Way To GOES!! My Heart Goes To GOES East-->> NASA/NOAA's Incredible View Of Strengthening Winter Storm Impacting Northeast - via NOAA Environmental Visualization Laboratory
I see snowball fights and afternoon delights...
An impressive storm of continental extent - Breathtaking Imagery!! Way to GOES!!
High winds, heavy snows and ice are expected with a strengthening storm system impacting the northeast, with severe weather possible over the Mid-Atlantic on Wednesday. A surface low over the Ohio Valley will rapidly deepen while it tracks across the northern Mid-Atlantic states and off the New Jersey coast on Wednesday. Strong winds surrounding the strengthening storm will pull an abundance of Gulf and Atlantic moisture inland, fueling a swath of moderate to heavy snows to the northwest of the low track. Widespread accumulations are expected from the Lower Great Lakes to northern New England with some locations possibly measuring a foot or more of fresh snow. A mix of sleet and freezing rain are expected closer to the coast where warmer Atlantic air will be moving in aloft. Farther south, strong to severe thunderstorms will be possible with the storm's dynamic cold front sweeping through the Mid-Atlantic states. Conditions should gradually clear out over the Northeast on Thursday as the surface low slowly tracks up Eastern Seaboard and into the Canadian Maritimes, but strong northwesterly flow behind the storm will make for a blustery day across much of the Northeast and Mid-Atlantic states.
This image was taken by GOES East at 1715Z on March 12, 2014.
Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory
_________________________________________________________
Geostationary Operational Environmental Satellite
From Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Geostationary_Operational_Environme...
The GOES N satellite was launched on a Delta IV rocket from SLC-37B, Cape Canaveral Air Force Station, Florida
The Geostationary Satellite system (GOES), operated by the United States National Environmental Satellite, Data, and Information Service (NESDIS), supports weather forecasting, severe storm tracking, and meteorology research. Spacecraft and ground-based elements of the system work together to provide a continuous stream of environmental data. The National Weather Service (NWS) uses the GOES system for its United States weather monitoring and forecasting operations, and scientific researchers use the data to better understand land, atmosphere, ocean, and climate interactions.
The GOES system uses geosynchronous satellites which—since the launch of SMS-1 in 1974—have been a basic element of U.S. weather monitoring and forecasting.
Contents
1 Satellites
2 Purpose
3 Payload
4 Satellite designations
5 Future
6 History and status of GOES satellites
7 See also
8 Further reading
9 References
10 External links
Satellites[edit]
GOES-8, a decommissioned United States weather satellite.
Four GOES satellites are currently available for operational use:
GOES-12 is designated GOES-South, currently located at 60°W .[1]
GOES 13 is designated GOES-East, currently located at 75°W. It was placed in orbit on 24 May 2006, underwent Post-Launch Testing through early 2007, then replaced GOES 12 as GOES-East.[2]
GOES 14 is currently in storage at 90°W. It was temporarily designated GOES-East due to technical difficulties with GOES-13, and moved toward the GOES-East location, but after resolution of the GOES-13 anomaly GOES 14 returned to storage.[3] It was placed in orbit on 7 July 2009, underwent Post-Launch Testing until December 2009 and then was placed in on-orbit storage at 105° W.[2]
GOES 15 is designated GOES-West, currently located at 135°W over the Pacific Ocean.[4]
Several GOES satellites are still in orbit, either inactive or re-purposed. GOES-3 is no longer used for weather operations, but is a critical part of the communication links between the United States and Amundsen-Scott South Pole Station. Geostationary satellites cannot ordinarily be seen at all from the poles, but they require station-keeping fuel to keep them stationary over the equator. When station-keeping fuel runs out, solar and lunar perturbations increase the satellite's inclination so that its ground track begins to describe a figure-8 in the north-south direction. This usually ends the satellite's primary mission. But when the inclination is high enough, the satellite may begin to rise above the polar horizons at the extremes of the figure-8, as is the case for GOES-3. A nine-meter dish was constructed at the station, and communication with the satellite is currently possible for about five hours per day. Data rates are around 2.048 Mbit/s bi-directional under optimum conditions.
