Pits at caldera's edge (THEMIS_IOTD_20180103)
This THEMIS image shows part of the caldera floor of Arsia Mons. It is not uncommon for calderas to have "flat" floors after the final explosive eruption the empties the subsurface magma chamber. There may still be some magma or superheated rock left after the collapse that will fill in part of the depression. Additionally, over time erosion will work to level the topography.
Within Arsia Mons there was renewed activity that occurred within the caldera along the alignment of the NE/SW trend of the three large volcanoes. This ongoing, low volume actitivity is similar to the lava lake in Kilauea in Hawaii. Small flows are visible throughout this image. In the center of the image is a small "L" shaped feature. This is the summit vent for the volcanic flows around it. The flows have lapped up against the caldera wall, filling in faults left by the caldera formation and increasing the elevation of the surface in this region of the caldera.
Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450 km) in diameter, almost 12 miles (20 km) high, and the summit caldera is 72 miles (120 km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth.
The three large aligned Tharsis volcanoes are Arsia Mons, Pavonis Mons and Ascreaus Mons (from south to north). There are collapse features on all three volcanoes, on the southwestern and northeastern flanks. This alignment may indicate a large fracture/vent system was responsible for the eruptions that formed all three volcanoes. The flows originating from Arsia Mons are thought to be the youngest of the region.
This martian scene spans 17 x 61 kilometers (11 x 38 miles). To see where on Mars this area lies, and to download high-resolution versions of the image, go to themis.asu.edu/zoom-20180103a
See the Red Planet Report at redplanet.asu.edu for updates on Mars research and exploration. For more about Mars geology, check out the Mars-ePedia: marsed.asu.edu/marsepedia
For the latest THEMIS Mars images as received by mission scientists, see themis.asu.edu/livefrommars. To learn more about the THEMIS camera and its Mars images, see themis.asu.edu.
This image is in the public domain and may be republished free of charge, but if used it should be credited as NASA/JPL-Caltech/Arizona State University.
Pits at caldera's edge (THEMIS_IOTD_20180103)
This THEMIS image shows part of the caldera floor of Arsia Mons. It is not uncommon for calderas to have "flat" floors after the final explosive eruption the empties the subsurface magma chamber. There may still be some magma or superheated rock left after the collapse that will fill in part of the depression. Additionally, over time erosion will work to level the topography.
Within Arsia Mons there was renewed activity that occurred within the caldera along the alignment of the NE/SW trend of the three large volcanoes. This ongoing, low volume actitivity is similar to the lava lake in Kilauea in Hawaii. Small flows are visible throughout this image. In the center of the image is a small "L" shaped feature. This is the summit vent for the volcanic flows around it. The flows have lapped up against the caldera wall, filling in faults left by the caldera formation and increasing the elevation of the surface in this region of the caldera.
Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450 km) in diameter, almost 12 miles (20 km) high, and the summit caldera is 72 miles (120 km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth.
The three large aligned Tharsis volcanoes are Arsia Mons, Pavonis Mons and Ascreaus Mons (from south to north). There are collapse features on all three volcanoes, on the southwestern and northeastern flanks. This alignment may indicate a large fracture/vent system was responsible for the eruptions that formed all three volcanoes. The flows originating from Arsia Mons are thought to be the youngest of the region.
This martian scene spans 17 x 61 kilometers (11 x 38 miles). To see where on Mars this area lies, and to download high-resolution versions of the image, go to themis.asu.edu/zoom-20180103a
See the Red Planet Report at redplanet.asu.edu for updates on Mars research and exploration. For more about Mars geology, check out the Mars-ePedia: marsed.asu.edu/marsepedia
For the latest THEMIS Mars images as received by mission scientists, see themis.asu.edu/livefrommars. To learn more about the THEMIS camera and its Mars images, see themis.asu.edu.
This image is in the public domain and may be republished free of charge, but if used it should be credited as NASA/JPL-Caltech/Arizona State University.