India - Tamil Nadu - Vellore - State Government Museum - Tyrannosaurus - 1
Tyrannosaurus (/tɨˌrænəˈsɔrəs/ or /taɪˌrænəˈsɔrəs/ ("tyrant lizard", from the Ancient Greek tyrannos (τύραννος), "tyrant", and sauros (σαῦρος), "lizard")) is a genus of coelurosaurian theropod dinosaur. The species Tyrannosaurus rex (rex meaning "king" in Latin), commonly abbreviated to T. rex, is one of the most well-represented of the large theropods. Tyrannosaurus lived throughout what is now western North America, on what was then an island continent known as Laramidia. Tyrannosaurus had a much wider range than other tyrannosaurids. Fossils are found in a variety of rock formations dating to the Maastrichtian age of the upper Cretaceous Period, 68 to 66 million years ago. It was the last known member of the tyrannosaurids, and among the last non-avian dinosaurs to exist before the Cretaceous–Paleogene extinction event.
Like other tyrannosaurids, Tyrannosaurus was a bipedal carnivore with a massive skull balanced by a long, heavy tail. Relative to its large and powerful hind limbs, Tyrannosaurus fore limbs were short but unusually powerful for their size and had two clawed digits. The most complete specimen measures up to 12.3 m in length, up to 4 meters tall at the hips, and up to 6.8 metric tons in weight. Although other theropods rivaled or exceeded Tyrannosaurus rex in size, it is still among the largest known land predators and may have exerted one of the largest biting forces among all animals, given its skull structure. By far the largest carnivore in its environment, Tyrannosaurus rex may have been an apex predator, preying upon hadrosaurs, ceratopsians, and possibly sauropods, although some experts have suggested the dinosaur was primarily a scavenger. The question of whether Tyrannosaurus was an apex predator or a pure scavenger was among the longest ongoing debates in paleontology; however, a majority of scientists now agree that Tyrannosaurus rex was most likely an opportunistic carnivore, acting as both a predator and a scavenger when appropriate.
More than 50 specimens of Tyrannosaurus rex have been identified, some of which are nearly complete skeletons. Soft tissue and proteins have been reported in at least one of these specimens. The abundance of fossil material has allowed significant research into many aspects of its biology, including its life history and biomechanics. The feeding habits, physiology and potential speed of Tyrannosaurus rex are a few subjects of debate. Its taxonomy is also controversial, as some scientists consider Tarbosaurus bataar from Asia to be a second Tyrannosaurus species while others maintain Tarbosaurus is a separate genus. Several other genera of North American tyrannosaurids have also been synonymized with Tyrannosaurus.
DESCRIPTION
Tyrannosaurus rex was one of the largest land carnivores of all time; the largest complete specimen, located at the Field Museum of Natural History under the name FMNH PR2081 and nicknamed Sue, measured 12.3 meters long, and was 4 meters tall at the hips. Mass estimates have varied widely over the years, from more than 7.2 metric tons, to less than 4.5 metric tons, with most modern estimates ranging between 5.4 metric tons and 6.8 metric tons. One study in 2011 found that the maximum weight of Sue, the largest Tyrannosaurus, was between 9.5 and 18.5 metric tons, though the authors stated that their upper and lower estimates were based on models with wide error bars and that they "consider [them] to be too skinny, too fat, or too disproportionate". Packard et al. (2009) tested dinosaur mass estimation procedures on elephants and concluded that those of dinosaurs are flawed and produce over-estimations; thus, the weight of Tyrannosaurus could have been much less than previously thought. Other estimations have concluded that the largest known Tyrannosaurus specimens had masses approaching or exceeding 9 tonnes. The neck of Tyrannosaurus rex formed a natural S-shaped curve like that of other theropods, but was short and muscular to support the massive head. The forelimbs had only two clawed fingers, along with an additional small metacarpal representing the remnant of a third digit. In contrast the hind limbs were among the longest in proportion to body size of any theropod. The tail was heavy and long, sometimes containing over forty vertebrae, in order to balance the massive head and torso. To compensate for the immense bulk of the animal, many bones throughout the skeleton were hollow, reducing its weight without significant loss of strength.
The largest known Tyrannosaurus rex skulls measure up to 1.5 meters in length. Large fenestrae (openings) in the skull reduced weight and provided areas for muscle attachment, as in all carnivorous theropods. But in other respects Tyrannosaurus's skull was significantly different from those of large non-tyrannosauroid theropods. It was extremely wide at the rear but had a narrow snout, allowing unusually good binocular vision. The skull bones were massive and the nasals and some other bones were fused, preventing movement between them; but many were pneumatized (contained a "honeycomb" of tiny air spaces) which may have made the bones more flexible as well as lighter. These and other skull-strengthening features are part of the tyrannosaurid trend towards an increasingly powerful bite, which easily surpassed that of all non-tyrannosaurids. The tip of the upper jaw was U-shaped (most non-tyrannosauroid carnivores had V-shaped upper jaws), which increased the amount of tissue and bone a tyrannosaur could rip out with one bite, although it also increased the stresses on the front teeth.
The teeth of Tyrannosaurus rex displayed marked heterodonty (differences in shape). The premaxillary teeth at the front of the upper jaw were closely packed, D-shaped in cross-section, had reinforcing ridges on the rear surface, were incisiform (their tips were chisel-like blades) and curved backwards. The D-shaped cross-section, reinforcing ridges and backwards curve reduced the risk that the teeth would snap when Tyrannosaurus bit and pulled. The remaining teeth were robust, like "lethal bananas" rather than daggers, more widely spaced and also had reinforcing ridges. Those in the upper jaw were larger than those in all but the rear of the lower jaw. The largest found so far is estimated to have been 30 centimeters long including the root when the animal was alive, making it the largest tooth of any carnivorous dinosaur yet found.
SKIN AND FEATHERS
While there is no direct evidence for Tyrannosaurus rex having had feathers, many scientists now consider it likely that T. rex had feathers on at least parts of its body, due to their presence in related species of similar size. Mark Norell of the American Museum of Natural History summarized the balance of evidence by stating that: "we have as much evidence that T. rex was feathered, at least during some stage of its life, as we do that australopithecines like Lucy had hair."
The first evidence for feathers in tyrannosauroids came from the small species Dilong paradoxus, found in the Yixian Formation of China, and reported in the journal Nature in 2004. As with many other theropods discovered in the Yixian, the fossil skeleton was preserved with a coat of filamentous structures which are commonly recognized as the precursors of feathers. Because all known skin impressions from larger tyrannosauroids known at the time showed evidence of scales, the researchers who studied Dilong speculated that feathers may correlate negatively with body size - that juveniles may have been feathered, then shed the feathers and expressed only scales as the animal became larger and no longer needed insulation to stay warm. However, subsequent discoveries showed that even some gigantic tyrannosauroids had feathers covering much of their bodies, casting doubt on the hypothesis that they were a size-related feature.
While skin impressions from a Tyrannosaurus rex specimen nicknamed "Wyrex" (BHI 6230) discovered in Montana in 2002, as well as some other giant tyrannosauroid specimens, show at least small patches of mosaic scales, others, such as Yutyrannus huali (which was up to 9 meters long and weighed about 1,400 kilograms), preserve feathers on various sections of the body, strongly suggesting that its whole body was covered in feathers. It is possible that the extent and nature of feather covering in tyrannosauroids may have changed over time in response to body size, a warmer climate, or other factors.
CLASSIFICATION
Tyrannosaurus is the type genus of the superfamily Tyrannosauroidea, the family Tyrannosauridae, and the subfamily Tyrannosaurinae; in other words it is the standard by which paleontologists decide whether to include other species in the same group. Other members of the tyrannosaurine subfamily include the North American Daspletosaurus and the Asian Tarbosaurus, both of which have occasionally been synonymized with Tyrannosaurus. Tyrannosaurids were once commonly thought to be descendants of earlier large theropods such as megalosaurs and carnosaurs, although more recently they were reclassified with the generally smaller coelurosaurs.
In 1955, Soviet paleontologist Evgeny Maleev named a new species, Tyrannosaurus bataar, from Mongolia. By 1965, this species had been renamed Tarbosaurus bataar. Despite the renaming, many phylogenetic analyses have found Tarbosaurus bataar to be the sister taxon of Tyrannosaurus rex, and it has often been considered an Asian species of Tyrannosaurus. A recent redescription of the skull of Tarbosaurus bataar has shown that it was much narrower than that of Tyrannosaurus rex and that during a bite, the distribution of stress in the skull would have been very different, closer to that of Alioramus, another Asian tyrannosaur. A related cladistic analysis found that Alioramus, not Tyrannosaurus, was the sister taxon of Tarbosaurus, which, if true, would suggest that Tarbosaurus and Tyrannosaurus should remain separate.