GOES-8 (GOES-East when it was in operation) is in a parking orbit, currently drifting about 4°W daily.[5] It was decommissioned on April 1, 2003, and deactivated on May 5, 2004, after the failure of its propulsion system.[6]
Weather data was lost for 13 days from GOES-12 on December 4, 2007 when it performed a standard station-keeping maneuver. GOES-11 initially took "full disk" images to cover the lost data until a contingency plan could be implemented.[7] On December 5, 2007, GOES-10 was moved from South America operations to temporarily replace GOES-12 as the GOES-EAST operational satellite.[8] On 9 December, communication with GOES-10 was also temporarily lost, but communication was resumed via a backup antenna.[9] GOES-12 was successfully reactivated and moved back to normal operation following a thrust maneuver on 17 December.[10] The trouble was traced to a leaking thruster valve, which pushed the satellite incorrectly. Emergency procedures were executed to cut off the valve, and a redundant thruster was activated to restore the location of the satellite.[11]
Coverage map of GOES 11 and 12 in 2007 (before GOES 11 was shut down).
GOES-10 was decommissioned on December 2, 2009 and was boosted to a graveyard orbit. It no longer had the fuel for required maneuvers to keep it on station.[12] It joins GOES 8 and 9 which are already in graveyard orbits. With the cessation of GOES-10's duties, GOES-13 has replaced GOES-12 as "GOES-East". GOES-12 was then moved to 60° W and resume South American duties for GOES-10.
GOES-11 had a partial failure 6 Dec 2011, was decommissioned on 16 Dec 2011 and was boosted into a graveyard orbit. GOES 15 was moved to 135° W as GOES West.
GOES-13 was previously out of service, from 22 May to 9 June 2013, due to technical difficulties following a micrometeroid collision.[3] It is designated GOES-East, and is currently located at 75°W. It provides most of the U.S. weather information.[13]
Purpose
GOES data relay pattern.
Designed to operate to geostationary orbit, 35,790 km (22,240 statute miles) above the earth, thereby remaining stationary with respect to a point on the ground, the advanced GOES I–M spacecraft continuously view the continental United States, neighboring environs of the Pacific and Atlantic Oceans, and Central, South America and southern Canada. The three-axis, body-stabilized spacecraft design enables the sensors to "stare" at the earth and thus more frequently image clouds, monitor earth's surface temperature and water vapour fields, and sound the atmosphere for its vertical thermal and vapor structures. Thus the evolution of atmospheric phenomena can be followed, ensuring real-time coverage of short-lived dynamic events, especially severe local storms and tropical cyclones—two meteorological events that directly affect public safety, protection of property, and ultimately, economic health and development. The importance of this capability has been exemplified during hurricanes Hugo (1989) and Andrew (1992).
The GOES I–M series of spacecraft are the principal observational platforms for covering such dynamic weather events and the near-earth space environment for the 1990s and into the 21st century. These advanced spacecraft enhance the capability of the GOES system to continuously observe and measure meteorological phenomena in real time, providing the meteorological community and atmospheric scientists greatly improved observational and measurement data of the Western Hemisphere. In addition to short-term weather forecasting and space environmental monitoring, these enhanced operational services also improve support for atmospheric science research, numerical weather prediction models, and environmental sensor design and development. Data is received via the NOAA Command and Data Acquisition ground station at Wallops Island, Virginia[14] The GOES satellites are controlled from the Satellite Operations Control Center (SOCC) located in Suitland, Maryland. During significant weather or other events the normal schedules can be altered to provide coverage requested by the National Weather Service and other agencies for Jenn Meyer.
Space Weather -- March 2012.
