061123_NAE_John Allison_05
John Allison is William F. Hosford Professor of Materials Science and Engineering at the University of Michigan and a National Academy of Engineering member.
His major research interest is in understanding the inter-relationships between processing, alloying, microstructure and properties in metallic materials – and in incorporating this knowledge into computational tools for use in research, education and engineering. An important part of his research is development of Integrated Computational Materials Engineering (ICME) tools – and thus collaborations with other computational and experimental groups are an essential element of my work. Central to my research are investigations on the evolution of microstructures - current examples include precipitate evolution, recrystallization and grain growth and texture development in magnesium, aluminum and titanium alloys. He is also interested in mechanical behavior of these materials, with an emphasis on development of mechanistic and phenomenological understanding of the influence of microstructure on properties such as strength, ductility and fatigue resistance.
Allison comes to the University from Ford Motor Company, where he was a senior technical leader in the Research and Advanced Engineering organization. Over the twenty seven years of his tenure at Ford, he led teams developing integrated computational materials engineering, or ICME, methods. He helped develop advanced computer software that simulates manufacturing processes and predicts the influence of the manufacturing process on material properties. The output of these models is then coupled with product performance models to predict how manufactured components will behave during service.
July 11, 2023.
Photo by Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering
061123_NAE_John Allison_05
John Allison is William F. Hosford Professor of Materials Science and Engineering at the University of Michigan and a National Academy of Engineering member.
His major research interest is in understanding the inter-relationships between processing, alloying, microstructure and properties in metallic materials – and in incorporating this knowledge into computational tools for use in research, education and engineering. An important part of his research is development of Integrated Computational Materials Engineering (ICME) tools – and thus collaborations with other computational and experimental groups are an essential element of my work. Central to my research are investigations on the evolution of microstructures - current examples include precipitate evolution, recrystallization and grain growth and texture development in magnesium, aluminum and titanium alloys. He is also interested in mechanical behavior of these materials, with an emphasis on development of mechanistic and phenomenological understanding of the influence of microstructure on properties such as strength, ductility and fatigue resistance.
Allison comes to the University from Ford Motor Company, where he was a senior technical leader in the Research and Advanced Engineering organization. Over the twenty seven years of his tenure at Ford, he led teams developing integrated computational materials engineering, or ICME, methods. He helped develop advanced computer software that simulates manufacturing processes and predicts the influence of the manufacturing process on material properties. The output of these models is then coupled with product performance models to predict how manufactured components will behave during service.
July 11, 2023.
Photo by Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering