info is a bit lengthy, but there's some good background info concerning the aforementioned projects, and this aircraft - as a weapon system - would have played a very special and complex role, so a lot of explanations are worthwhile - also in order to emphasize that I di not simply try to glue some model parts together, but rather try to spin real world ideas further.

 

Mighty bird!

At NASA's Michoud Assembly Facility in New Orleans, all of the flight rings for the Space Launch System's first mission, EM-1, have been welded. The rings were made using the Segmented Ring Tool, which uses a friction-stir-weld process to produce segmented support rings for the SLS core stage. The core stage, towering more than 200 feet tall with a diameter of 27.6 feet, will store cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. The rings connect and provide stiffness between domes and barrels. The Boeing Co. is the prime contractor for the SLS core stage, including avionics.

 

Original image:

www.nasa.gov/sls/multimedia/gallery/sls-flight-ring.html

 

Image credit: Boeing

 

More about SLS:

www.nasa.gov/sls

 

More SLS graphics and concepts:

www.nasa.gov/exploration/systems/sls/multimedia/gallery/S...

 

Space Launch System Flickr album

www.flickr.com/photos/28634332@N05/sets/72157627559536895/

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Looking east toward the end of track on what is now known as the M&WR spur of the Washington County Railroad's M&B Division. But these rails once led another 35 miles east to a junction with the Boston & Maine / Canadian Pacific Conn River Mainline at Wells River. Built in 1873 it was a through route operated by the Montpelier & Wells River and later Barre & Chelsea Railroads. In November 1956 the last train ran the length of the line and the rails were removed shortly thereafter. All that remained on this end was about an 1800 ft stub from the switch at Barre Transfer to a couple of customers in East Montpelier. With those customers long since closed even this stub was out of service for years and overgrown with trees. Recently cleared by present operator Vermont Railway, they have been loading company material here and on this afternoon a Vermont Railway crew would make a rare move on these rails.

 

The location of the junction just behind me where this stub connects was once known as Barre Transfer because here the rails of the Central Vermont, Barre Railroad and Montpelier & Wells River all met. The M&B Sub "mainline" rails west of the connection are ex Central Vermont, first laid in 1875 when the 1849 branch into the capital city was extended to Barre. In 1957 Sam Pinsly's Montpelier & Barre purchased them and he quickly consolidated the parallel CV and old Montpelier & Wells River (later Barre & Chelsea) routes between this point at Barre. The state purchased these rails in 1980 when the M&B petitioned for abandonment and they've had multiple contract operators over the years until finally setting on Vermont Rail System's Washington County Subsidiary about two decades ago.

 

One historical tidbit that this image got me thinking about was the similarity to two other long abandoned but one time east west thru routes cutting across northern New England. While nearly all the historic North South routes in New England still survive nearly intact only the Green Mountain's ex Rutland line, SLR's ex Grand Trunk and the former CP International of Maine east-west routes remain. The old Mountain Sub is a tourist operation and half out of service. This line is long abandoned and similar fates befell the Northern, the old Concord and Montreal. the Claremont and Concord and the St. Johnsbury and Lake Champlain Routes.

 

The later two are particularly interesting in that like the M&WR route here both the C&C and StJ&LC came into the fold of the Boston & Maine in the early 20th century then were spun off to local interests within decades. In the middle 20th century all would end up in the Pinsly family of shortlines in some form or fashion before ultimately losing traffic and being abandoned. While Pinsly never owned the line between here and Wells River, his company did save the remainder of the M&WR and operate it for nearly two decades after the Barre & Chelsea petitioned for abandonment.

 

Montpelier, Vermont

Friday April 24, 2020

A picture taken at the very end of rail / coal haulage from Staffordshire's Silverdale Colliery. Traffic from the mine had been the final reason for the line's existence and with the closure of Silverdale (North Staffs last) the railway closed too. When built it linked industrial Stoke on Trent and Newcastle under Lyme with Market Drayton and Shrewsbury.

Here EWS liveried BR/Brush class 60, 60037 rolls into the run round loop above the West Coast Main Line with a loaded train of MGR hoppers. The loco will detatch, swap ends and descent the 'chord' into Madeley where it will join the main line. The Madeley Chord was built purely for the purpose of access to this stretch of line when it was severed first at the western end and then latterly at Newcastle.

Bizarrely I've heard that this little system's currently being refurbished by Network Rail and that in the last few days new points have been installed on the WCML to allow access once more ... hmm, I wonder what traffic is in the offing ... opencast or 'Logistics' from the huge Lymedale Business Park, which itself would require a short new formation beyond Silverdale?

Boeing and NASA teams work around Boeing’s CST-100 Starliner spacecraft after it landed at White Sands Missile Range’s Space Harbor, Wednesday, May 25, 2022, in New Mexico. Boeing’s Orbital Flight Test-2 (OFT-2) is Starliner’s second uncrewed flight test to the International Space Station as part of NASA's Commercial Crew Program. OFT-2 serves as an end-to-end test of the system's capabilities. Photo Credit: (NASA/Bill Ingalls)

Seaboard System's 4 F- units 118, 117, 119 & 116 are leading the train at Milepost 373 south of Harbuck, Tennessee. This is yet another pix of the Etowah-Copperhill trips back in 1986. Canon New F-1, Canon FD 50mm 1. Lens, Kodachrome 64, Epson scan. Many thanks to Scott Lindsey for telling me where this image was taken.