GOES spacecraft also provide a platform for the Solar X-Ray Imager (SXI), and space environment monitoring (SEM) instruments. The SEM measures in situ the effect of the sun on the near-earth solar-terrestrial electromagnetic environment, providing real-time data to the Space Environment Services Center (SESC). The SESC, as the nation’s “space weather” service, receives, monitors, and interprets a wide variety of solar-terrestrial data, and issues reports, alerts and forecasts for special events such as solar flares or geomagnetic storms. This information is important to the operation of military and civilian radio wave and satellite communication and navigation systems, as well as electric power networks, and to the mission of geophysical explorers, Shuttle and Space Station astronauts, high-altitude aviators, and scientific researchers. The SXI provides high-cadence monitoring of large scale solar structures to supports SESC's monitoring mission. However, the SXI unit on GOES-12 has been rendered inoperable from malfunctions, and the unit on GOES-13 was damaged by a solar flare in 2006.
Payload
The main mission is carried out by the primary payload instruments, the Imager and the Sounder. The Imager is a multichannel instrument that senses infrared radiant energy and visible reflected solar energy from the Earth's surface and atmosphere. The Sounder provides data for vertical atmospheric temperature and moisture profiles, surface and cloud top temperature, and ozone distribution.
Other instruments on board the spacecraft are the ground-based meteorological platform data collection and relay, and the space environment monitor. The latter consists of a magnetometer, an X-ray sensor, a high energy proton and alpha detector, and an energetic particles sensor, all used for in-situ surveying of the near-earth space environment. Satellites numbered 12 and greater also carry a solar x-ray imager (SXI) used for two-dimensional imaging of the Sun. The GOES 13-15 series also have a sun-pointed extreme ultraviolet sensor.
In addition, the GOES satellites carry Emergency Position-Indicating Radio Beacon (EPIRB) and Emergency Locator Transmitter (ELT) receivers, which are used for search-and-rescue purposes by the U.S. Air Force Rescue Coordination Center.
Way To GOES!! My Heart Goes To GOES East-->> NASA/NOAA's Incredible View Of Strengthening Winter Storm Impacting Northeast - via NOAA Environmental Visualization Laboratory
I see snowball fights and afternoon delights...
An impressive storm of continental extent - Breathtaking Imagery!! Way to GOES!!
High winds, heavy snows and ice are expected with a strengthening storm system impacting the northeast, with severe weather possible over the Mid-Atlantic on Wednesday. A surface low over the Ohio Valley will rapidly deepen while it tracks across the northern Mid-Atlantic states and off the New Jersey coast on Wednesday. Strong winds surrounding the strengthening storm will pull an abundance of Gulf and Atlantic moisture inland, fueling a swath of moderate to heavy snows to the northwest of the low track. Widespread accumulations are expected from the Lower Great Lakes to northern New England with some locations possibly measuring a foot or more of fresh snow. A mix of sleet and freezing rain are expected closer to the coast where warmer Atlantic air will be moving in aloft. Farther south, strong to severe thunderstorms will be possible with the storm's dynamic cold front sweeping through the Mid-Atlantic states. Conditions should gradually clear out over the Northeast on Thursday as the surface low slowly tracks up Eastern Seaboard and into the Canadian Maritimes, but strong northwesterly flow behind the storm will make for a blustery day across much of the Northeast and Mid-Atlantic states.
This image was taken by GOES East at 1715Z on March 12, 2014.
Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory
_________________________________________________________
Geostationary Operational Environmental Satellite
From Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Geostationary_Operational_Environme...
The GOES N satellite was launched on a Delta IV rocket from SLC-37B, Cape Canaveral Air Force Station, Florida
The Geostationary Satellite system (GOES), operated by the United States National Environmental Satellite, Data, and Information Service (NESDIS), supports weather forecasting, severe storm tracking, and meteorology research. Spacecraft and ground-based elements of the system work together to provide a continuous stream of environmental data. The National Weather Service (NWS) uses the GOES system for its United States weather monitoring and forecasting operations, and scientific researchers use the data to better understand land, atmosphere, ocean, and climate interactions.
