Jupiter 2022 Oct 23
23 Oct 2022, 02:53:00 UTC (endcapture), Stuart Florida USA.
Clouds: partly cloudy
Seeing: avg (3/5)
Transparency: below avg
Orion Atlas AZ/EQ-G Pro mount and Celestron C8 at f/20.
Capture: ZWO ASI224MC color camera, bin 1, RAW8, captured 1 minute SER video, exposure 9 ms, gain very low, no calibration frames, no filter, no guiding. Sky was not steady; scope appeared at least roughly collimated.
from Stellarium:
Altitude: 60°
Magnitude: -2.86
Apparent diameter: 48.6 arcsec
North is up.
Image scale: used 11MP mode - 0.23 arcsec/pixel.
Processing notes: Astrosurface. Ugly and over-sharpened, but I still like it.
From Wikipedia: Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth the mass of the Sun. Jupiter is the third brightest natural object in the Earth's night sky after the Moon and Venus, and it has been observed since prehistoric times. It was named after the Roman god Jupiter, the king of the gods.
Jupiter is primarily composed of hydrogen, but helium constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but, like the other giant planets in the Solar System, it lacks a well-defined solid surface. The ongoing contraction of Jupiter's interior generates more heat than it receives from the Sun. Because of its rapid rotation, the planet's shape is an oblate spheroid: it has a slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries. A prominent result of this is the Great Red Spot, a giant storm which has been observed since at least 1831.
Jupiter is surrounded by a faint planetary ring system and a powerful magnetosphere. Jupiter's magnetic tail is nearly 800 million km (5.3 AU; 500 million mi) long, covering nearly the entire distance to Saturn's orbit. Jupiter has 80 known moons and possibly many more, including the four large moons discovered by Galileo Galilei in 1610: Io, Europa, Ganymede, and Callisto. Io and Europa are about the size of Earth's Moon; Callisto is almost the size of the planet Mercury, and Ganymede is larger.
Pioneer 10 was the first spacecraft to visit Jupiter, making its closest approach to the planet in December 1973. Jupiter has since been explored by multiple robotic spacecraft, beginning with the Pioneer and Voyager flyby missions from 1973 to 1979, and later with the Galileo orbiter in 1995. In 2007, the New Horizons visited Jupiter using its gravity to increase its speed, bending its trajectory en route to Pluto. The latest probe to visit the planet, Juno, entered orbit around Jupiter in July 2016. Future targets for exploration in the Jupiter system include the probable ice-covered liquid ocean of Europa.
Jupiter is a gas giant, being primarily composed of gas and liquid rather than solid matter. It is the largest planet in the Solar System, with a diameter of 142,984 km (88,846 mi) at its equator. The average density of Jupiter, 1.326 g/cm3, is about the same as simple syrup (syrup USP), and is lower than those of the four terrestrial planets.
Jupiter's upper atmosphere is about 90% hydrogen and 10% helium by volume. Since helium atoms are more massive than hydrogen molecules, Jupiter's atmosphere is approximately 24% helium by mass. The atmosphere contains trace amounts of methane, water vapour, ammonia, and silicon-based compounds. There are also fractional amounts of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found. The interior of Jupiter contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements.
The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun. Helium is also reduced to about 80% of the Sun's helium composition. This depletion is a result of precipitation of these elements as helium-rich droplets, a process that happens deep in the interior of the planet.
Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more of the next most common elements, including oxygen, carbon, nitrogen, and sulfur. These planets are known as ice giants, because the majority of their volatile compounds are in solid form.
Jupiter with its moon Europa on the left. Earth's diameter is 11 times smaller than Jupiter, and 4 times larger than Europa.
Jupiter's mass is 2.5 times that of all the other planets in the Solar System combined—so massive that its barycentre with the Sun lies above the Sun's surface at 1.068 solar radii from the Sun's centre. Jupiter is much larger than Earth and considerably less dense: it has 1,321 times the volume of the Earth, but only 318 times the mass. Jupiter's radius is about one tenth the radius of the Sun, and its mass is one thousandth the mass of the Sun, as the densities of the two bodies are similar. A "Jupiter mass" (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. For example, the extrasolar planet HD 209458 b has a mass of 0.69 MJ, while Kappa Andromedae b has a mass of 12.8 MJ.
Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would decrease despite the increasing amount of matter. For smaller changes in its mass, the radius would not change appreciably. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved. Although Jupiter would need to be about 75 times more massive to fuse hydrogen and become a star, the smallest red dwarf may be only slightly larger in radius than Saturn.
Jupiter radiates more heat than it receives through solar radiation, due to the Kelvin–Helmholtz mechanism within its contracting interior. This process causes Jupiter to shrink by about 1 mm (0.039 in)/yr. When it formed, Jupiter was hotter and was about twice its current diameter.
Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense core, a surrounding layer of liquid metallic hydrogen (with some helium) extending outward to about 80% of the radius of the planet, and an outer atmosphere consisting primarily of molecular hydrogen. Alternatively, if the planet collapsed directly from the gaseous protoplanetary disk, it was expected to completely lack a core, consisting instead of denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the Juno mission showed that Jupiter has a very diffuse core that mixes into its mantle. This mixing process could have arisen during formation, while the planet accreted solids and gases from the surrounding nebula. Alternatively, it could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter's formation, which would have disrupted an originally solid Jovian core. It is estimated that the core takes up 30–50% of the planet's radius, and contains heavy elements with a combined mass 7–25 times the Earth.
Outside the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen's critical pressure of 1.3 MPa and critical temperature of 33 K (−240.2 °C; −400.3 °F). In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. The hydrogen and helium gas extending downward from the cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids. Physically, the gas gradually becomes hotter and denser as depth increases.
Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere. Calculations suggest that helium drops separate from metallic hydrogen at a radius of 60,000 km (37,000 mi) (11,000 km (6,800 mi) below the cloudtops) and merge again at 50,000 km (31,000 mi) (22,000 km (14,000 mi) beneath the clouds). Rainfalls of diamonds have been suggested to occur, as well as on Saturn and the ice giants Uranus and Neptune.
The temperature and pressure inside Jupiter increase steadily inward because the heat of planetary formation can only escape by convection. At a surface depth where the atmospheric pressure level is 1 bar (0.10 MPa), the temperature is around 165 K (−108 °C; −163 °F). The region of supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of 50–400 GPa with temperatures of 5,000–8,400 K (4,730–8,130 °C; 8,540–14,660 °F), respectively. The temperature of Jupiter's diluted core is estimated to be 20,000 K (19,700 °C; 35,500 °F) with a pressure of around 4,000 GPa.
Jupiter is perpetually covered with clouds of ammonia crystals, which may contain ammonium hydrosulfide as well. The clouds are located in the tropopause layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 100 metres per second (360 km/h; 220 mph) are common in zonal jet streams. The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them.
The cloud layer is about 50 km (31 mi) deep, and consists of at least two decks of ammonia clouds: a thin clearer region on top with a thick lower deck. There may be a thin layer of water clouds underlying the ammonia clouds, as suggested by flashes of lightning detected in the atmosphere of Jupiter.[84] These electrical discharges can be up to a thousand times as powerful as lightning on Earth. The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior. The Juno mission revealed the presence of "shallow lightning" which originates from ammonia-water clouds relatively high in the atmosphere. These discharges carry "mushballs" of water-ammonia slushes covered in ice, which fall deep into the atmosphere. Upper-atmospheric lightning has been observed in Jupiter's upper atmosphere, bright flashes of light that last around 1.4 milliseconds. These are known as "elves" or "sprites" and appear blue or pink due to the hydrogen.
The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons. These colourful compounds, known as chromophores, mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising convection cells form crystallising ammonia that hides the chromophores from view.
Jupiter's low axial tilt means that the poles always receive less solar radiation than the planet's equatorial region. Convection within the interior of the planet transports energy to the poles, balancing out the temperatures at the cloud layer.
The best known feature of Jupiter is the Great Red Spot, a persistent anticyclonic storm located 22° south of the equator. It is known to have existed since at least 1831, and possibly since 1665. Images by the Hubble Space Telescope have shown as many as two "red spots" adjacent to the Great Red Spot. The storm is visible through Earth-based telescopes with an aperture of 12 cm or larger. The oval object rotates counterclockwise, with a period of about six days. The maximum altitude of this storm is about 8 km (5 mi) above the surrounding cloudtops. The Spot's composition and the source of its red colour remain uncertain, although photodissociated ammonia reacting with acetylene is a likely explanation.
