Diamond Light Source
Diamond Light Source ("Diamond") is the UK's national synchrotron science facility located at the Harwell Science and Innovation Campus in Oxfordshire. Its purpose is to produce intense beams of light whose special characteristics are useful in many areas of scientific research. In particular it can be used to investigate the structure and properties of a wide range of materials from proteins (to provide information for designing new and better drugs), and engineering components (such as a fan blade from an aero-engine) to conservation of archeological artifacts (for example Henry VIII's flagship the Mary Rose).
Diamond was built at Chilton near Didcot in Oxfordshire, UK, next to the Rutherford Appleton Laboratory operated by the Science and Technology Facilities Council (STFC). It produced its first user beam towards the end of January 2007, and was formally opened by Queen Elizabeth II on 19 October 2007.
Diamond generates synchrotron light at wavelengths ranging from X-rays to the far infrared. This is also known as synchrotron radiation and is the electromagnetic radiation emitted by charged particles travelling near the speed of light. It is used in a huge variety of experiments to study the structure and behaviour of many different types of matter.
The particles Diamond uses are electrons travelling at an energy of 3 GeV round a 561.6 m circumference storage ring. The ring is not circular, but is shaped as a forty-eight-sided polygon, using a 'double bend achromat' magnet configuration in which two bending magnets are placed in each of 24 cells. As the electrons pass through specially designed magnets at each vertex, their sudden change of direction causes them to emit an exceptionally bright beam of electro-magnetic radiation. This is the synchrotron light used for experiments.
Diamond Light Source
Diamond Light Source ("Diamond") is the UK's national synchrotron science facility located at the Harwell Science and Innovation Campus in Oxfordshire. Its purpose is to produce intense beams of light whose special characteristics are useful in many areas of scientific research. In particular it can be used to investigate the structure and properties of a wide range of materials from proteins (to provide information for designing new and better drugs), and engineering components (such as a fan blade from an aero-engine) to conservation of archeological artifacts (for example Henry VIII's flagship the Mary Rose).
Diamond was built at Chilton near Didcot in Oxfordshire, UK, next to the Rutherford Appleton Laboratory operated by the Science and Technology Facilities Council (STFC). It produced its first user beam towards the end of January 2007, and was formally opened by Queen Elizabeth II on 19 October 2007.
Diamond generates synchrotron light at wavelengths ranging from X-rays to the far infrared. This is also known as synchrotron radiation and is the electromagnetic radiation emitted by charged particles travelling near the speed of light. It is used in a huge variety of experiments to study the structure and behaviour of many different types of matter.
The particles Diamond uses are electrons travelling at an energy of 3 GeV round a 561.6 m circumference storage ring. The ring is not circular, but is shaped as a forty-eight-sided polygon, using a 'double bend achromat' magnet configuration in which two bending magnets are placed in each of 24 cells. As the electrons pass through specially designed magnets at each vertex, their sudden change of direction causes them to emit an exceptionally bright beam of electro-magnetic radiation. This is the synchrotron light used for experiments.