Other tyrannosaurid fossils found in the same formations as Tyrannosaurus rex were originally classified as separate taxa, including Aublysodon and Albertosaurus megagracilis, the latter being named Dinotyrannus megagracilis in 1995. However, these fossils are now universally considered to belong to juvenile Tyrannosaurus rex. A small but nearly complete skull from Montana, 60 centimeters long, may be an exception. This skull was originally classified as a species of Gorgosaurus (G. lancensis) by Charles W. Gilmore in 1946, but was later referred to a new genus, Nanotyrannus. Opinions remain divided on the validity of N. lancensis. Many paleontologists consider the skull to belong to a juvenile Tyrannosaurus rex. There are minor differences between the two species, including the higher number of teeth in N. lancensis, which lead some scientists to recommend keeping the two genera separate until further research or discoveries clarify the situation.
PALEOBIOLOGY
LIFE HISTORY
The identification of several specimens as juvenile Tyrannosaurus rex has allowed scientists to document ontogenetic changes in the species, estimate the lifespan, and determine how quickly the animals would have grown. The smallest known individual (LACM 28471, the "Jordan theropod") is estimated to have weighed only 30 kg, while the largest, such as FMNH PR2081 (Sue) most likely weighed over 5,400 kg. Histologic analysis of Tyrannosaurus rex bones showed LACM 28471 had aged only 2 years when it died, while Sue was 28 years old, an age which may have been close to the maximum for the species. Histology has also allowed the age of other specimens to be determined. Growth curves can be developed when the ages of different specimens are plotted on a graph along with their mass. A Tyrannosaurus rex growth curve is S-shaped, with juveniles remaining under 1,800 kg until approximately 14 years of age, when body size began to increase dramatically. During this rapid growth phase, a young Tyrannosaurus rex would gain an average of 600 kg a year for the next four years. At 18 years of age, the curve plateaus again, indicating that growth slowed dramatically. For example, only 600 kg separated the 28-year-old Sue from a 22-year-old Canadian specimen (RTMP 81.12.1). A 2004 histological study performed by different workers corroborates these results, finding that rapid growth began to slow at around 16 years of age. Another study corroborated the latter study's results but found the growth rate to be much faster, finding it to be around 1800 kilograms. Although these results were much higher than previous estimations, the authors noted that these results significantly lowered the great difference between its actual growth rate and the one which would be expected of an animal of its size. The sudden change in growth rate at the end of the growth spurt may indicate physical maturity, a hypothesis which is supported by the discovery of medullary tissue in the femur of a 16 to 20-year-old Tyrannosaurus rex from Montana (MOR 1125, also known as B-rex). Medullary tissue is found only in female birds during ovulation, indicating that B-rex was of reproductive age. Further study indicates an age of 18 for this specimen. Other tyrannosaurids exhibit extremely similar growth curves, although with lower growth rates corresponding to their lower adult sizes.
Over half of the known Tyrannosaurus rex specimens appear to have died within six years of reaching sexual maturity, a pattern which is also seen in other tyrannosaurs and in some large, long-lived birds and mammals today. These species are characterized by high infant mortality rates, followed by relatively low mortality among juveniles. Mortality increases again following sexual maturity, partly due to the stresses of reproduction. One study suggests that the rarity of juvenile Tyrannosaurus rex fossils is due in part to low juvenile mortality rates; the animals were not dying in large numbers at these ages, and so were not often fossilized. However, this rarity may also be due to the incompleteness of the fossil record or to the bias of fossil collectors towards larger, more spectacular specimens. In a 2013 lecture, Thomas Holtz Jr. would suggest that dinosaurs "lived fast and died young" because they reproduced quickly whereas mammals have long life spans because they take longer to reproduce. Gregory S. Paul also writes that Tyrannosaurus reproduced quickly and died young, but attributes their short life spans to the dangerous lives they lived.
SEXUAL DIMORPHISM
As the number of known specimens increased, scientists began to analyze the variation between individuals and discovered what appeared to be two distinct body types, or morphs, similar to some other theropod species. As one of these morphs was more solidly built, it was termed the 'robust' morph while the other was termed 'gracile'. Several morphological differences associated with the two morphs were used to analyze sexual dimorphism in Tyrannosaurus rex, with the 'robust' morph usually suggested to be female. For example, the pelvis of several 'robust' specimens seemed to be wider, perhaps to allow the passage of eggs. It was also thought that the 'robust' morphology correlated with a reduced chevron on the first tail vertebra, also ostensibly to allow eggs to pass out of the reproductive tract, as had been erroneously reported for crocodiles.
In recent years, evidence for sexual dimorphism has been weakened. A 2005 study reported that previous claims of sexual dimorphism in crocodile chevron anatomy were in error, casting doubt on the existence of similar dimorphism between Tyrannosaurus rex sexes. A full-sized chevron was discovered on the first tail vertebra of Sue, an extremely robust individual, indicating that this feature could not be used to differentiate the two morphs anyway. As Tyrannosaurus rex specimens have been found from Saskatchewan to New Mexico, differences between individuals may be indicative of geographic variation rather than sexual dimorphism. The differences could also be age-related, with 'robust' individuals being older animals.
Only a single Tyrannosaurus rex specimen has been conclusively shown to belong to a specific sex. Examination of B-rex demonstrated the preservation of soft tissue within several bones. Some of this tissue has been identified as a medullary tissue, a specialized tissue grown only in modern birds as a source of calcium for the production of eggshell during ovulation. As only female birds lay eggs, medullary tissue is only found naturally in females, although males are capable of producing it when injected with female reproductive hormones like estrogen. This strongly suggests that B-rex was female, and that she died during ovulation Recent research has shown that medullary tissue is never found in crocodiles, which are thought to be the closest living relatives of dinosaurs, aside from birds. The shared presence of medullary tissue in birds and theropod dinosaurs is further evidence of the close evolutionary relationship between the two.
POSTURE
Modern representations in museums, art, and film show Tyrannosaurus rex with its body approximately parallel to the ground and tail extended behind the body to balance the head.
Like many bipedal dinosaurs, Tyrannosaurus rex was historically depicted as a 'living tripod', with the body at 45 degrees or less from the vertical and the tail dragging along the ground, similar to a kangaroo. This concept dates from Joseph Leidy's 1865 reconstruction of Hadrosaurus, the first to depict a dinosaur in a bipedal posture. In 1915, convinced that the creature stood upright, Henry Fairfield Osborn, former president of the American Museum of Natural History, further reinforced the notion in unveiling the first complete Tyrannosaurus rex skeleton arranged this way. It stood in an upright pose for 77 years, until it was dismantled in 1992.
By 1970, scientists realized this pose was incorrect and could not have been maintained by a living animal, as it would have resulted in the dislocation or weakening of several joints, including the hips and the articulation between the head and the spinal column. The inaccurate AMNH mount inspired similar depictions in many films and paintings (such as Rudolph Zallinger's famous mural The Age of Reptiles in Yale University's Peabody Museum of Natural History) until the 1990s, when films such as Jurassic Park introduced a more accurate posture to the general public.