The Great Red Spot is larger than the Earth. Mathematical models suggest that the storm is stable and will be a permanent feature of the planet. However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately 41,000 km (25,500 mi) across. By the time of the Voyager flybys in 1979, the storm had a length of 23,300 km (14,500 mi) and a width of approximately 13,000 km (8,000 mi).[105] Hubble observations in 1995 showed it had decreased in size to 20,950 km (13,020 mi), and observations in 2009 showed the size to be 17,910 km (11,130 mi). As of 2015, the storm was measured at approximately 16,500 by 10,940 km (10,250 by 6,800 mi), and was decreasing in length by about 930 km (580 mi) per year. In October 2021, a Juno flyby mission measured the depth of the Great Red Spot, putting it at around 300–500 kilometres (190–310 mi).
Juno missions show that there are several polar cyclone groups at Jupiter's poles. The northern group contains nine cyclones, with a large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one. These polar structures are caused by the turbulence in Jupiter's atmosphere and can be compared with the hexagon at Saturn's north pole.
In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named Oval BA. It has since increased in intensity and changed from white to red, giving it the nickname "Little Red Spot".
In April 2017, a "Great Cold Spot" was discovered in Jupiter's thermosphere at its north pole. This feature is 24,000 km (15,000 mi) across, 12,000 km (7,500 mi) wide, and 200 °C (360 °F) cooler than surrounding material. While this spot changes form and intensity over the short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant vortex similar to the Great Red Spot, and appears to be quasi-stable like the vortices in Earth's thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow.
Jupiter's magnetic field is the strongest of any planet in the Solar System, with a dipole moment of 4.170 gauss (0.4170 mT) that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from 2 gauss (0.20 mT) up to 20 gauss (2.0 mT).[113] This field is thought to be generated by eddy currents—swirling movements of conducting materials—within the liquid metallic hydrogen core. At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter's magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind.
The volcanoes on the moon Io emit large amounts of sulfur dioxide, forming a gas torus along the moon's orbit. The gas is ionized in Jupiter's magnetosphere, producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter's equatorial plane. The plasma in the sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magnetodisk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30 MHz that are detectable from Earth with consumer-grade shortwave radio receivers. As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the radio output of the Sun.
Planetary rings
Main article: Rings of Jupiter
Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring. These rings appear to be made of dust, while Saturn's rings are made of ice. The main ring is most likely made out of material ejected from the satellites Adrastea and Metis, which is drawn into Jupiter because of the planet's strong gravitational influence. New material is added by additional impacts. In a similar way, the moons Thebe and Amalthea are believed to produce the two distinct components of the dusty gossamer ring. There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon's orbit.
Jupiter 2022 Oct 23
23 Oct 2022, 02:53:00 UTC (endcapture), Stuart Florida USA.
Clouds: partly cloudy
Seeing: avg (3/5)
Transparency: below avg
Orion Atlas AZ/EQ-G Pro mount and Celestron C8 at f/20.
Capture: ZWO ASI224MC color camera, bin 1, RAW8, captured 1 minute SER video, exposure 9 ms, gain very low, no calibration frames, no filter, no guiding. Sky was not steady; scope appeared at least roughly collimated.
from Stellarium:
Altitude: 60°
Magnitude: -2.86
Apparent diameter: 48.6 arcsec
North is up.
Image scale: used 11MP mode - 0.23 arcsec/pixel.
Processing notes: Astrosurface. Ugly and over-sharpened, but I still like it.
From Wikipedia: Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth the mass of the Sun. Jupiter is the third brightest natural object in the Earth's night sky after the Moon and Venus, and it has been observed since prehistoric times. It was named after the Roman god Jupiter, the king of the gods.
Jupiter is primarily composed of hydrogen, but helium constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but, like the other giant planets in the Solar System, it lacks a well-defined solid surface. The ongoing contraction of Jupiter's interior generates more heat than it receives from the Sun. Because of its rapid rotation, the planet's shape is an oblate spheroid: it has a slight but noticeable bulge around the equator. The outer atmosphere is divided into a series of latitudinal bands, with turbulence and storms along their interacting boundaries. A prominent result of this is the Great Red Spot, a giant storm which has been observed since at least 1831.
Jupiter is surrounded by a faint planetary ring system and a powerful magnetosphere. Jupiter's magnetic tail is nearly 800 million km (5.3 AU; 500 million mi) long, covering nearly the entire distance to Saturn's orbit. Jupiter has 80 known moons and possibly many more, including the four large moons discovered by Galileo Galilei in 1610: Io, Europa, Ganymede, and Callisto. Io and Europa are about the size of Earth's Moon; Callisto is almost the size of the planet Mercury, and Ganymede is larger.
