Back to photostream

Molecular Beam Epitaxy System

Brookhaven physicists Ivan Bozovic (right) and Anthony Bollinger.

 

Identifying the mysterious mechanism underlying high-temperature superconductivity (HTS) remains one of the most important and tantalizing puzzles in physics. This remarkable phenomenon allows electric current to pass with perfect efficiency through materials chilled to subzero temperatures, and it may play an essential role in revolutionizing the entire electricity chain, from generation to transmission and grid-scale storage. Pinning down one of the possible explanations for HTS—fleeting fluctuations called charge-density waves (CDWs)—could help solve the mystery and pave the way for rapid technological advances.

 

Now, researchers at the Massachusetts Institute of Technology and the U.S. Department of Energy’s Brookhaven National Laboratory have combined two state-of-the-art experimental techniques to study those electron waves with unprecedented precision in two-dimensional, custom-grown materials. The surprising results, published online February 24, 2013, in the journal Nature Materials, reveal that CDWs cannot be the root cause of the unparalleled power conveyance in HTS materials. In fact, CDW formation is an independent and likely competing instability.

15,442 views
0 faves
0 comments
Uploaded on February 26, 2013
Taken on February 14, 2013