ARMS
When Tyrannosaurus rex was first discovered, the humerus was the only element of the forelimb known. For the initial mounted skeleton as seen by the public in 1915, Osborn substituted longer, three-fingered forelimbs like those of Allosaurus. However, a year earlier, Lawrence Lambe described the short, two-fingered forelimbs of the closely related Gorgosaurus. This strongly suggested that Tyrannosaurus rex had similar forelimbs, but this hypothesis was not confirmed until the first complete Tyrannosaurus rex forelimbs were identified in 1989, belonging to MOR 555 (the "Wankel rex"). The remains of Sue also include complete forelimbs. Tyrannosaurus rex arms are very small relative to overall body size, measuring only 1 meter long, and some scholars have labelled them as vestigial. However, the bones show large areas for muscle attachment, indicating considerable strength. This was recognized as early as 1906 by Osborn, who speculated that the forelimbs may have been used to grasp a mate during copulation. It has also been suggested that the forelimbs were used to assist the animal in rising from a prone position.Another possibility is that the forelimbs held struggling prey while it was killed by the tyrannosaur's enormous jaws. This hypothesis may be supported by biomechanical analysis. Tyrannosaurus rex forelimb bones exhibit extremely thick cortical bone, which have been interpreted as evidence that they were developed to withstand heavy loads. The biceps brachii muscle of a full-grown Tyrannosaurus rex was capable of lifting 199 kilograms by itself; other muscles such as the brachialis would work along with the biceps to make elbow flexion even more powerful. The M. biceps muscle of T. rex was 3.5 times as powerful as the human equivalent. A Tyrannosaurus rex forearm had a limited range of motion, with the shoulder and elbow joints allowing only 40 and 45 degrees of motion, respectively. In contrast, the same two joints in Deinonychus allow up to 88 and 130 degrees of motion, respectively, while a human arm can rotate 360 degrees at the shoulder and move through 165 degrees at the elbow. The heavy build of the arm bones, strength of the muscles, and limited range of motion may indicate a system evolved to hold fast despite the stresses of a struggling prey animal. In the first detailed scientific description of Tyrannosaurus forelimbs, paleontologists Kenneth Carpenter and Matt Smith dismissed notions that the forelimbs were useless or that Tyrannosaurus rex was an obligate scavenger.
SOFT TISSUE
In the March 2005 issue of Science, Mary Higby Schweitzer of North Carolina State University and colleagues announced the recovery of soft tissue from the marrow cavity of a fossilized leg bone from a Tyrannosaurus rex. The bone had been intentionally, though reluctantly, broken for shipping and then not preserved in the normal manner, specifically because Schweitzer was hoping to test it for soft tissue. Designated as the Museum of the Rockies specimen 1125, or MOR 1125, the dinosaur was previously excavated from the Hell Creek Formation. Flexible, bifurcating blood vessels and fibrous but elastic bone matrix tissue were recognized. In addition, microstructures resembling blood cells were found inside the matrix and vessels. The structures bear resemblance to ostrich blood cells and vessels. Whether an unknown process, distinct from normal fossilization, preserved the material, or the material is original, the researchers do not know, and they are careful not to make any claims about preservation. If it is found to be original material, any surviving proteins may be used as a means of indirectly guessing some of the DNA content of the dinosaurs involved, because each protein is typically created by a specific gene. The absence of previous finds may be the result of people assuming preserved tissue was impossible, therefore not looking. Since the first, two more tyrannosaurs and a hadrosaur have also been found to have such tissue-like structures. Research on some of the tissues involved has suggested that birds are closer relatives to tyrannosaurs than other modern animals.
In studies reported in Science in April 2007, Asara and colleagues concluded that seven traces of collagen proteins detected in purified Tyrannosaurus rex bone most closely match those reported in chickens, followed by frogs and newts. The discovery of proteins from a creature tens of millions of years old, along with similar traces the team found in a mastodon bone at least 160,000 years old, upends the conventional view of fossils and may shift paleontologists' focus from bone hunting to biochemistry. Until these finds, most scientists presumed that fossilization replaced all living tissue with inert minerals. Paleontologist Hans Larsson of McGill University in Montreal, who was not part of the studies, called the finds "a milestone", and suggested that dinosaurs could "enter the field of molecular biology and really slingshot paleontology into the modern world".
Subsequent studies in April 2008 confirmed the close connection of Tyrannosaurus rex to modern birds. Postdoctoral biology researcher Chris Organ at Harvard University announced, "With more data, they would probably be able to place T. rex on the evolutionary tree between alligators and chickens and ostriches." Co-author John M. Asara added, "We also show that it groups better with birds than modern reptiles, such as alligators and green anole lizards."
The presumed soft tissue was called into question by Thomas Kaye of the University of Washington and his co-authors in 2008. They contend that what was really inside the tyrannosaur bone was slimy biofilm created by bacteria that coated the voids once occupied by blood vessels and cells. The researchers found that what previously had been identified as remnants of blood cells, because of the presence of iron, were actually framboids, microscopic mineral spheres bearing iron. They found similar spheres in a variety of other fossils from various periods, including an ammonite. In the ammonite they found the spheres in a place where the iron they contain could not have had any relationship to the presence of blood. However, Schweitzer has strongly criticized Kaye's claims and argues that there's no reported evidence that biofilms can produce branching, hollow tubes like those noted in her study. San Antonio, Schweitzer and colleagues published an analysis in 2011 of what parts of the collagen had been recovered, finding that it was the inner parts of the collagen coil that had been preserved, as would have been expected from a long period of protein degradation. Other research challenges the identification of soft tissue as biofilm and confirms finding "branching, vessel-like structures" from within fossilized bone.
THERMOREGULATION
As of 2014, it is not clear if Tyrannosaurus was endothermic (warm-blooded). Tyrannosaurus, like most dinosaurs, was long thought to have an ectothermic ("cold-blooded") reptilian metabolism. The idea of dinosaur ectothermy was challenged by scientists like Robert T. Bakker and John Ostrom in the early years of the "Dinosaur Renaissance", beginning in the late 1960s. Tyrannosaurus rex itself was claimed to have been endothermic ("warm-blooded"), implying a very active lifestyle. Since then, several paleontologists have sought to determine the ability of Tyrannosaurus to regulate its body temperature. Histological evidence of high growth rates in young Tyrannosaurus rex, comparable to those of mammals and birds, may support the hypothesis of a high metabolism. Growth curves indicate that, as in mammals and birds, Tyrannosaurus rex growth was limited mostly to immature animals, rather than the indeterminate growth seen in most other vertebrates.
Oxygen isotope ratios in fossilized bone are sometimes used to determine the temperature at which the bone was deposited, as the ratio between certain isotopes correlates with temperature. In one specimen, the isotope ratios in bones from different parts of the body indicated a temperature difference of no more than 4 to 5 °C between the vertebrae of the torso and the tibia of the lower leg. This small temperature range between the body core and the extremities was claimed by paleontologist Reese Barrick and geochemist William Showers to indicate that Tyrannosaurus rex maintained a constant internal body temperature (homeothermy) and that it enjoyed a metabolism somewhere between ectothermic reptiles and endothermic mammals. Other scientists have pointed out that the ratio of oxygen isotopes in the fossils today does not necessarily represent the same ratio in the distant past, and may have been altered during or after fossilization (diagenesis). Barrick and Showers have defended their conclusions in subsequent papers, finding similar results in another theropod dinosaur from a different continent and tens of millions of years earlier in time (Giganotosaurus). Ornithischian dinosaurs also showed evidence of homeothermy, while varanid lizards from the same formation did not. Even if Tyrannosaurus rex does exhibit evidence of homeothermy, it does not necessarily mean that it was endothermic. Such thermoregulation may also be explained by gigantothermy, as in some living sea turtles.
FOOTPRINTS
Two isolated fossilized footprints have been tentatively assigned to Tyrannosaurus rex. The first was discovered at Philmont Scout Ranch, New Mexico, in 1983 by American geologist Charles Pillmore. Originally thought to belong to a hadrosaurid, examination of the footprint revealed a large 'heel' unknown in ornithopod dinosaur tracks, and traces of what may have been a hallux, the dewclaw-like fourth digit of the tyrannosaur foot. The footprint was published as the ichnogenus Tyrannosauripus pillmorei in 1994, by Martin Lockley and Adrian Hunt. Lockley and Hunt suggested that it was very likely the track was made by a Tyrannosaurus rex, which would make it the first known footprint from this species. The track was made in what was once a vegetated wetland mud flat. It measures 83 centimeters long by 71 centimeters wide.
A second footprint that may have been made by a Tyrannosaurus was first reported in 2007 by British paleontologist Phil Manning, from the Hell Creek Formation of Montana. This second track measures 72 centimeters long, shorter than the track described by Lockley and Hunt. Whether or not the track was made by Tyrannosaurus is unclear, though Tyrannosaurus and Nanotyrannus are the only large theropods known to have existed in the Hell Creek Formation.
LOCOMOTION
There are two main issues concerning the locomotory abilities of Tyrannosaurus: how well it could turn; and what its maximum straight-line speed was likely to have been. Both are relevant to the debate about whether it was a hunter or a scavenger.
Tyrannosaurus may have been slow to turn, possibly taking one to two seconds to turn only 45° - an amount that humans, being vertically oriented and tailless, can spin in a fraction of a second. The cause of the difficulty is rotational inertia, since much of Tyrannosaurus' mass was some distance from its center of gravity, like a human carrying a heavy timber - although it might have reduced the average distance by arching its back and tail and pulling its head and forelimbs close to its body, rather like the way ice skaters pull their arms closer in order to spin faster.