Pioneer 10 was the first spacecraft to visit Jupiter, making its closest approach to the planet in December 1973. Jupiter has since been explored by multiple robotic spacecraft, beginning with the Pioneer and Voyager flyby missions from 1973 to 1979, and later with the Galileo orbiter in 1995. In 2007, the New Horizons visited Jupiter using its gravity to increase its speed, bending its trajectory en route to Pluto. The latest probe to visit the planet, Juno, entered orbit around Jupiter in July 2016. Future targets for exploration in the Jupiter system include the probable ice-covered liquid ocean of Europa.
Jupiter is a gas giant, being primarily composed of gas and liquid rather than solid matter. It is the largest planet in the Solar System, with a diameter of 142,984 km (88,846 mi) at its equator. The average density of Jupiter, 1.326 g/cm3, is about the same as simple syrup (syrup USP), and is lower than those of the four terrestrial planets.
Jupiter's upper atmosphere is about 90% hydrogen and 10% helium by volume. Since helium atoms are more massive than hydrogen molecules, Jupiter's atmosphere is approximately 24% helium by mass. The atmosphere contains trace amounts of methane, water vapour, ammonia, and silicon-based compounds. There are also fractional amounts of carbon, ethane, hydrogen sulfide, neon, oxygen, phosphine, and sulfur. The outermost layer of the atmosphere contains crystals of frozen ammonia. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found. The interior of Jupiter contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements.
The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun. Helium is also reduced to about 80% of the Sun's helium composition. This depletion is a result of precipitation of these elements as helium-rich droplets, a process that happens deep in the interior of the planet.
Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more of the next most common elements, including oxygen, carbon, nitrogen, and sulfur. These planets are known as ice giants, because the majority of their volatile compounds are in solid form.
Jupiter with its moon Europa on the left. Earth's diameter is 11 times smaller than Jupiter, and 4 times larger than Europa.
Jupiter's mass is 2.5 times that of all the other planets in the Solar System combined—so massive that its barycentre with the Sun lies above the Sun's surface at 1.068 solar radii from the Sun's centre. Jupiter is much larger than Earth and considerably less dense: it has 1,321 times the volume of the Earth, but only 318 times the mass. Jupiter's radius is about one tenth the radius of the Sun, and its mass is one thousandth the mass of the Sun, as the densities of the two bodies are similar. A "Jupiter mass" (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. For example, the extrasolar planet HD 209458 b has a mass of 0.69 MJ, while Kappa Andromedae b has a mass of 12.8 MJ.
Theoretical models indicate that if Jupiter had over 40% more mass, the interior would be so compressed that its volume would decrease despite the increasing amount of matter. For smaller changes in its mass, the radius would not change appreciably. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved. Although Jupiter would need to be about 75 times more massive to fuse hydrogen and become a star, the smallest red dwarf may be only slightly larger in radius than Saturn.
Jupiter radiates more heat than it receives through solar radiation, due to the Kelvin–Helmholtz mechanism within its contracting interior. This process causes Jupiter to shrink by about 1 mm (0.039 in)/yr. When it formed, Jupiter was hotter and was about twice its current diameter.
Before the early 21st century, most scientists proposed one of two scenarios for the formation of Jupiter. If the planet accreted first as a solid body, it would consist of a dense core, a surrounding layer of liquid metallic hydrogen (with some helium) extending outward to about 80% of the radius of the planet, and an outer atmosphere consisting primarily of molecular hydrogen. Alternatively, if the planet collapsed directly from the gaseous protoplanetary disk, it was expected to completely lack a core, consisting instead of denser and denser fluid (predominantly molecular and metallic hydrogen) all the way to the centre. Data from the Juno mission showed that Jupiter has a very diffuse core that mixes into its mantle. This mixing process could have arisen during formation, while the planet accreted solids and gases from the surrounding nebula. Alternatively, it could have been caused by an impact from a planet of about ten Earth masses a few million years after Jupiter's formation, which would have disrupted an originally solid Jovian core. It is estimated that the core takes up 30–50% of the planet's radius, and contains heavy elements with a combined mass 7–25 times the Earth.
