Back to photostream

Skylon on the way to orbital insertion burn.

Skylon is a design for a single-stage-to-orbit spaceplane by the British company Reaction Engines Limited (REL), using SABRE, a combined-cycle, air-breathing rocket propulsion system, potentially reusable for 200 flights. In paper studies, the cost per kilogram of payload carried to low Earth orbit in this way is hoped to be reduced from the current £1,108/kg (as of December 2015), including research and development, to around £650/kg, with costs expected to fall much more over time after initial expenditures have amortised. In 2004, the developer estimated the total lifetime cost of the programme to be about $12 billion.

 

The vehicle design is for a hydrogen-fuelled aircraft that would take off from a purpose-built runway, and accelerate to Mach 5.4 at 26 kilometres (16 mi) altitude using the atmosphere's oxygen before switching the engines to use the internal liquid oxygen (LOX) supply to take it into orbit. Once in orbit it would release its payload (of up to 15 tonnes). The vehicle will be unpiloted, but also be certified to carry passengers. All payloads could be carried in a standardised container compartment. The relatively light vehicle would then re-enter the atmosphere and land on a runway, being protected from the conditions of re-entry by a ceramic composite skin. When on the ground, it would undergo inspection and necessary maintenance. If the design goal is achieved, it should be ready to fly again within two days.

 

As of 2012, only a small portion of the funding required to develop and build Skylon had been secured. The research and development work on the SABRE engine design is proceeding under a small European Space Agency (ESA) grant. In January 2011, REL submitted a proposal to the British government to request additional funding for the project and in April REL announced that they had secured $350 million of further funding contingent on a test of the engine's precooler technology being successful. Testing of the key technologies was successfully completed in November 2012, allowing Skylon's design to advance to its final phase. On 16 July 2013 the British government pledged £60M to the project: this investment will provide support at a "crucial stage" to allow a full-scale prototype of the SABRE engine to be built.

 

If all goes to plan, the first ground-based engine tests could happen in 2019, and Skylon could be performing unmanned test flights by 2025. It could carry 15 tonnes of cargo to a 300 km equatorial orbit on each trip, and up to 11 tonnes to the International Space Station, almost 45% more than the capacity of the European Space Agency's ATV vehicle.

 

This is the first production vehicle and it is used as a testbed to prove the Sklyon concept.

 

I really enjoyed building this model. It went through multiple re-designs to get the curves and shaping just right. Those of you who play Kerbal Space Program will understand how an SSTO works but if you don't it is an aircraft with rocket engines of some time that is able to climb into orbit to launch satellites then return the entire aircraft to earth to save money.

 

Enjoy!

Tyler

11,295 views
55 faves
7 comments
Uploaded on September 30, 2016
Taken on September 10, 2011