Scientists have produced a wide range of maximum speed estimates, mostly around 11 meters per second (40 km/h), but a few as low as 5–11 meters per second (18–40 km/h), and a few as high as 20 meters per second (72 km/h). Researchers have to rely on various estimating techniques because, while there are many tracks of very large theropods walking, so far none have been found of very large theropods running - and this absence may indicate that they did not run. Scientists who think that Tyrannosaurus was able to run point out that hollow bones and other features that would have lightened its body may have kept adult weight to a mere 4.5 metric tons or so, or that other animals like ostriches and horses with long, flexible legs are able to achieve high speeds through slower but longer strides. Additionally, some have argued that Tyrannosaurus had relatively larger leg muscles than any animal alive today, which could have enabled fast running at 40–70 kilometers per hour.
Jack Horner and Don Lessem argued in 1993 that Tyrannosaurus was slow and probably could not run (no airborne phase in mid-stride), because its ratio of femur (thigh bone) to tibia (shin bone) length was greater than 1, as in most large theropods and like a modern elephant. However, Holtz (1998) noted that tyrannosaurids and some closely related groups had significantly longer distal hindlimb components (shin plus foot plus toes) relative to the femur length than most other theropods, and that tyrannosaurids and their close relatives had a tightly interlocked metatarsus that more effectively transmitted locomotory forces from the foot to the lower leg than in earlier theropods ("metatarsus" means the foot bones, which function as part of the leg in digitigrade animals). He therefore concluded that tyrannosaurids and their close relatives were the fastest large theropods. Thomas Holtz Jr. would echo these sentiments in his 2013 lecture, stating that the giant allosaurs had shorter feet for the same body size than Tyrannosaurus, whereas Tyrannosaurus had longer, skinnier and more interlocked feet for the same body size; attributes of faster moving animals. A study by Eric Snively and Anthony P. Russel published in 2003 would also find that the tyrannosaurid arctometatarsals and elastic ligaments worked together in what he called a 'tensile keystone model' to strengthen the feet of Tyrannosaurus, increase the animal's stability and add greater resistance to dissociation over that of other theropod families; while still allowing resiliency that is otherwise reduced in ratites, horses, giraffids and other animals with metapodia to a single element. The study would also point out that elastic ligaments in larger vertebrates could store and return relatively more elastic strain energy, which could have improved locomotor efficiency and decrease the strain energy transferred to the bones. The study would suggest that this mechanism could have worked efficiently in tyrannosaurids as well. Hence, the study involved identifying the type of ligaments attached to the metatarsals, then how they functioned together and comparing it to those of other theropods and modern day analogs. The scientists would find that arctometatarsals may have enabled tyrannosaurid feet to absorb forces such as linear deceleration, lateral acceleration and torsion more effectively than those of other theropods. It is also stated in their study that this may imply, though not demonstrate, that tyrannosaurids such as Tyrannosaurus had greater agility than other large theropods without an arctometatarsus.
Christiansen (1998) estimated that the leg bones of Tyrannosaurus were not significantly stronger than those of elephants, which are relatively limited in their top speed and never actually run (there is no airborne phase), and hence proposed that the dinosaur's maximum speed would have been about 11 meters per second (40 km/h), which is about the speed of a human sprinter. But he also noted that such estimates depend on many dubious assumptions.
Farlow and colleagues (1995) have argued that a Tyrannosaurus weighing 5.4 metric tons to 7.3 metric tons would have been critically or even fatally injured if it had fallen while moving quickly, since its torso would have slammed into the ground at a deceleration of 6 g (six times the acceleration due to gravity, or about 60 meters/s²) and its tiny arms could not have reduced the impact. However, giraffes have been known to gallop at 50 kilometers per hour, despite the risk that they might break a leg or worse, which can be fatal even in a "safe" environment such as a zoo. Thus it is possible that Tyrannosaurus also moved fast when necessary and had to accept such risks.
In a study published by Gregory S. Paul in the journal Gaia, he would point out that the flexed kneed and digitigrade adult Tyrannosaurus were much better designed for running than elephants or humans, pointing out that Tyrannosaurus had a large ilium bone and cnemial crest that would have supported large muscles needed for running. He would also mention that Alexander's (1989) formula to calculate speed by bone strength was only partly reliable. He suggests that the formula is overly sensitive to bone length; making long bones artificially weak. He would also point out that the lowered risk of being wounded in combat may have been worth the risk of Tyrannosaurus falling while running. Most recent research on Tyrannosaurus locomotion does not support speeds faster than 40 kilometers per hour, i.e. moderate-speed running. For example, a 2002 paper in Nature used a mathematical model (validated by applying it to three living animals, alligators, chickens, and humans; later eight more species including emus and ostriches) to gauge the leg muscle mass needed for fast running (over 40 km/h). They found that proposed top speeds in excess of 40 kilometers per hour were infeasible, because they would require very large leg muscles (more than approximately 40–86% of total body mass). Even moderately fast speeds would have required large leg muscles. This discussion is difficult to resolve, as it is unknown how large the leg muscles actually were in Tyrannosaurus. If they were smaller, only 18 kilometers per hour walking or jogging might have been possible.A study in 2007 used computer models to estimate running speeds, based on data taken directly from fossils, and claimed that Tyrannosaurus rex had a top running speed of 8 meters per second (29 km/h). An average professional football (soccer) player would be slightly slower, while a human sprinter can reach 12 meters per second (43 km/h). These computer models predict a top speed of 17.8 meters per second (64 km/h) for a 3-kilogram Compsognathus (probably a juvenile individual).
However, in 2010, Scott Persons, a graduate student from the University of Alberta proposed that Tyrannosaurus's speed may have been enhanced by strong tail muscles. He found that theropods such as T rex had certain muscle arrangements that are different from modern day birds and mammals but with some similarities to modern reptiles. He concluded that the caudofemoralis muscles which link the tail bones and the upper leg bones could have assisted Tyrannosaurus in leg retraction and enhanced its running ability, agility and balance. The caudofemoralis muscle would have been a key muscle in femoral retraction; pulling back the leg at the femur. The study also found that theropod skeletons such as those of Tyrannosaurus had adaptations (such as elevated transverse processes in the tail vertebrae) to enable the growth of larger tail muscles and that Tyrannosaurus's tail muscle mass may have been underestimated by over 25 percent and perhaps as much as 45 percent. The caudofemoralis muscle was found to comprise 58 percent of the muscle mass in the tail of Tyrannosaurus. Tyrannosaurus also had the largest absolute and relative caudofemoralis muscle mass out of the three extinct organisms in the study. This is because Tyrannosaurus also had additional adaptations to enable large tail muscles; the elongation of its tail's hemal arches. According to Persons, the increase in tail muscle mass would have moved the center of mass closer to the hindquarters and hips which would have lessened the strain on the leg muscles to support its weight; improving its overall balance and agility. This would also have made the animal less front-heavy, thus reducing rotational inertia. Persons also notes that the tail is also rich in tendons and septa which could have been stores of elastic energy, and thereby improved locomotive efficiency. Persons adds that this means non-avian theropods actually had broader tails than previously depicted, as broad or broader laterally than dorsoventrally near the base.
Heinrich Mallison from Berlin's Museum of Natural History would also present a theory in 2011, suggesting that Tyrannosaurus and many other dinosaurs may have achieved relatively high speeds through short rapid strides instead of the long strides employed by modern birds and mammals when running, likening their movement to power-walking. This, according to Mallison, would have been achievable irrespective of joint strength and lessened the need for additional muscle mass in the legs, particularly at the ankles. To support his theory, Mallison assessed the limbs of various dinosaurs and found that they were different from those of modern mammals and birds; having their stride length greatly limited by their skeletons, but also having relatively large muscles at the hindquarters. He would however find a few similarities between the musculature of dinosaurs and race-walkers; having less muscle mass in the ankles but more at the hindquarters. Mallison suggests that the differences between dinosaurs and extant mammals and birds would also have made equations to calculate speed from stride length inapplicable to dinosaurs. John Hutchinson however advised caution regarding this theory, suggesting that they must first look into dinosaur muscles to see how frequently they could have contracted.
