koshlan.tetiana
SARS Innovation
____Coronavirus entry into host cells is mediated by the transmembrane spike (S) glycoprotein that forms homotrimers protruding from the viral surface [1]. (S) glycoprotein comprises two functional subunits responsible for binding to the host cell receptor (S1 subunit) and fusion of the viral and cellular membranes (S2 subunit). For many CoVs, (S) glycoprotein is cleaved at the boundary between the S1 and S2 subunits, which remain non-covalently bound in the prefusion conformation [2]
Let us consider in more detail the key factor determining the specificity of the host cell. The trimeric S-glycoprotein (Spike glycoprotein) localized in the envelope can be further cleaved by host cell proteases at the N-terminus, forming the S1 subunit and the membrane-bound C-terminal region, S2 subunit. Moreover, S1 contains a receptor binding domain (RBD), which directly binds to the peptidase domain (PD) of angiotensin-converting enzyme 2 (ACE2 Angiotensin-converting enzyme 2), while S2 is responsible for membrane fusion. When S1 binds to the ACE2 host receptor, another S2 cleavage site is opened and cleaved by the protease host, a process that is critical for viral infection [3]. S-glycoprotein remains non-covalent bound in a metastable conformation before fusion. After endocytosis of the virus by the host cell, a second cleavage is formed, which is mediated by endolysosomal, which allows membrane fusion activation to occur. Subunit S2 contains heptadic repeat (HR) regions: HR1 and HR2. The S1 subunit binds the cell receptor through its receptor binding domain, followed by conformational changes in the S2 subunit.
____Protein SARS-Cov is crucial in the process of penetration of the virus into the host cell and is a promising target for the prevention and treatment of infectious diseases caused by coronovirus. The protein is folded into a spiral structure (see Fig. 2), which can be assembled into a trimeric bundle with six helices (trimer of HR1 / HR2 heterodimers).
SARS Innovation
____Coronavirus entry into host cells is mediated by the transmembrane spike (S) glycoprotein that forms homotrimers protruding from the viral surface [1]. (S) glycoprotein comprises two functional subunits responsible for binding to the host cell receptor (S1 subunit) and fusion of the viral and cellular membranes (S2 subunit). For many CoVs, (S) glycoprotein is cleaved at the boundary between the S1 and S2 subunits, which remain non-covalently bound in the prefusion conformation [2]
Let us consider in more detail the key factor determining the specificity of the host cell. The trimeric S-glycoprotein (Spike glycoprotein) localized in the envelope can be further cleaved by host cell proteases at the N-terminus, forming the S1 subunit and the membrane-bound C-terminal region, S2 subunit. Moreover, S1 contains a receptor binding domain (RBD), which directly binds to the peptidase domain (PD) of angiotensin-converting enzyme 2 (ACE2 Angiotensin-converting enzyme 2), while S2 is responsible for membrane fusion. When S1 binds to the ACE2 host receptor, another S2 cleavage site is opened and cleaved by the protease host, a process that is critical for viral infection [3]. S-glycoprotein remains non-covalent bound in a metastable conformation before fusion. After endocytosis of the virus by the host cell, a second cleavage is formed, which is mediated by endolysosomal, which allows membrane fusion activation to occur. Subunit S2 contains heptadic repeat (HR) regions: HR1 and HR2. The S1 subunit binds the cell receptor through its receptor binding domain, followed by conformational changes in the S2 subunit.
____Protein SARS-Cov is crucial in the process of penetration of the virus into the host cell and is a promising target for the prevention and treatment of infectious diseases caused by coronovirus. The protein is folded into a spiral structure (see Fig. 2), which can be assembled into a trimeric bundle with six helices (trimer of HR1 / HR2 heterodimers).