Outside the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above molecular hydrogen's critical pressure of 1.3 MPa and critical temperature of 33 K (−240.2 °C; −400.3 °F). In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. The hydrogen and helium gas extending downward from the cloud layer gradually transitions to a liquid in deeper layers, possibly resembling something akin to an ocean of liquid hydrogen and other supercritical fluids. Physically, the gas gradually becomes hotter and denser as depth increases.
Rain-like droplets of helium and neon precipitate downward through the lower atmosphere, depleting the abundance of these elements in the upper atmosphere. Calculations suggest that helium drops separate from metallic hydrogen at a radius of 60,000 km (37,000 mi) (11,000 km (6,800 mi) below the cloudtops) and merge again at 50,000 km (31,000 mi) (22,000 km (14,000 mi) beneath the clouds). Rainfalls of diamonds have been suggested to occur, as well as on Saturn and the ice giants Uranus and Neptune.
The temperature and pressure inside Jupiter increase steadily inward because the heat of planetary formation can only escape by convection. At a surface depth where the atmospheric pressure level is 1 bar (0.10 MPa), the temperature is around 165 K (−108 °C; −163 °F). The region of supercritical hydrogen changes gradually from a molecular fluid to a metallic fluid spans pressure ranges of 50–400 GPa with temperatures of 5,000–8,400 K (4,730–8,130 °C; 8,540–14,660 °F), respectively. The temperature of Jupiter's diluted core is estimated to be 20,000 K (19,700 °C; 35,500 °F) with a pressure of around 4,000 GPa.
Jupiter is perpetually covered with clouds of ammonia crystals, which may contain ammonium hydrosulfide as well. The clouds are located in the tropopause layer of the atmosphere, forming bands at different latitudes, known as tropical regions. These are subdivided into lighter-hued zones and darker belts. The interactions of these conflicting circulation patterns cause storms and turbulence. Wind speeds of 100 metres per second (360 km/h; 220 mph) are common in zonal jet streams. The zones have been observed to vary in width, colour and intensity from year to year, but they have remained stable enough for scientists to name them.
The cloud layer is about 50 km (31 mi) deep, and consists of at least two decks of ammonia clouds: a thin clearer region on top with a thick lower deck. There may be a thin layer of water clouds underlying the ammonia clouds, as suggested by flashes of lightning detected in the atmosphere of Jupiter.[84] These electrical discharges can be up to a thousand times as powerful as lightning on Earth. The water clouds are assumed to generate thunderstorms in the same way as terrestrial thunderstorms, driven by the heat rising from the interior. The Juno mission revealed the presence of "shallow lightning" which originates from ammonia-water clouds relatively high in the atmosphere. These discharges carry "mushballs" of water-ammonia slushes covered in ice, which fall deep into the atmosphere. Upper-atmospheric lightning has been observed in Jupiter's upper atmosphere, bright flashes of light that last around 1.4 milliseconds. These are known as "elves" or "sprites" and appear blue or pink due to the hydrogen.
The orange and brown colours in the clouds of Jupiter are caused by upwelling compounds that change colour when they are exposed to ultraviolet light from the Sun. The exact makeup remains uncertain, but the substances are thought to be made up of phosphorus, sulfur or possibly hydrocarbons. These colourful compounds, known as chromophores, mix with the warmer clouds of the lower deck. The light-coloured zones are formed when rising convection cells form crystallising ammonia that hides the chromophores from view.
Jupiter's low axial tilt means that the poles always receive less solar radiation than the planet's equatorial region. Convection within the interior of the planet transports energy to the poles, balancing out the temperatures at the cloud layer.
The best known feature of Jupiter is the Great Red Spot, a persistent anticyclonic storm located 22° south of the equator. It is known to have existed since at least 1831, and possibly since 1665. Images by the Hubble Space Telescope have shown as many as two "red spots" adjacent to the Great Red Spot. The storm is visible through Earth-based telescopes with an aperture of 12 cm or larger. The oval object rotates counterclockwise, with a period of about six days. The maximum altitude of this storm is about 8 km (5 mi) above the surrounding cloudtops. The Spot's composition and the source of its red colour remain uncertain, although photodissociated ammonia reacting with acetylene is a likely explanation.