______________________________________________
. . . continue reading at photo Tyrannosaurus 2
India - Tamil Nadu - Vellore - State Government Museum - Tyrannosaurus - 1
Tyrannosaurus (/tɨˌrænəˈsɔrəs/ or /taɪˌrænəˈsɔrəs/ ("tyrant lizard", from the Ancient Greek tyrannos (τύραννος), "tyrant", and sauros (σαῦρος), "lizard")) is a genus of coelurosaurian theropod dinosaur. The species Tyrannosaurus rex (rex meaning "king" in Latin), commonly abbreviated to T. rex, is one of the most well-represented of the large theropods. Tyrannosaurus lived throughout what is now western North America, on what was then an island continent known as Laramidia. Tyrannosaurus had a much wider range than other tyrannosaurids. Fossils are found in a variety of rock formations dating to the Maastrichtian age of the upper Cretaceous Period, 68 to 66 million years ago. It was the last known member of the tyrannosaurids, and among the last non-avian dinosaurs to exist before the Cretaceous–Paleogene extinction event.
Like other tyrannosaurids, Tyrannosaurus was a bipedal carnivore with a massive skull balanced by a long, heavy tail. Relative to its large and powerful hind limbs, Tyrannosaurus fore limbs were short but unusually powerful for their size and had two clawed digits. The most complete specimen measures up to 12.3 m in length, up to 4 meters tall at the hips, and up to 6.8 metric tons in weight. Although other theropods rivaled or exceeded Tyrannosaurus rex in size, it is still among the largest known land predators and may have exerted one of the largest biting forces among all animals, given its skull structure. By far the largest carnivore in its environment, Tyrannosaurus rex may have been an apex predator, preying upon hadrosaurs, ceratopsians, and possibly sauropods, although some experts have suggested the dinosaur was primarily a scavenger. The question of whether Tyrannosaurus was an apex predator or a pure scavenger was among the longest ongoing debates in paleontology; however, a majority of scientists now agree that Tyrannosaurus rex was most likely an opportunistic carnivore, acting as both a predator and a scavenger when appropriate.
More than 50 specimens of Tyrannosaurus rex have been identified, some of which are nearly complete skeletons. Soft tissue and proteins have been reported in at least one of these specimens. The abundance of fossil material has allowed significant research into many aspects of its biology, including its life history and biomechanics. The feeding habits, physiology and potential speed of Tyrannosaurus rex are a few subjects of debate. Its taxonomy is also controversial, as some scientists consider Tarbosaurus bataar from Asia to be a second Tyrannosaurus species while others maintain Tarbosaurus is a separate genus. Several other genera of North American tyrannosaurids have also been synonymized with Tyrannosaurus.
DESCRIPTION
Tyrannosaurus rex was one of the largest land carnivores of all time; the largest complete specimen, located at the Field Museum of Natural History under the name FMNH PR2081 and nicknamed Sue, measured 12.3 meters long, and was 4 meters tall at the hips. Mass estimates have varied widely over the years, from more than 7.2 metric tons, to less than 4.5 metric tons, with most modern estimates ranging between 5.4 metric tons and 6.8 metric tons. One study in 2011 found that the maximum weight of Sue, the largest Tyrannosaurus, was between 9.5 and 18.5 metric tons, though the authors stated that their upper and lower estimates were based on models with wide error bars and that they "consider [them] to be too skinny, too fat, or too disproportionate". Packard et al. (2009) tested dinosaur mass estimation procedures on elephants and concluded that those of dinosaurs are flawed and produce over-estimations; thus, the weight of Tyrannosaurus could have been much less than previously thought. Other estimations have concluded that the largest known Tyrannosaurus specimens had masses approaching or exceeding 9 tonnes. The neck of Tyrannosaurus rex formed a natural S-shaped curve like that of other theropods, but was short and muscular to support the massive head. The forelimbs had only two clawed fingers, along with an additional small metacarpal representing the remnant of a third digit. In contrast the hind limbs were among the longest in proportion to body size of any theropod. The tail was heavy and long, sometimes containing over forty vertebrae, in order to balance the massive head and torso. To compensate for the immense bulk of the animal, many bones throughout the skeleton were hollow, reducing its weight without significant loss of strength.
The largest known Tyrannosaurus rex skulls measure up to 1.5 meters in length. Large fenestrae (openings) in the skull reduced weight and provided areas for muscle attachment, as in all carnivorous theropods. But in other respects Tyrannosaurus's skull was significantly different from those of large non-tyrannosauroid theropods. It was extremely wide at the rear but had a narrow snout, allowing unusually good binocular vision. The skull bones were massive and the nasals and some other bones were fused, preventing movement between them; but many were pneumatized (contained a "honeycomb" of tiny air spaces) which may have made the bones more flexible as well as lighter. These and other skull-strengthening features are part of the tyrannosaurid trend towards an increasingly powerful bite, which easily surpassed that of all non-tyrannosaurids. The tip of the upper jaw was U-shaped (most non-tyrannosauroid carnivores had V-shaped upper jaws), which increased the amount of tissue and bone a tyrannosaur could rip out with one bite, although it also increased the stresses on the front teeth.
The teeth of Tyrannosaurus rex displayed marked heterodonty (differences in shape). The premaxillary teeth at the front of the upper jaw were closely packed, D-shaped in cross-section, had reinforcing ridges on the rear surface, were incisiform (their tips were chisel-like blades) and curved backwards. The D-shaped cross-section, reinforcing ridges and backwards curve reduced the risk that the teeth would snap when Tyrannosaurus bit and pulled. The remaining teeth were robust, like "lethal bananas" rather than daggers, more widely spaced and also had reinforcing ridges. Those in the upper jaw were larger than those in all but the rear of the lower jaw. The largest found so far is estimated to have been 30 centimeters long including the root when the animal was alive, making it the largest tooth of any carnivorous dinosaur yet found.
SKIN AND FEATHERS
While there is no direct evidence for Tyrannosaurus rex having had feathers, many scientists now consider it likely that T. rex had feathers on at least parts of its body, due to their presence in related species of similar size. Mark Norell of the American Museum of Natural History summarized the balance of evidence by stating that: "we have as much evidence that T. rex was feathered, at least during some stage of its life, as we do that australopithecines like Lucy had hair."
The first evidence for feathers in tyrannosauroids came from the small species Dilong paradoxus, found in the Yixian Formation of China, and reported in the journal Nature in 2004. As with many other theropods discovered in the Yixian, the fossil skeleton was preserved with a coat of filamentous structures which are commonly recognized as the precursors of feathers. Because all known skin impressions from larger tyrannosauroids known at the time showed evidence of scales, the researchers who studied Dilong speculated that feathers may correlate negatively with body size - that juveniles may have been feathered, then shed the feathers and expressed only scales as the animal became larger and no longer needed insulation to stay warm. However, subsequent discoveries showed that even some gigantic tyrannosauroids had feathers covering much of their bodies, casting doubt on the hypothesis that they were a size-related feature.
While skin impressions from a Tyrannosaurus rex specimen nicknamed "Wyrex" (BHI 6230) discovered in Montana in 2002, as well as some other giant tyrannosauroid specimens, show at least small patches of mosaic scales, others, such as Yutyrannus huali (which was up to 9 meters long and weighed about 1,400 kilograms), preserve feathers on various sections of the body, strongly suggesting that its whole body was covered in feathers. It is possible that the extent and nature of feather covering in tyrannosauroids may have changed over time in response to body size, a warmer climate, or other factors.
CLASSIFICATION
Tyrannosaurus is the type genus of the superfamily Tyrannosauroidea, the family Tyrannosauridae, and the subfamily Tyrannosaurinae; in other words it is the standard by which paleontologists decide whether to include other species in the same group. Other members of the tyrannosaurine subfamily include the North American Daspletosaurus and the Asian Tarbosaurus, both of which have occasionally been synonymized with Tyrannosaurus. Tyrannosaurids were once commonly thought to be descendants of earlier large theropods such as megalosaurs and carnosaurs, although more recently they were reclassified with the generally smaller coelurosaurs.
In 1955, Soviet paleontologist Evgeny Maleev named a new species, Tyrannosaurus bataar, from Mongolia. By 1965, this species had been renamed Tarbosaurus bataar. Despite the renaming, many phylogenetic analyses have found Tarbosaurus bataar to be the sister taxon of Tyrannosaurus rex, and it has often been considered an Asian species of Tyrannosaurus. A recent redescription of the skull of Tarbosaurus bataar has shown that it was much narrower than that of Tyrannosaurus rex and that during a bite, the distribution of stress in the skull would have been very different, closer to that of Alioramus, another Asian tyrannosaur. A related cladistic analysis found that Alioramus, not Tyrannosaurus, was the sister taxon of Tarbosaurus, which, if true, would suggest that Tarbosaurus and Tyrannosaurus should remain separate.
