Jaroslove Bondarenko
4DGeoSEIS Tomography model of DEM slopes field spacetime structure of the Timor’s island
Volumetric model of an internal structure of DEM and Spectral Brightness fields it is created by the 4D GeoSEIS transformation of the satellite and topographical (DEM) images...
4D GeoSEIS Tomography Method to transform digital images of physical fields into volumetric SpaceTime Models that reflect evolution of a volumetric structure on any vertical slice...
4D GeoSEIS model is linking observation at the surface to geodynamic processes occurring underground...
4D GEOSEIS PROJECTS” HAVE BEEN PROPOSED FOR COMPANIES AROUND THE WORLD TO MAP ANY STATE'S TERRITORIES AND PROSPECT’S AREA IN 4D:
* We propose for any company 3D-4D GeoSEIS Tomography transformations of airborne thermal & multispectral satellite images, geophysical data (magnetic, gravity, IP, seismic) and DEM to multifactor volumetric 3D-4D GeoSEIS (space-time) model, exact ranging and forecasting of mineral deposits, multifactor volumetric mapping of low-amplitude tectonics, geophysical anomalies and geologic properties of deep structures for cost-effective geophysical and geological prospecting...
Newest Results of Multifactor Volumetric 4D GeoSEIS Tomography Modeling: flic.kr/s/aHskbm1WfY , www.flickr.com/photos/jeisus2012/sets/72157626153283579
VALIDATION CERTIFICATE for “4D GeoSEIS Tomography” Method: www.slideshare.net/JarosloveBondarenko/4-d-geoseissertifi...
4D GeoSEIS Tomography Method can help your company save cost for oil-gas deposits prospecting and 4D geomechanical monitoring:
* Volumetric 3D-4D GeoSEIS models will allow to increase accuracy of tectonic structures mapping on deep horizons to a level of near-surface horizons, that in many times will raise the efficiency and will reduce the operating costs for geological prospecting and explorations.
* The volumetric 3D GeoSEIS models of low-amplitude geodynamic zones, tectonic structures and geophysical fields shows that the well-explored areas of hydrocarbon occurrences and deposit are locate on the most favorable trap structures that are fixed on 3D GeoSEIS model of multicomponent stress field.
* Vertical sections of volumetric “4D GeoSEIS Tomography” (4D Space-Time) Models of spectral brightness fields of airborne and satellite images are in good agreement with geological and geophysical section obtained with AMT and RAP profiling, the results of drilling and geo-surveying details of old underground mining at the test site area:
1) Locations of all AMT (Audio-Magneto-Telluric) anomalies of maximal resistivity at 100m-150m depths coincide with the local anomalies of maximum spectral brightness (VNIR/ch.8/WV-2) of highly porous zones (oil-gas trap). The latter offer more accurate reflection of the morphology of the echelon fracture zones associated with horizontal left-hand shear zone.
2) Patterns of resistivity and the local anomalies of maximum spectral brightness (VNIR & TIR) are direct hydrocarbon indicators: the presence of hydrocarbons in highly porous rocks is also associated with characteristic resistivity patterns revealed by MT - so-called "Direct Hydrocarbon Indicators" - as demonstrated by the international Project Paleorift in Uzbekistan.
3) The intervals and locations of the points, where drilling tools sink down, are notable for anomalies of maximum spectral brightness. The locations and intervals between places of drilling fluid loss coincide with aquifer zones, which are registered due to anomalies of minimum spectral brightness.
4DGeoSEIS Tomography model of DEM slopes field spacetime structure of the Timor’s island
Volumetric model of an internal structure of DEM and Spectral Brightness fields it is created by the 4D GeoSEIS transformation of the satellite and topographical (DEM) images...
4D GeoSEIS Tomography Method to transform digital images of physical fields into volumetric SpaceTime Models that reflect evolution of a volumetric structure on any vertical slice...
4D GeoSEIS model is linking observation at the surface to geodynamic processes occurring underground...
4D GEOSEIS PROJECTS” HAVE BEEN PROPOSED FOR COMPANIES AROUND THE WORLD TO MAP ANY STATE'S TERRITORIES AND PROSPECT’S AREA IN 4D:
* We propose for any company 3D-4D GeoSEIS Tomography transformations of airborne thermal & multispectral satellite images, geophysical data (magnetic, gravity, IP, seismic) and DEM to multifactor volumetric 3D-4D GeoSEIS (space-time) model, exact ranging and forecasting of mineral deposits, multifactor volumetric mapping of low-amplitude tectonics, geophysical anomalies and geologic properties of deep structures for cost-effective geophysical and geological prospecting...
Newest Results of Multifactor Volumetric 4D GeoSEIS Tomography Modeling: flic.kr/s/aHskbm1WfY , www.flickr.com/photos/jeisus2012/sets/72157626153283579
VALIDATION CERTIFICATE for “4D GeoSEIS Tomography” Method: www.slideshare.net/JarosloveBondarenko/4-d-geoseissertifi...
4D GeoSEIS Tomography Method can help your company save cost for oil-gas deposits prospecting and 4D geomechanical monitoring:
* Volumetric 3D-4D GeoSEIS models will allow to increase accuracy of tectonic structures mapping on deep horizons to a level of near-surface horizons, that in many times will raise the efficiency and will reduce the operating costs for geological prospecting and explorations.
* The volumetric 3D GeoSEIS models of low-amplitude geodynamic zones, tectonic structures and geophysical fields shows that the well-explored areas of hydrocarbon occurrences and deposit are locate on the most favorable trap structures that are fixed on 3D GeoSEIS model of multicomponent stress field.
* Vertical sections of volumetric “4D GeoSEIS Tomography” (4D Space-Time) Models of spectral brightness fields of airborne and satellite images are in good agreement with geological and geophysical section obtained with AMT and RAP profiling, the results of drilling and geo-surveying details of old underground mining at the test site area:
1) Locations of all AMT (Audio-Magneto-Telluric) anomalies of maximal resistivity at 100m-150m depths coincide with the local anomalies of maximum spectral brightness (VNIR/ch.8/WV-2) of highly porous zones (oil-gas trap). The latter offer more accurate reflection of the morphology of the echelon fracture zones associated with horizontal left-hand shear zone.
2) Patterns of resistivity and the local anomalies of maximum spectral brightness (VNIR & TIR) are direct hydrocarbon indicators: the presence of hydrocarbons in highly porous rocks is also associated with characteristic resistivity patterns revealed by MT - so-called "Direct Hydrocarbon Indicators" - as demonstrated by the international Project Paleorift in Uzbekistan.
3) The intervals and locations of the points, where drilling tools sink down, are notable for anomalies of maximum spectral brightness. The locations and intervals between places of drilling fluid loss coincide with aquifer zones, which are registered due to anomalies of minimum spectral brightness.