The Great Red Spot is larger than the Earth. Mathematical models suggest that the storm is stable and will be a permanent feature of the planet. However, it has significantly decreased in size since its discovery. Initial observations in the late 1800s showed it to be approximately 41,000 km (25,500 mi) across. By the time of the Voyager flybys in 1979, the storm had a length of 23,300 km (14,500 mi) and a width of approximately 13,000 km (8,000 mi).[105] Hubble observations in 1995 showed it had decreased in size to 20,950 km (13,020 mi), and observations in 2009 showed the size to be 17,910 km (11,130 mi). As of 2015, the storm was measured at approximately 16,500 by 10,940 km (10,250 by 6,800 mi), and was decreasing in length by about 930 km (580 mi) per year. In October 2021, a Juno flyby mission measured the depth of the Great Red Spot, putting it at around 300–500 kilometres (190–310 mi).
Juno missions show that there are several polar cyclone groups at Jupiter's poles. The northern group contains nine cyclones, with a large one in the centre and eight others around it, while its southern counterpart also consists of a centre vortex but is surrounded by five large storms and a single smaller one. These polar structures are caused by the turbulence in Jupiter's atmosphere and can be compared with the hexagon at Saturn's north pole.
In 2000, an atmospheric feature formed in the southern hemisphere that is similar in appearance to the Great Red Spot, but smaller. This was created when smaller, white oval-shaped storms merged to form a single feature—these three smaller white ovals were formed in 1939–1940. The merged feature was named Oval BA. It has since increased in intensity and changed from white to red, giving it the nickname "Little Red Spot".
In April 2017, a "Great Cold Spot" was discovered in Jupiter's thermosphere at its north pole. This feature is 24,000 km (15,000 mi) across, 12,000 km (7,500 mi) wide, and 200 °C (360 °F) cooler than surrounding material. While this spot changes form and intensity over the short term, it has maintained its general position in the atmosphere for more than 15 years. It may be a giant vortex similar to the Great Red Spot, and appears to be quasi-stable like the vortices in Earth's thermosphere. This feature may be formed by interactions between charged particles generated from Io and the strong magnetic field of Jupiter, resulting in a redistribution of heat flow.
Jupiter's magnetic field is the strongest of any planet in the Solar System, with a dipole moment of 4.170 gauss (0.4170 mT) that is tilted at an angle of 10.31° to the pole of rotation. The surface magnetic field strength varies from 2 gauss (0.20 mT) up to 20 gauss (2.0 mT).[113] This field is thought to be generated by eddy currents—swirling movements of conducting materials—within the liquid metallic hydrogen core. At about 75 Jupiter radii from the planet, the interaction of the magnetosphere with the solar wind generates a bow shock. Surrounding Jupiter's magnetosphere is a magnetopause, located at the inner edge of a magnetosheath—a region between it and the bow shock. The solar wind interacts with these regions, elongating the magnetosphere on Jupiter's lee side and extending it outward until it nearly reaches the orbit of Saturn. The four largest moons of Jupiter all orbit within the magnetosphere, which protects them from the solar wind.
The volcanoes on the moon Io emit large amounts of sulfur dioxide, forming a gas torus along the moon's orbit. The gas is ionized in Jupiter's magnetosphere, producing sulfur and oxygen ions. They, together with hydrogen ions originating from the atmosphere of Jupiter, form a plasma sheet in Jupiter's equatorial plane. The plasma in the sheet co-rotates with the planet, causing deformation of the dipole magnetic field into that of a magnetodisk. Electrons within the plasma sheet generate a strong radio signature, with short, superimposed bursts in the range of 0.6–30 MHz that are detectable from Earth with consumer-grade shortwave radio receivers. As Io moves through this torus, the interaction generates Alfvén waves that carry ionized matter into the polar regions of Jupiter. As a result, radio waves are generated through a cyclotron maser mechanism, and the energy is transmitted out along a cone-shaped surface. When Earth intersects this cone, the radio emissions from Jupiter can exceed the radio output of the Sun.
Planetary rings
Main article: Rings of Jupiter
Jupiter has a faint planetary ring system composed of three main segments: an inner torus of particles known as the halo, a relatively bright main ring, and an outer gossamer ring. These rings appear to be made of dust, while Saturn's rings are made of ice. The main ring is most likely made out of material ejected from the satellites Adrastea and Metis, which is drawn into Jupiter because of the planet's strong gravitational influence. New material is added by additional impacts. In a similar way, the moons Thebe and Amalthea are believed to produce the two distinct components of the dusty gossamer ring. There is evidence of a fourth ring that may consist of collisional debris from Amalthea that is strung along the same moon's orbit.