Other tyrannosaurid fossils found in the same formations as Tyrannosaurus rex were originally classified as separate taxa, including Aublysodon and Albertosaurus megagracilis, the latter being named Dinotyrannus megagracilis in 1995. However, these fossils are now universally considered to belong to juvenile Tyrannosaurus rex. A small but nearly complete skull from Montana, 60 centimeters long, may be an exception. This skull was originally classified as a species of Gorgosaurus (G. lancensis) by Charles W. Gilmore in 1946, but was later referred to a new genus, Nanotyrannus. Opinions remain divided on the validity of N. lancensis. Many paleontologists consider the skull to belong to a juvenile Tyrannosaurus rex. There are minor differences between the two species, including the higher number of teeth in N. lancensis, which lead some scientists to recommend keeping the two genera separate until further research or discoveries clarify the situation.
PALEOBIOLOGY
LIFE HISTORY
The identification of several specimens as juvenile Tyrannosaurus rex has allowed scientists to document ontogenetic changes in the species, estimate the lifespan, and determine how quickly the animals would have grown. The smallest known individual (LACM 28471, the "Jordan theropod") is estimated to have weighed only 30 kg, while the largest, such as FMNH PR2081 (Sue) most likely weighed over 5,400 kg. Histologic analysis of Tyrannosaurus rex bones showed LACM 28471 had aged only 2 years when it died, while Sue was 28 years old, an age which may have been close to the maximum for the species. Histology has also allowed the age of other specimens to be determined. Growth curves can be developed when the ages of different specimens are plotted on a graph along with their mass. A Tyrannosaurus rex growth curve is S-shaped, with juveniles remaining under 1,800 kg until approximately 14 years of age, when body size began to increase dramatically. During this rapid growth phase, a young Tyrannosaurus rex would gain an average of 600 kg a year for the next four years. At 18 years of age, the curve plateaus again, indicating that growth slowed dramatically. For example, only 600 kg separated the 28-year-old Sue from a 22-year-old Canadian specimen (RTMP 81.12.1). A 2004 histological study performed by different workers corroborates these results, finding that rapid growth began to slow at around 16 years of age. Another study corroborated the latter study's results but found the growth rate to be much faster, finding it to be around 1800 kilograms. Although these results were much higher than previous estimations, the authors noted that these results significantly lowered the great difference between its actual growth rate and the one which would be expected of an animal of its size. The sudden change in growth rate at the end of the growth spurt may indicate physical maturity, a hypothesis which is supported by the discovery of medullary tissue in the femur of a 16 to 20-year-old Tyrannosaurus rex from Montana (MOR 1125, also known as B-rex). Medullary tissue is found only in female birds during ovulation, indicating that B-rex was of reproductive age. Further study indicates an age of 18 for this specimen. Other tyrannosaurids exhibit extremely similar growth curves, although with lower growth rates corresponding to their lower adult sizes.
Over half of the known Tyrannosaurus rex specimens appear to have died within six years of reaching sexual maturity, a pattern which is also seen in other tyrannosaurs and in some large, long-lived birds and mammals today. These species are characterized by high infant mortality rates, followed by relatively low mortality among juveniles. Mortality increases again following sexual maturity, partly due to the stresses of reproduction. One study suggests that the rarity of juvenile Tyrannosaurus rex fossils is due in part to low juvenile mortality rates; the animals were not dying in large numbers at these ages, and so were not often fossilized. However, this rarity may also be due to the incompleteness of the fossil record or to the bias of fossil collectors towards larger, more spectacular specimens. In a 2013 lecture, Thomas Holtz Jr. would suggest that dinosaurs "lived fast and died young" because they reproduced quickly whereas mammals have long life spans because they take longer to reproduce. Gregory S. Paul also writes that Tyrannosaurus reproduced quickly and died young, but attributes their short life spans to the dangerous lives they lived.
SEXUAL DIMORPHISM
As the number of known specimens increased, scientists began to analyze the variation between individuals and discovered what appeared to be two distinct body types, or morphs, similar to some other theropod species. As one of these morphs was more solidly built, it was termed the 'robust' morph while the other was termed 'gracile'. Several morphological differences associated with the two morphs were used to analyze sexual dimorphism in Tyrannosaurus rex, with the 'robust' morph usually suggested to be female. For example, the pelvis of several 'robust' specimens seemed to be wider, perhaps to allow the passage of eggs. It was also thought that the 'robust' morphology correlated with a reduced chevron on the first tail vertebra, also ostensibly to allow eggs to pass out of the reproductive tract, as had been erroneously reported for crocodiles.
In recent years, evidence for sexual dimorphism has been weakened. A 2005 study reported that previous claims of sexual dimorphism in crocodile chevron anatomy were in error, casting doubt on the existence of similar dimorphism between Tyrannosaurus rex sexes. A full-sized chevron was discovered on the first tail vertebra of Sue, an extremely robust individual, indicating that this feature could not be used to differentiate the two morphs anyway. As Tyrannosaurus rex specimens have been found from Saskatchewan to New Mexico, differences between individuals may be indicative of geographic variation rather than sexual dimorphism. The differences could also be age-related, with 'robust' individuals being older animals.
Only a single Tyrannosaurus rex specimen has been conclusively shown to belong to a specific sex. Examination of B-rex demonstrated the preservation of soft tissue within several bones. Some of this tissue has been identified as a medullary tissue, a specialized tissue grown only in modern birds as a source of calcium for the production of eggshell during ovulation. As only female birds lay eggs, medullary tissue is only found naturally in females, although males are capable of producing it when injected with female reproductive hormones like estrogen. This strongly suggests that B-rex was female, and that she died during ovulation Recent research has shown that medullary tissue is never found in crocodiles, which are thought to be the closest living relatives of dinosaurs, aside from birds. The shared presence of medullary tissue in birds and theropod dinosaurs is further evidence of the close evolutionary relationship between the two.
POSTURE
Modern representations in museums, art, and film show Tyrannosaurus rex with its body approximately parallel to the ground and tail extended behind the body to balance the head.
Like many bipedal dinosaurs, Tyrannosaurus rex was historically depicted as a 'living tripod', with the body at 45 degrees or less from the vertical and the tail dragging along the ground, similar to a kangaroo. This concept dates from Joseph Leidy's 1865 reconstruction of Hadrosaurus, the first to depict a dinosaur in a bipedal posture. In 1915, convinced that the creature stood upright, Henry Fairfield Osborn, former president of the American Museum of Natural History, further reinforced the notion in unveiling the first complete Tyrannosaurus rex skeleton arranged this way. It stood in an upright pose for 77 years, until it was dismantled in 1992.
By 1970, scientists realized this pose was incorrect and could not have been maintained by a living animal, as it would have resulted in the dislocation or weakening of several joints, including the hips and the articulation between the head and the spinal column. The inaccurate AMNH mount inspired similar depictions in many films and paintings (such as Rudolph Zallinger's famous mural The Age of Reptiles in Yale University's Peabody Museum of Natural History) until the 1990s, when films such as Jurassic Park introduced a more accurate posture to the general public.