The GOES system uses geosynchronous satellites which—since the launch of SMS-1 in 1974—have been a basic element of U.S. weather monitoring and forecasting.
Contents
1 Satellites
2 Purpose
3 Payload
4 Satellite designations
5 Future
6 History and status of GOES satellites
7 See also
8 Further reading
9 References
10 External links
Satellites[edit]
GOES-8, a decommissioned United States weather satellite.
Four GOES satellites are currently available for operational use:
GOES-12 is designated GOES-South, currently located at 60°W .[1]
GOES 13 is designated GOES-East, currently located at 75°W. It was placed in orbit on 24 May 2006, underwent Post-Launch Testing through early 2007, then replaced GOES 12 as GOES-East.[2]
GOES 14 is currently in storage at 90°W. It was temporarily designated GOES-East due to technical difficulties with GOES-13, and moved toward the GOES-East location, but after resolution of the GOES-13 anomaly GOES 14 returned to storage.[3] It was placed in orbit on 7 July 2009, underwent Post-Launch Testing until December 2009 and then was placed in on-orbit storage at 105° W.[2]
GOES 15 is designated GOES-West, currently located at 135°W over the Pacific Ocean.[4]
Several GOES satellites are still in orbit, either inactive or re-purposed. GOES-3 is no longer used for weather operations, but is a critical part of the communication links between the United States and Amundsen-Scott South Pole Station. Geostationary satellites cannot ordinarily be seen at all from the poles, but they require station-keeping fuel to keep them stationary over the equator. When station-keeping fuel runs out, solar and lunar perturbations increase the satellite's inclination so that its ground track begins to describe a figure-8 in the north-south direction. This usually ends the satellite's primary mission. But when the inclination is high enough, the satellite may begin to rise above the polar horizons at the extremes of the figure-8, as is the case for GOES-3. A nine-meter dish was constructed at the station, and communication with the satellite is currently possible for about five hours per day. Data rates are around 2.048 Mbit/s bi-directional under optimum conditions.
GOES-8 (GOES-East when it was in operation) is in a parking orbit, currently drifting about 4°W daily.[5] It was decommissioned on April 1, 2003, and deactivated on May 5, 2004, after the failure of its propulsion system.[6]
Weather data was lost for 13 days from GOES-12 on December 4, 2007 when it performed a standard station-keeping maneuver. GOES-11 initially took "full disk" images to cover the lost data until a contingency plan could be implemented.[7] On December 5, 2007, GOES-10 was moved from South America operations to temporarily replace GOES-12 as the GOES-EAST operational satellite.[8] On 9 December, communication with GOES-10 was also temporarily lost, but communication was resumed via a backup antenna.[9] GOES-12 was successfully reactivated and moved back to normal operation following a thrust maneuver on 17 December.[10] The trouble was traced to a leaking thruster valve, which pushed the satellite incorrectly. Emergency procedures were executed to cut off the valve, and a redundant thruster was activated to restore the location of the satellite.[11]
Coverage map of GOES 11 and 12 in 2007 (before GOES 11 was shut down).
GOES-10 was decommissioned on December 2, 2009 and was boosted to a graveyard orbit. It no longer had the fuel for required maneuvers to keep it on station.[12] It joins GOES 8 and 9 which are already in graveyard orbits. With the cessation of GOES-10's duties, GOES-13 has replaced GOES-12 as "GOES-East". GOES-12 was then moved to 60° W and resume South American duties for GOES-10.
GOES-11 had a partial failure 6 Dec 2011, was decommissioned on 16 Dec 2011 and was boosted into a graveyard orbit. GOES 15 was moved to 135° W as GOES West.
