plosone-phylo
Figure 9
Dynamics of cetacean diversification through time as revealed by BAMM analysis.(A) Phylogeny of cetaceans [51], with branch lengths drawn proportional to their marginal speciation rate as estimated using BAMM. A large increase in the rate of speciation (>6-fold) occurred in one of the ancestral branches leading to the Delphinidae (including or excluding the killer whale, Orcinus orca). Despite this increase, the overall trend is towards decelerating rates through time. (B) Cetacean phylogeny with branch lengths scaled by the posterior probability that they contain a rate shift. Numbers above branches denote branch-specific shift probabilities. The probability that a rate shift occurred on at least one of these three branches was 0.975. No other branches had shift probabilities exceeding 0.02. (C) Posterior distribution of the number of distinct processes (including the root process) on the cetacean phylogeny. A two-process model vastly outperforms a one-process model. (D) Speciation rates through time during the extant cetacean radiation; distinct shaded regions denote (from bottom) 0.05, 0.25, 0.50, 0.75, and 0.95 quantiles on the posterior distribution of rates at a given point in time. Massive spike in mean speciation rates at 7.5 Ma corresponds to the early radiation of the Delphinidae clade. (E) Corresponding extinction through time curve.
Figure 9
Dynamics of cetacean diversification through time as revealed by BAMM analysis.(A) Phylogeny of cetaceans [51], with branch lengths drawn proportional to their marginal speciation rate as estimated using BAMM. A large increase in the rate of speciation (>6-fold) occurred in one of the ancestral branches leading to the Delphinidae (including or excluding the killer whale, Orcinus orca). Despite this increase, the overall trend is towards decelerating rates through time. (B) Cetacean phylogeny with branch lengths scaled by the posterior probability that they contain a rate shift. Numbers above branches denote branch-specific shift probabilities. The probability that a rate shift occurred on at least one of these three branches was 0.975. No other branches had shift probabilities exceeding 0.02. (C) Posterior distribution of the number of distinct processes (including the root process) on the cetacean phylogeny. A two-process model vastly outperforms a one-process model. (D) Speciation rates through time during the extant cetacean radiation; distinct shaded regions denote (from bottom) 0.05, 0.25, 0.50, 0.75, and 0.95 quantiles on the posterior distribution of rates at a given point in time. Massive spike in mean speciation rates at 7.5 Ma corresponds to the early radiation of the Delphinidae clade. (E) Corresponding extinction through time curve.