ARMS
When Tyrannosaurus rex was first discovered, the humerus was the only element of the forelimb known. For the initial mounted skeleton as seen by the public in 1915, Osborn substituted longer, three-fingered forelimbs like those of Allosaurus. However, a year earlier, Lawrence Lambe described the short, two-fingered forelimbs of the closely related Gorgosaurus. This strongly suggested that Tyrannosaurus rex had similar forelimbs, but this hypothesis was not confirmed until the first complete Tyrannosaurus rex forelimbs were identified in 1989, belonging to MOR 555 (the "Wankel rex"). The remains of Sue also include complete forelimbs. Tyrannosaurus rex arms are very small relative to overall body size, measuring only 1 meter long, and some scholars have labelled them as vestigial. However, the bones show large areas for muscle attachment, indicating considerable strength. This was recognized as early as 1906 by Osborn, who speculated that the forelimbs may have been used to grasp a mate during copulation. It has also been suggested that the forelimbs were used to assist the animal in rising from a prone position.Another possibility is that the forelimbs held struggling prey while it was killed by the tyrannosaur's enormous jaws. This hypothesis may be supported by biomechanical analysis. Tyrannosaurus rex forelimb bones exhibit extremely thick cortical bone, which have been interpreted as evidence that they were developed to withstand heavy loads. The biceps brachii muscle of a full-grown Tyrannosaurus rex was capable of lifting 199 kilograms by itself; other muscles such as the brachialis would work along with the biceps to make elbow flexion even more powerful. The M. biceps muscle of T. rex was 3.5 times as powerful as the human equivalent. A Tyrannosaurus rex forearm had a limited range of motion, with the shoulder and elbow joints allowing only 40 and 45 degrees of motion, respectively. In contrast, the same two joints in Deinonychus allow up to 88 and 130 degrees of motion, respectively, while a human arm can rotate 360 degrees at the shoulder and move through 165 degrees at the elbow. The heavy build of the arm bones, strength of the muscles, and limited range of motion may indicate a system evolved to hold fast despite the stresses of a struggling prey animal. In the first detailed scientific description of Tyrannosaurus forelimbs, paleontologists Kenneth Carpenter and Matt Smith dismissed notions that the forelimbs were useless or that Tyrannosaurus rex was an obligate scavenger.
SOFT TISSUE
In the March 2005 issue of Science, Mary Higby Schweitzer of North Carolina State University and colleagues announced the recovery of soft tissue from the marrow cavity of a fossilized leg bone from a Tyrannosaurus rex. The bone had been intentionally, though reluctantly, broken for shipping and then not preserved in the normal manner, specifically because Schweitzer was hoping to test it for soft tissue. Designated as the Museum of the Rockies specimen 1125, or MOR 1125, the dinosaur was previously excavated from the Hell Creek Formation. Flexible, bifurcating blood vessels and fibrous but elastic bone matrix tissue were recognized. In addition, microstructures resembling blood cells were found inside the matrix and vessels. The structures bear resemblance to ostrich blood cells and vessels. Whether an unknown process, distinct from normal fossilization, preserved the material, or the material is original, the researchers do not know, and they are careful not to make any claims about preservation. If it is found to be original material, any surviving proteins may be used as a means of indirectly guessing some of the DNA content of the dinosaurs involved, because each protein is typically created by a specific gene. The absence of previous finds may be the result of people assuming preserved tissue was impossible, therefore not looking. Since the first, two more tyrannosaurs and a hadrosaur have also been found to have such tissue-like structures. Research on some of the tissues involved has suggested that birds are closer relatives to tyrannosaurs than other modern animals.
In studies reported in Science in April 2007, Asara and colleagues concluded that seven traces of collagen proteins detected in purified Tyrannosaurus rex bone most closely match those reported in chickens, followed by frogs and newts. The discovery of proteins from a creature tens of millions of years old, along with similar traces the team found in a mastodon bone at least 160,000 years old, upends the conventional view of fossils and may shift paleontologists' focus from bone hunting to biochemistry. Until these finds, most scientists presumed that fossilization replaced all living tissue with inert minerals. Paleontologist Hans Larsson of McGill University in Montreal, who was not part of the studies, called the finds "a milestone", and suggested that dinosaurs could "enter the field of molecular biology and really slingshot paleontology into the modern world".
Subsequent studies in April 2008 confirmed the close connection of Tyrannosaurus rex to modern birds. Postdoctoral biology researcher Chris Organ at Harvard University announced, "With more data, they would probably be able to place T. rex on the evolutionary tree between alligators and chickens and ostriches." Co-author John M. Asara added, "We also show that it groups better with birds than modern reptiles, such as alligators and green anole lizards."
The presumed soft tissue was called into question by Thomas Kaye of the University of Washington and his co-authors in 2008. They contend that what was really inside the tyrannosaur bone was slimy biofilm created by bacteria that coated the voids once occupied by blood vessels and cells. The researchers found that what previously had been identified as remnants of blood cells, because of the presence of iron, were actually framboids, microscopic mineral spheres bearing iron. They found similar spheres in a variety of other fossils from various periods, including an ammonite. In the ammonite they found the spheres in a place where the iron they contain could not have had any relationship to the presence of blood. However, Schweitzer has strongly criticized Kaye's claims and argues that there's no reported evidence that biofilms can produce branching, hollow tubes like those noted in her study. San Antonio, Schweitzer and colleagues published an analysis in 2011 of what parts of the collagen had been recovered, finding that it was the inner parts of the collagen coil that had been preserved, as would have been expected from a long period of protein degradation. Other research challenges the identification of soft tissue as biofilm and confirms finding "branching, vessel-like structures" from within fossilized bone.
THERMOREGULATION
As of 2014, it is not clear if Tyrannosaurus was endothermic (warm-blooded). Tyrannosaurus, like most dinosaurs, was long thought to have an ectothermic ("cold-blooded") reptilian metabolism. The idea of dinosaur ectothermy was challenged by scientists like Robert T. Bakker and John Ostrom in the early years of the "Dinosaur Renaissance", beginning in the late 1960s. Tyrannosaurus rex itself was claimed to have been endothermic ("warm-blooded"), implying a very active lifestyle. Since then, several paleontologists have sought to determine the ability of Tyrannosaurus to regulate its body temperature. Histological evidence of high growth rates in young Tyrannosaurus rex, comparable to those of mammals and birds, may support the hypothesis of a high metabolism. Growth curves indicate that, as in mammals and birds, Tyrannosaurus rex growth was limited mostly to immature animals, rather than the indeterminate growth seen in most other vertebrates.
Oxygen isotope ratios in fossilized bone are sometimes used to determine the temperature at which the bone was deposited, as the ratio between certain isotopes correlates with temperature. In one specimen, the isotope ratios in bones from different parts of the body indicated a temperature difference of no more than 4 to 5 °C between the vertebrae of the torso and the tibia of the lower leg. This small temperature range between the body core and the extremities was claimed by paleontologist Reese Barrick and geochemist William Showers to indicate that Tyrannosaurus rex maintained a constant internal body temperature (homeothermy) and that it enjoyed a metabolism somewhere between ectothermic reptiles and endothermic mammals. Other scientists have pointed out that the ratio of oxygen isotopes in the fossils today does not necessarily represent the same ratio in the distant past, and may have been altered during or after fossilization (diagenesis). Barrick and Showers have defended their conclusions in subsequent papers, finding similar results in another theropod dinosaur from a different continent and tens of millions of years earlier in time (Giganotosaurus). Ornithischian dinosaurs also showed evidence of homeothermy, while varanid lizards from the same formation did not. Even if Tyrannosaurus rex does exhibit evidence of homeothermy, it does not necessarily mean that it was endothermic. Such thermoregulation may also be explained by gigantothermy, as in some living sea turtles.
FOOTPRINTS
Two isolated fossilized footprints have been tentatively assigned to Tyrannosaurus rex. The first was discovered at Philmont Scout Ranch, New Mexico, in 1983 by American geologist Charles Pillmore. Originally thought to belong to a hadrosaurid, examination of the footprint revealed a large 'heel' unknown in ornithopod dinosaur tracks, and traces of what may have been a hallux, the dewclaw-like fourth digit of the tyrannosaur foot. The footprint was published as the ichnogenus Tyrannosauripus pillmorei in 1994, by Martin Lockley and Adrian Hunt. Lockley and Hunt suggested that it was very likely the track was made by a Tyrannosaurus rex, which would make it the first known footprint from this species. The track was made in what was once a vegetated wetland mud flat. It measures 83 centimeters long by 71 centimeters wide.
A second footprint that may have been made by a Tyrannosaurus was first reported in 2007 by British paleontologist Phil Manning, from the Hell Creek Formation of Montana. This second track measures 72 centimeters long, shorter than the track described by Lockley and Hunt. Whether or not the track was made by Tyrannosaurus is unclear, though Tyrannosaurus and Nanotyrannus are the only large theropods known to have existed in the Hell Creek Formation.
LOCOMOTION
There are two main issues concerning the locomotory abilities of Tyrannosaurus: how well it could turn; and what its maximum straight-line speed was likely to have been. Both are relevant to the debate about whether it was a hunter or a scavenger.
Tyrannosaurus may have been slow to turn, possibly taking one to two seconds to turn only 45° - an amount that humans, being vertically oriented and tailless, can spin in a fraction of a second. The cause of the difficulty is rotational inertia, since much of Tyrannosaurus' mass was some distance from its center of gravity, like a human carrying a heavy timber - although it might have reduced the average distance by arching its back and tail and pulling its head and forelimbs close to its body, rather like the way ice skaters pull their arms closer in order to spin faster.
