Back to photostream

S-3 Viking

In the 1960s, the Soviet Navy's switch to nuclear-powered submarines that could hide beneath the waves indefinitely rendered existing US Navy antisubmarine warfare (ASW) assets, such as the Grumman S-2 Tracker carrier-based sub hunter, increasingly ineffective. In late 1966, after two years of consideration, the Navy issued a requirement for a new, more capable carrier-based ASW aircraft under the "VSX" program. A team led by Lockheed beat a Grumman-led team, with the Lockheed team awarded a contract in August 1969 for development of the VSX as the twin-turbofan "S-3A".

 

The Lockheed team also included Ling-Temco-Vought (LTV) and Univac Federal Systems. LTV was particularly important in the partnership, since Lockheed didn't have much experience in building carrier-based aircraft and needed LTV's assistance to do the job. LTV built the engine pods, landing gear, tail assembly and wings; Univac put together the ASW electronics suite; Lockheed built the fuselage, and performed final integration and test of all aircraft elements.

 

The initial contract specified delivery of two static-test aircraft, six (later eight) flight prototypes, and modification of a Lockheed P-3 Orion sub-hunter to test the S-3A avionics suite. The development program was highly structured, with the Navy stepping Lockheed through a sequence of checkpoints and milestones. Lockheed's development of the Air Force C-5 Galaxy transport had been troublesome, though USAF procurement bungles had played a role in the difficulties, and the Navy wanted to make sure things stayed on track.

 

The first "YS-3A" prototype performed its initial flight on 21 January 1972, with Lockheed test pilots John Christiansen and Lyle Scheafer as pilot and copilot respectively. Things went well, leading to award of a Navy contract for the first production batch of S-3As in April 1972. Carrier qualifications began in November 1973. The S-3A, by this time formally named "Viking", began Navy service with training squadron VS-41 at NAS North Island, San Diego, California, on 20 February 1974. This led to introduction to operational service with squadron VS-21 in 1977. By modern standards, the Viking development program was an outstanding success, taking less than nine years to go from contract award to operational service.

 

* The S-3A was a compact aircraft, designed to be an efficient load carrier, not a high-performance machine. It had a high swept wing and a conventional swept tail arrangement. Each wing mounted a General Electric TF34-400 turbofan with 41.3 kN (4,210 kgp / 9,275 lbf) thrust, similar to the TF34 engine used by the Fairchild A-10 Warthog close-support aircraft. Early S-3A production featured the TF34-2 variant, with the same power levels but not as reliable. The TF34s provided plenty of thrust and excellent fuel economy.

 

The Viking's wings folded up hydraulically outboard of the engines for carrier deck storage, with the wing fold angles slightly staggered so the wings would overlap each other in a "crossed arms" arrangement. All the Viking's internal fuel was stored in the wings between the wing folds. The tailfin hinged down to the left for carrier hangar-deck clearance. Each wing had a leading-edge sweep of 15 degrees, and featured a leading-edge flap outboard of the engines; a wide-span single slotted rear-edge flap inboard of the aileron; a set of spoilers on top of the wing; and a spoiler / airbrake under the wing. Tail flight control surfaces were conventional. There were trim tabs on both ailerons and elevator surfaces.

 

Four crew were carried in a pressurized cockpit, with all four facing forward in a 2-by-2 arrangement. The pilot was in the left forward seat; the copilot sat in the right forward seat; a "sensor operator (SENSO)" sat in the left rear seat; and a "tactical coordinator (TACCO)" sat in the right rear seat. Cockpit indicators were generally analog. The pilot and copilot had stick instead of yoke controls. All four crew sat on McDonnell Douglas Escapac E-1 "zero-zero (zero altitude zero speed)" ejection seats. The pilot and copilot positions featured extensive cockpit glazing, but there was only a tinted "postage stamp" window on each side of the fuselage for the back-seaters, to permit them to concentrate on their display systems. The crew entered through a small door at the rear of the cockpit, which opened downward on the right side of the fuselage, with the door featuring built-in steps. Since the door was clearly a tight fit, the canopy side windows could be jettisoned to allow the crew to climb out in a hurry if the need arose.

 

A midair refueling probe could be extended from a port directly above the windshield. The Viking had tricycle landing gear, with single wheel main gear retracting in and back into the fuselage, plus twin-wheel nose gear that retracted backwards and also provided a catapult attachment. As mentioned, LTV built the landing gear: the nose gear was derived from that of the A-7 Corsair II, while the main gear was derived from that of the F-8 Crusader. A yoke-style arresting hook was fitted under the rear fuselage.

USS Midway Aircraft Carrier CV-41 Museum-San Diego Ca.

6,596 views
1 fave
2 comments
Uploaded on February 28, 2009
Taken on July 11, 2008