The San Francisco Muni's 2019 heritage weekend September 7-8 featured the public debut of former Sacramento-Clay Line Car 19, built in 1883 by the Central Pacific Railroad Company in Sacramento. Now fully restored, it is the system's oldest (and largest) operating cable car. The weekend's festivities included public operation of the car on all of the surviving cable lines, including the non-revenue trackage.

 

More on this car's unique history can be found here: www.sfmta.com/blog/cable-car-19-make-historic-debut-muni-...

It's a gorgeous day in the city today. There was a buzz in the air the Outdoor Warning System's weekly test sounded the arrival of the lunch hour.

 

I was fortunate enough to have some free time on this trip and got out to walk around and to enjoy the warm sunshine and flow of pedestrian traffic in the Financial District.

 

I've been taking fewer street shots lately as I experiment and play with landscape photography (not terribly well, I admit). Today's lunch hour showed me and reminded me of everything I love about street photography: being out in the world, seeing what's happening for the thousands of people I pass by, identifying something fun, different or pleasing to the eye and capturing it just as the players in my imagined scene are in the correct position, looking the correct direction, on their marks as I envision them.

 

This image might have worked in color, but I was concerned that the reds of the planted flowers and of the Wells Fargo sign and the bright greens of the shrubs would distract the viewer from the people in the shot.

When this uniquely beautiful meteorite surfaced in the Sahara last year, I jumped on it, buying the 1,857g stone before the isotope analyses confirmed that it was a meteorite at all. It was an enigmatic mystery, looking unlike any meteorite I had ever seen. Michael Farmer agreed, and when we sliced it in half, we found a treasure trove of green crystals (some 4cm long!) that must have formed in a planetary-sized body with very slow cooling of the crust over 100,000+ years. But which? Given the Earth-like preponderance of silicon dioxide crystals (58% by volume), some speculated that it might be the first meteorite knocked loose from the Earth itself, an emissary from its early formation.

 

MORE INSIDE VIEWS BELOW

 

But we now know it’s older still. It is an ancient survivor from the crust of a lost cousin planet that formed 23 million years before Earth itself! EC 002 was all over the science news this week, with some of the articles featuring photos of my stones. What a beautiful birthday-week surprise! (and here are all of my photos)

 

From New Scientist: 4.6-billion-year-old meteorite is the oldest volcanic rock ever found

 

"The oldest volcanic rock we have ever discovered may help us understand the building blocks of planets. The meteorite, which was discovered in the Sahara desert in 2020, dates from just 2 million years after the formation of the solar system – making it more than a million years older than the previous record-holder.

 

“I have been working on meteorites for more than 20 years now, and this is possibly the most fantastic new meteorite I have ever seen,” says Jean-Alix Barrat at the University of Western Brittany in France. When he and his colleagues analysed the meteorite, called Erg Chech 002 or EC 002, they found that it was unlike any other meteorite we have ever located.

 

It is a type of rock called andesite that, on Earth, is found mostly in subduction zones – areas where tectonic plates have collided and one has been pushed beneath the other – and rarely in meteorites. Most of the meteorites discovered on Earth are made of another kind of volcanic rock called basalt. Analysis of the chemical make-up of the new meteorite showed that it was once molten, and solidified nearly 4.6 billion years ago.

 

This means it was probably part of the crust of an ancient protoplanet that broke up early in the solar system’s past. No known asteroid looks like EC 002, which indicates that almost none of these relics still exist: nearly all of them have either crashed together to form planets or been smashed to bits.

 

“When you go close to the beginning of the solar system, it’s more and more complicated to get samples,” says Barrat. “We probably will not find another sample older than this one.”

 

The researchers’ analysis showed that it took the magma that makes up EC 002 at least 100,000 years to cool and solidify after it melted, which may indicate that it was unusually viscous. Further study of this artefact from the early solar system could help us understand how the planets, including Earth, formed."

 

LiveScience added: 4.6-billion-year-old meteorite belongs to Earth’s long-lost baby cousin

 

"When the scientists peered at distant cosmic objects' spectral "fingerprints" — wavelength patterns in the light they emit or reflect — and compared them to EC 002, they found no matches. Even after comparison with 10,000 objects in the Sloan Digital Sky Survey database, EC 002 was "clearly distinguishable from all asteroid groups," the scientists reported. "No object with spectral characteristics similar to EC 002 has been identified to date."

 

Where are all the protoplanets with andesite crusts today? During our solar system's volatile period of planetary birth, most of these protoplanets likely didn't make it past infancy, according to the study. Either they were smashed to bits in collisions with other rocky bodies, or they were absorbed by bigger and more successful rocky planets, such as Earth, Mars, Venus and Mercury, leaving few traces behind to spawn meteorites such as EC 002.

 

"Remains of primordial andesitic crust are therefore not only rare in the meteorite record, but they are also rare today in the asteroid belt," the scientists wrote."

 

And here is the original paper in the Proceedings of the National Academy of Sciences: A 4,565-My-old andesite from an extinct chondritic protoplanet

1 2 ••• 12 13 15 17 18 ••• 79 80