Scientists have produced a wide range of maximum speed estimates, mostly around 11 meters per second (40 km/h), but a few as low as 5–11 meters per second (18–40 km/h), and a few as high as 20 meters per second (72 km/h). Researchers have to rely on various estimating techniques because, while there are many tracks of very large theropods walking, so far none have been found of very large theropods running - and this absence may indicate that they did not run. Scientists who think that Tyrannosaurus was able to run point out that hollow bones and other features that would have lightened its body may have kept adult weight to a mere 4.5 metric tons or so, or that other animals like ostriches and horses with long, flexible legs are able to achieve high speeds through slower but longer strides. Additionally, some have argued that Tyrannosaurus had relatively larger leg muscles than any animal alive today, which could have enabled fast running at 40–70 kilometers per hour.
Jack Horner and Don Lessem argued in 1993 that Tyrannosaurus was slow and probably could not run (no airborne phase in mid-stride), because its ratio of femur (thigh bone) to tibia (shin bone) length was greater than 1, as in most large theropods and like a modern elephant. However, Holtz (1998) noted that tyrannosaurids and some closely related groups had significantly longer distal hindlimb components (shin plus foot plus toes) relative to the femur length than most other theropods, and that tyrannosaurids and their close relatives had a tightly interlocked metatarsus that more effectively transmitted locomotory forces from the foot to the lower leg than in earlier theropods ("metatarsus" means the foot bones, which function as part of the leg in digitigrade animals). He therefore concluded that tyrannosaurids and their close relatives were the fastest large theropods. Thomas Holtz Jr. would echo these sentiments in his 2013 lecture, stating that the giant allosaurs had shorter feet for the same body size than Tyrannosaurus, whereas Tyrannosaurus had longer, skinnier and more interlocked feet for the same body size; attributes of faster moving animals. A study by Eric Snively and Anthony P. Russel published in 2003 would also find that the tyrannosaurid arctometatarsals and elastic ligaments worked together in what he called a 'tensile keystone model' to strengthen the feet of Tyrannosaurus, increase the animal's stability and add greater resistance to dissociation over that of other theropod families; while still allowing resiliency that is otherwise reduced in ratites, horses, giraffids and other animals with metapodia to a single element. The study would also point out that elastic ligaments in larger vertebrates could store and return relatively more elastic strain energy, which could have improved locomotor efficiency and decrease the strain energy transferred to the bones. The study would suggest that this mechanism could have worked efficiently in tyrannosaurids as well. Hence, the study involved identifying the type of ligaments attached to the metatarsals, then how they functioned together and comparing it to those of other theropods and modern day analogs. The scientists would find that arctometatarsals may have enabled tyrannosaurid feet to absorb forces such as linear deceleration, lateral acceleration and torsion more effectively than those of other theropods. It is also stated in their study that this may imply, though not demonstrate, that tyrannosaurids such as Tyrannosaurus had greater agility than other large theropods without an arctometatarsus.
Christiansen (1998) estimated that the leg bones of Tyrannosaurus were not significantly stronger than those of elephants, which are relatively limited in their top speed and never actually run (there is no airborne phase), and hence proposed that the dinosaur's maximum speed would have been about 11 meters per second (40 km/h), which is about the speed of a human sprinter. But he also noted that such estimates depend on many dubious assumptions.
Farlow and colleagues (1995) have argued that a Tyrannosaurus weighing 5.4 metric tons to 7.3 metric tons would have been critically or even fatally injured if it had fallen while moving quickly, since its torso would have slammed into the ground at a deceleration of 6 g (six times the acceleration due to gravity, or about 60 meters/s²) and its tiny arms could not have reduced the impact. However, giraffes have been known to gallop at 50 kilometers per hour, despite the risk that they might break a leg or worse, which can be fatal even in a "safe" environment such as a zoo. Thus it is possible that Tyrannosaurus also moved fast when necessary and had to accept such risks.
In a study published by Gregory S. Paul in the journal Gaia, he would point out that the flexed kneed and digitigrade adult Tyrannosaurus were much better designed for running than elephants or humans, pointing out that Tyrannosaurus had a large ilium bone and cnemial crest that would have supported large muscles needed for running. He would also mention that Alexander's (1989) formula to calculate speed by bone strength was only partly reliable. He suggests that the formula is overly sensitive to bone length; making long bones artificially weak. He would also point out that the lowered risk of being wounded in combat may have been worth the risk of Tyrannosaurus falling while running. Most recent research on Tyrannosaurus locomotion does not support speeds faster than 40 kilometers per hour, i.e. moderate-speed running. For example, a 2002 paper in Nature used a mathematical model (validated by applying it to three living animals, alligators, chickens, and humans; later eight more species including emus and ostriches) to gauge the leg muscle mass needed for fast running (over 40 km/h). They found that proposed top speeds in excess of 40 kilometers per hour were infeasible, because they would require very large leg muscles (more than approximately 40–86% of total body mass). Even moderately fast speeds would have required large leg muscles. This discussion is difficult to resolve, as it is unknown how large the leg muscles actually were in Tyrannosaurus. If they were smaller, only 18 kilometers per hour walking or jogging might have been possible.A study in 2007 used computer models to estimate running speeds, based on data taken directly from fossils, and claimed that Tyrannosaurus rex had a top running speed of 8 meters per second (29 km/h). An average professional football (soccer) player would be slightly slower, while a human sprinter can reach 12 meters per second (43 km/h). These computer models predict a top speed of 17.8 meters per second (64 km/h) for a 3-kilogram Compsognathus (probably a juvenile individual).
However, in 2010, Scott Persons, a graduate student from the University of Alberta proposed that Tyrannosaurus's speed may have been enhanced by strong tail muscles. He found that theropods such as T rex had certain muscle arrangements that are different from modern day birds and mammals but with some similarities to modern reptiles. He concluded that the caudofemoralis muscles which link the tail bones and the upper leg bones could have assisted Tyrannosaurus in leg retraction and enhanced its running ability, agility and balance. The caudofemoralis muscle would have been a key muscle in femoral retraction; pulling back the leg at the femur. The study also found that theropod skeletons such as those of Tyrannosaurus had adaptations (such as elevated transverse processes in the tail vertebrae) to enable the growth of larger tail muscles and that Tyrannosaurus's tail muscle mass may have been underestimated by over 25 percent and perhaps as much as 45 percent. The caudofemoralis muscle was found to comprise 58 percent of the muscle mass in the tail of Tyrannosaurus. Tyrannosaurus also had the largest absolute and relative caudofemoralis muscle mass out of the three extinct organisms in the study. This is because Tyrannosaurus also had additional adaptations to enable large tail muscles; the elongation of its tail's hemal arches. According to Persons, the increase in tail muscle mass would have moved the center of mass closer to the hindquarters and hips which would have lessened the strain on the leg muscles to support its weight; improving its overall balance and agility. This would also have made the animal less front-heavy, thus reducing rotational inertia. Persons also notes that the tail is also rich in tendons and septa which could have been stores of elastic energy, and thereby improved locomotive efficiency. Persons adds that this means non-avian theropods actually had broader tails than previously depicted, as broad or broader laterally than dorsoventrally near the base.
Heinrich Mallison from Berlin's Museum of Natural History would also present a theory in 2011, suggesting that Tyrannosaurus and many other dinosaurs may have achieved relatively high speeds through short rapid strides instead of the long strides employed by modern birds and mammals when running, likening their movement to power-walking. This, according to Mallison, would have been achievable irrespective of joint strength and lessened the need for additional muscle mass in the legs, particularly at the ankles. To support his theory, Mallison assessed the limbs of various dinosaurs and found that they were different from those of modern mammals and birds; having their stride length greatly limited by their skeletons, but also having relatively large muscles at the hindquarters. He would however find a few similarities between the musculature of dinosaurs and race-walkers; having less muscle mass in the ankles but more at the hindquarters. Mallison suggests that the differences between dinosaurs and extant mammals and birds would also have made equations to calculate speed from stride length inapplicable to dinosaurs. John Hutchinson however advised caution regarding this theory, suggesting that they must first look into dinosaur muscles to see how frequently they could have contracted.
______________________________________________
. . . continue reading at photo Tyrannosaurus 2