GOES-13 was previously out of service, from 22 May to 9 June 2013, due to technical difficulties following a micrometeroid collision.[3] It is designated GOES-East, and is currently located at 75°W. It provides most of the U.S. weather information.[13]
Purpose
GOES data relay pattern.
Designed to operate to geostationary orbit, 35,790 km (22,240 statute miles) above the earth, thereby remaining stationary with respect to a point on the ground, the advanced GOES I–M spacecraft continuously view the continental United States, neighboring environs of the Pacific and Atlantic Oceans, and Central, South America and southern Canada. The three-axis, body-stabilized spacecraft design enables the sensors to "stare" at the earth and thus more frequently image clouds, monitor earth's surface temperature and water vapour fields, and sound the atmosphere for its vertical thermal and vapor structures. Thus the evolution of atmospheric phenomena can be followed, ensuring real-time coverage of short-lived dynamic events, especially severe local storms and tropical cyclones—two meteorological events that directly affect public safety, protection of property, and ultimately, economic health and development. The importance of this capability has been exemplified during hurricanes Hugo (1989) and Andrew (1992).
The GOES I–M series of spacecraft are the principal observational platforms for covering such dynamic weather events and the near-earth space environment for the 1990s and into the 21st century. These advanced spacecraft enhance the capability of the GOES system to continuously observe and measure meteorological phenomena in real time, providing the meteorological community and atmospheric scientists greatly improved observational and measurement data of the Western Hemisphere. In addition to short-term weather forecasting and space environmental monitoring, these enhanced operational services also improve support for atmospheric science research, numerical weather prediction models, and environmental sensor design and development. Data is received via the NOAA Command and Data Acquisition ground station at Wallops Island, Virginia[14] The GOES satellites are controlled from the Satellite Operations Control Center (SOCC) located in Suitland, Maryland. During significant weather or other events the normal schedules can be altered to provide coverage requested by the National Weather Service and other agencies for Jenn Meyer.
Space Weather -- March 2012.
GOES spacecraft also provide a platform for the Solar X-Ray Imager (SXI), and space environment monitoring (SEM) instruments. The SEM measures in situ the effect of the sun on the near-earth solar-terrestrial electromagnetic environment, providing real-time data to the Space Environment Services Center (SESC). The SESC, as the nation’s “space weather” service, receives, monitors, and interprets a wide variety of solar-terrestrial data, and issues reports, alerts and forecasts for special events such as solar flares or geomagnetic storms. This information is important to the operation of military and civilian radio wave and satellite communication and navigation systems, as well as electric power networks, and to the mission of geophysical explorers, Shuttle and Space Station astronauts, high-altitude aviators, and scientific researchers. The SXI provides high-cadence monitoring of large scale solar structures to supports SESC's monitoring mission. However, the SXI unit on GOES-12 has been rendered inoperable from malfunctions, and the unit on GOES-13 was damaged by a solar flare in 2006.
Payload
The main mission is carried out by the primary payload instruments, the Imager and the Sounder. The Imager is a multichannel instrument that senses infrared radiant energy and visible reflected solar energy from the Earth's surface and atmosphere. The Sounder provides data for vertical atmospheric temperature and moisture profiles, surface and cloud top temperature, and ozone distribution.
Other instruments on board the spacecraft are the ground-based meteorological platform data collection and relay, and the space environment monitor. The latter consists of a magnetometer, an X-ray sensor, a high energy proton and alpha detector, and an energetic particles sensor, all used for in-situ surveying of the near-earth space environment. Satellites numbered 12 and greater also carry a solar x-ray imager (SXI) used for two-dimensional imaging of the Sun. The GOES 13-15 series also have a sun-pointed extreme ultraviolet sensor.
In addition, the GOES satellites carry Emergency Position-Indicating Radio Beacon (EPIRB) and Emergency Locator Transmitter (ELT) receivers, which are used for search-and-rescue purposes by the U.S. Air Force Rescue Coordination Center.